山东省聊城市2016年中考数学预测试卷(七)(含解析)
- 格式:doc
- 大小:433.50 KB
- 文档页数:25
山东省聊城市2016年初中毕业学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】根据正数大于0,负数小于0,两个负数绝对值大的反而小,可得1203--<<,2-最小,故选A .【提示】根据负数的绝对值越大,这个数越小,然后根据正数大于0,负数小于0进行大小比较即可. 【考点】实数大小比较 2.【答案】C 【解析】解:如图,∵AB CD ∥,∴168B ∠=∠=︒,∵20E ∠=︒,∴148D E ∠=∠-∠=︒,故选C . 【提示】根据平行线的性质得到168B ∠=∠=°,由三角形的外角的性质即可得到结论. 【考点】平行线的性质 3.【答案】B【解析】解:∵地球的体积约为1210立方千米,太阳的体积约为181.410⨯立方千米,∴地球的体积约是太阳体积的倍数是1218710(1.410)7.110-÷⨯≈⨯.故选B .【提示】直接利用整式的除法运算法则结合科学记数法求出答案. 【考点】整式的除法 4.【答案】C【解析】解:32228822(441)2(21)a a a a a a a a -+=-+=-.故选C . 【提示】首先提取公因式2a ,进而利用完全平方公式分解因式即可. 【考点】提公因式法与公式法的综合运用5.【答案】B【解析】解:根据平均成绩可得乙和丙要比甲和丁好,根据方差可得甲和乙的成绩比丙和丁稳定,因此要选择一名成绩高且发挥稳定的学生参赛,因选择乙.故选B .【提示】从平均成绩分析乙和丙要比甲和丁好,从方差分析甲和乙的成绩比丙和丁稳定,综合两个方面可选出乙. 【考点】方差 6.【答案】C【解析】解:由俯视图可得此几何体底面有5个小正方形分为3列3排,根据主视图可得这个几何体的左视图有2层高,可得这个几何体的左视图不可能是3层高.故选C .【提示】由俯视图可得此几何体底面有5个小正方形分为3列3排,根据主视图可得这个几何体的左视图有2层高,依此即可求解.【考点】由三视图判断几何体,简单组合体的三视图 7.【答案】C【解析】解:由二次函数2y ax bx c =++的图象可知,0a >,0b <,0c <,则一次函数y ax b =+的图象经过第一、三、四象限,反比例函数cy x=的图象在二四象限.故选C . 【提示】根据二次函数2y ax bx c =++的图象,可以判断a b c ,,的正负情况,从而可以判断一次函数y ax b =+与反比例函数cy x=的图象分别在哪几个象限,从而可以解答本题. 【考点】反比例函数的图象,一次函数的图象,二次函数的图象 8.【答案】D【解析】解:设第一个数为x ,则第二个数为7x +,第三个数为14x +,故三个数的和为714321x x x x ++++=+.当16x =时,32169x +=; 当10x =时,32151x +=;当2x =时,32127x +=.故任意圈出一竖列上相邻的三个数的和不可能是72.故选D .【提示】设第一个数为x ,则第二个数为7x +,第三个数为14x +.列出三个数的和的方程,再根据选项解出x x ,看是否存在. 【考点】一元一次方程的应用 9.【答案】B【解析】解:∵四边形ABCD 内接于O ,105ABC ∠=︒, ∴180********ADC ABC ∠=-∠=-︒=︒︒︒.∵DF BC =,25BAC ∠=︒,∴25DCE BAC ∠=∠=︒,∴752550E ADC DCE ∠=∠-∠=︒-=︒︒.故选B .【提示】先根据圆内接四边形的性质求出ADC ∠的度数,再由圆周角定理得出DCE ∠的度数,根据三角形外角的性质即可得出结论.【考点】圆内接四边形的性质,圆心角、弧、弦的关系,圆周角定理 10.【答案】D【解析】解:不等式整理得11x x m ⎧⎨+⎩>>,由不等式组的解集为1x >,得到11m +≤,解得:0m ≤.故选D .【提示】表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m 的范围即可. 【考点】不等式的解集 11.【答案】A【解析】解:∵把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A '处,点B 落在点B′处, ∴BFE EFB '∠=∠,90B B ∠∠=︒'=,∵240∠=︒,∴50CFB '∠=︒,∴1180EFB CFB ''∠+∠-∠=︒,即1150180∠+∠-=︒︒,解得:1115∠=︒.故选A .【提示】根据折叠的性质和矩形的性质得出BFE EFB '∠=∠,90B B ∠∠=︒'=,根据三角形内角和定理求出50CFB '∠=︒,进而解答即可.【考点】翻折变换(折叠问题),对称图形的性质,矩形的性质,四边形的内角和,三角形的内角和 12.【答案】B【解析】解:过C 作CD AB ⊥于D ,在Rt ACD △中,tan tan33AD CD ACD CD ︒=∠=, 在Rt BCO △中,tan tan 21OD CD BCO CD ︒=∠=,∵110AB m =,∴55AO m =,∴tan33tan 2155AO AD OD CD CD m =-=-︒=︒, ∴5555204tan33tan 210.650.38CD m ︒︒==≈--.答:小莹所在C 点到直径AB 所在直线的距离约为204m . 故选B .【提示】过C 作CD AB ⊥于D ,在Rt ACD △中,求得tan tan33AD CD ACD CD ︒=∠=,在Rt BCO △中,求得tan tan 21OD CD BCO CD ︒=∠=,列方程即可得到结论. 【考点】解直角三角形的应用——仰角俯角问题第Ⅱ卷二、填空题 13.【答案】1281262=33=632÷÷. 【提示】直接利用二次根式乘除运算法则化简求出答案. 【考点】二次根式的乘除法 14.【答案】94k >-且0k ≠【解析】解:∵关于x 的一元二次方程2310kx x --=有两个不相等的实数根,∴0k ≠且△>0,即2(3)4(1)0k --->,解得:94k ->且0k ≠.故答案为94k ->且0k ≠.【提示】根据一元二次方程的定义和△的意义得到0k ≠且∆>0,即2(3)4(1)0k --->,然后解不等式即可得到k 的取值范围. 【考点】根的判别式 15.【答案】2π【解析】解:如图,30BAO ∠=︒,AO =,在Rt ABO △中,∵tan BOBAO AO∠=,∴1BO =︒=,即圆锥的底面圆的半径为1,∴2AB ==,即圆锥的母线长为2,∴圆锥的侧面积=12π122π2=.故答案为2π. 【提示】先利用三角函数计算出BO ,再利用勾股定理计算出AB ,然后利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算圆锥的侧面积.【考点】圆锥的计算16.【答案】15【解析】解:∵随机地闭合开关1S ,2S ,3S ,4S ,5S 中的三个共有10种可能,能够使灯泡1L ,2L 同时发光有2种可能(1S ,2S ,4S 或1S ,2S ,5S ).∴随机地闭合开关1S ,2S ,3S ,4S ,5S 中的三个,能够使灯泡1L ,2L 同时发光的概率是21105=.故答案为15.【提示】求出随机闭合开关1S ,2S ,3S ,4S ,5S 中的三个,共有几种可能情况,以及能让灯泡1L ,2L 同时发光的有几种可能,由此即可解决问题. 【考点】概率公式,概率的意义17.【答案】1008(2,0)或2016,0) 【解析】解:∵正方形111OA B C 边长为1,∴1OB =∵正方形122OB B C 是正方形111OA B C 的对角线1OB 为边, ∴22OB =,∴2B 点坐标为(0,2),同理可知3OB =∴3B 点坐标为(2,2)-,同理可知44OB =,4B 点坐标为(4,0)-,5B 点坐标为(4,4)--,6B 点坐标为(0,8)-,7B 点坐标为(8,8)-,8B 点坐标为(16,0),9B 点坐标为(16,16),10B 点坐标为(0,32),由规律可以发现,每经过8倍,∵20168252÷=∴2016B 的纵横坐标符号与点8B 的相同,横坐标为正值,纵坐标是0,∴2016B 的坐标为1008(2,0)或2016,0)故答案为1008(2,0)或2016,0).【提示】首先求出1B 、2B 、3B 、4B 、5B 、6B 、7B 、8B 、9B 的坐标,找出这些坐标的之间的规律,然后根据规律计算出点2016B 的坐标. 【考点】图形的变化规律 三、解答题 18.【答案】22x x --+【解析】解:原式282(2)(2)422(2)(2)4242x x x x x x x x x x x x +-+--+--===-+--+-+.【提示】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【考点】分式的混合运算19.【答案】(1)点1A 的坐标为(2,2),1B 点的坐标为(3,2)-; (2)2(3,5)A -,2(2,1)B -,2(1,3)C -; (3)3(5,3)A ,3(1,2)B ,3(3,1)C .【解析】解:(1)如图,111A B C △为所作,因为点(1,3)C -平移后的对应点1C 的坐标为(4,0),所以ABC △先向右平移5个单位,再向下平移3个单位得到111A B C △,所以点1A 的坐标为(2,2),1B 点的坐标为(3,2)-.(2)因为ABC △和122A B C △关于原点O 成中心对称图形, 所以2(3,5)A -,2(2,1)B -,2(1,3)C -.(3)如图,233A B C △为所作,3(5,3)A ,3(1,2)B ,3(3,1)C .【提示】(1)利用点C 和点1C 的坐标变化得到平移的方向与距离,然后利用此平移规律写出顶点1A ,1B 的坐标.(2)根据关于原点对称的点的坐标特征求解.(3)利用网格和旋转的性质画出233A B C △,然后写出233A B C △的各顶点的坐标. 【考点】坐标与图形变化——旋转;坐标与图形变化——平移 20.【答案】证明:∵AF CD ∥, ∴AFE CDE ∠=∠, 在AFE △和CDE △中,AFE CDE AEF CED AE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴AEF CED ≅△△, ∴AF CD =,又AF CD ∥, ∴四边形ADCF 是平行四边形, ∵90B ︒∠=,30ACB ︒∠=, ∴60CAB ︒∠=, ∵AD 平分CAB ∠,∴30DAC DAB ACD ︒∠=∠==∠, ∴DA DC =,∴四边形ADCF 是菱形.【解析】略【提示】先证明AEF CED △≌△,推出四边形ADCF 是平行四边形,再证明DAC ACB ∠=∠,推出DA DC =,由此即可证明.【考点】菱形的判定 21.【答案】(1)见解析 (2)见解析(3)660名(2)作出条形统计图,如图所示:(3)根据题意得:1500(0.280.120.04)660⨯++=(人),则该校共有660名学生平均每天阅读时间不少于50min.【提示】(1)根据总人数50,以及表格中的数据确定出所求数据,填写表格即可.(2)根据表格中的数据作出相应的频数直方图,如图所示.(3)由时间不少于50min的百分比,乘以1 500即可得到结果.【考点】频数(率)分布直方图,用样本估计总体,频数(率)分布表22.【答案】0.6h【解析】解:设城际铁路现行速度是x km h.由题意得:12021145110x x⨯=+.解这个方程得:80x=.经检验:80x=是原方程的根,且符合题意.则120212020.65805hx⨯=⨯=.答:建成后的城际铁路在A B ,两地的运行时间是0.6h .【提示】设城际铁路现行速度是x km h ,设计时速是(110)h x km +;现行路程是120km ,设计路程是114km ,由时间=路程速度,运行时间=25现行时间,就可以列方程了.【考点】分式方程的应用 23.【答案】(1)18y x=-(2)182y x =-+【解析】解:(1)令一次函数12y x =-中3y =,则132x =-,解得:6x =-,即点A 的坐标为(6,3)-. ∵点(6,3)A -在反比例函数ky x=的图象上, ∴6318k =-⨯=-,∴反比例函数的表达式为18y x=-. (2)∵A B 、两点关于原点对称, ∴点B 的坐标为(6,3)-,∴AB =设平移后的直线的函数表达式为1(0)2y x b b =-+>,即220x y b +-=,直线12y x =-可变形为20x y +=,∴两直线间的距离d ==.∴114822ABC S AB d ==⨯=△, 解得:8b =.∴平移后的直线的函数表达式为182y x =-+.【提示】(1)将3y =代入一次函数解析式中,求出x 的值,即可得出点A 的坐标,再利用反比例函数图象上点的坐标特征即可求出反比例函数的表达式.(2)根据A B 、点关于原点对称,可求出点B 的坐标以及线段AB 的长度,设出平移后的直线的函数表达式,根据平行线间的距离公式结合三角形的面积即可得出关于b 的一元一次方程,解方程即可得出结论.【考点】反比例函数与一次函数的交点问题24.【答案】(1)证明:∵以Rt ABC △的直角边AB 为直径作O ,点F 恰好落在AB 的中点, ∴AF BF =, ∴AOF BOF ∠=∠, ∵90ABC ABG ∠=∠=︒, ∴AOF ABG ∠=∠, ∴FO BG ∥, ∵AO BO =,∴FO FO 是ABG △的中位线,∴12FO BG =.(2【解析】(1)略(2)解:在FOE △和CBE △中,FOE CBE EO BEOEF CEB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()FOE CBE ASA △≌△, ∴122BC FO AB ===,∴AC 连接DB ,∵AB 为O 直径, ∴90ADB ∠=︒,∴ADB ABC ∠=∠,∵BCD ACB ∠=∠,∴BCD ACB △∽△, ∴BC CD AC BC=,2DC =,解得:DC =. 【提示】(1)直接利用圆周角定理结合平行线的判定方法得出FO 是ABG △的中位线,即可得出答案;(2)首选得出()FOE CBE ASA △≌△,则122BC FO AB ===,进而得出AC 的长,再利用相似三角形的判定与性质得出DC 的长.【考点】相似三角形的判定与性质25.【答案】(1)2484279y x x =-++,(6,4)D (2)163(3)当03t <≤时,213S t = 当36t <≤时,213123S t t =-+ 【解析】解:(1)∵抛物线2y ax bx c =++经过点(3,0)A -,(9,0)B 和(0,4)C .∴设抛物线的解析式为(3)(9)y a x x =+-,∵(0,4)C 在抛物线上,∴427a =-, ∴427a =-, ∴设抛物线的解析式为2448(3)(9)427279y x x x x =-+-=-++, ∵CD 垂直于y 轴,(0,4)C ∴24844279x x -++=, ∴6x =,∴(6,4)D .(2)如图1,∵点F 是抛物线2484279y x x =-++的顶点, ∴16(3,)3F , ∴43FH =, ∵11GH AO ∥, ∴11GH FH A O FG=, ∴4334GH =, ∴1GH =,∵11Rt AO F △与矩形OCDE 重叠部分是梯形11AOHG , ∴111111111416341222233A O F S S S AO O F GH FH =-=⨯-⨯=⨯⨯-⨯⨯=△△FGH 重叠部分. (3)①当03t <≤时,如图2,∵22C O DE ∥, ∴22O G OO DE OE=, ∴246O G t =, ∴223O G t =, ∴222211212233OO G S S OO O G t t t ==⨯=⨯=△. ②当36t <≤时,如图3,∵2C H OC ∥, ∴22DC C H CD OC=, ∴2664C H t -=, ∴22(6)3C H t =-, ∴2222222211(3)2211234(6)(3)22313123A O C C GH A O HG S S S S OA OC C H t t t t t ==-=⨯-⨯-=⨯⨯-⨯--=-+△△四边形 ∴当03t <≤时,213S t =;当36t <≤时,213123S t t =-+. 【提示】(1)用待定系数法求抛物线解析式.(2)由11GH AO ∥,求出1GH =,再求出FH ,11A O F S S S =-△△FGH 重叠部分计算即可.(3)分两种情况①直接用面积公式计算,②用面积差求出即可.【考点】二次函数综合题。
2016年山东省聊城市中考数学试卷一、选择题(本题共12个小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)1.在实数﹣,﹣2,0,中,最小的实数是()A.﹣2 B.0 C.﹣D.2.如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为()A.28° B.38° C.48° D.88°3.地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是()A.7.1×10﹣6B.7.1×10﹣7C.1.4×106D.1.4×1074.把8a3﹣8a2+2a进行因式分解,结果正确的是()A.2a(4a2﹣4a+1)B.8a2(a﹣1)C.2a(2a﹣1)2D.2a(2a+1)25.某体校要从四名射击选手中选拔一名参加省体育运动会,选拔赛中每名选手连续射靶10次,他们各自的平均成绩及其方差S2如表所示:甲乙丙丁(环)8.4 8.6 8.6 7.6S20.74 0.56 0.94 1.92如果要选出一名成绩高且发挥稳定的选手参赛,则应选择的选手是()A.甲B.乙C.丙D.丁6.用若干个大小相同的小正方形体组合成的几何体的主视图和俯视图如图所示,下面所给的四个选项中,不可能是这个几何体的左视图的是()A.B.C.D.7.二次函数y=ax2+bx+c(a,b,c为常数且a≠0)的图象如图所示,则一次函数y=ax+b与反比例函数y=的图象可能是()A.B.C.D.8.在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.729.如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45° B.50° C.55° D.60°10.不等式组的解集是x>1,则m的取值范围是()A.m≥1 B.m≤1 C.m≥0 D.m≤011.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115° B.120° C.130° D.140°12.聊城“水城之眼”摩天轮是亚洲三大摩天轮之一,也是全球首座建筑与摩天轮相结合的城市地标,如图,点O是摩天轮的圆心,长为110米的AB是其垂直地面的直径,小莹在地面C点处利用测角仪测得摩天轮的最高点A的仰角为33°,测得圆心O的仰角为21°,则小莹所在C点到直径AB所在直线的距离约为(tan33°≈0.65,tan21°≈0.38)()A.169米B.204米C.240米D.407米二、填空题(本题共5个小题,每小题3分,只要求填写最后结果)13.计算:=.14.如果关于x的一元二次方程kx2﹣3x﹣1=0有两个不相等的实根,那么k的取值范围是.15.如图,已知圆锥的高为,高所在直线与母线的夹角为30°,圆锥的侧面积为.16.如图,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是.17.如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2015B2016C2016的顶点B2016的坐标是.三、解答题(本题共8个小题,共69分,解答题应写出文字说明、证明过程或推演步骤)18.计算:(﹣).19.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C (﹣1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A1B2C2关于原点O成中心对称图形,写出△A1B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A2B3C3,写出△A2B3C3的各顶点的坐标.20.如图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.21.为了让书籍开拓学生的视野,陶冶学生的情操,向阳中学开展了“五个一”课外阅读活动,为了解全校学生课外阅读情况,抽样调查了50名学生平均每天课外阅读时间(单位:min),将抽查得到的数据分成5组,下面是尚未完成的频数、频率分布表:组别分组频数(人数)频率1 10≤t<30 0.162 30≤t<50 203 50≤t<70 0.284 70≤t<90 65 90≤t<110(1)将表中空格处的数据补全,完成上面的频数、频率分布表;(2)请在给出的平面直角坐标系中画出相应的频数直方图;(3)如果该校有1500名学生,请你估计该校共有多少名学生平均每天阅读时间不少于50min?22.为加快城市群的建设与发展,在A,B两城市间新建条城际铁路,建成后,铁路运行里程由现在的120km 缩短至114km,城际铁路的设计平均时速要比现行的平均时速快110km,运行时间仅是现行时间的,求建成后的城际铁路在A,B两地的运行时间.23.如图,在直角坐标系中,直线y=﹣x与反比例函数y=的图象交于关于原点对称的A,B两点,已知A点的纵坐标是3.(1)求反比例函数的表达式;(2)将直线y=﹣x向上平移后与反比例函数在第二象限内交于点C,如果△ABC的面积为48,求平移后的直线的函数表达式.24.如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于点D,点E为OB的中点,连接CE并延长交⊙O于点F,点F恰好落在的中点,连接AF并延长与CB的延长线相交于点G,连接OF.(1)求证:OF=BG;(2)若AB=4,求DC的长.25.如图,已知抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).CD垂直于y轴,交抛物线于点D,DE垂直与x轴,垂足为E,l是抛物线的对称轴,点F是抛物线的顶点.(1)求出二次函数的表达式以及点D的坐标;(2)若Rt△AOC沿x轴向右平移到其直角边OC与对称轴l重合,再沿对称轴l向上平移到点C与点F 重合,得到Rt△A1O1F,求此时Rt△A1O1F与矩形OCDE重叠部分的图形的面积;(3)若Rt△AOC沿x轴向右平移t个单位长度(0<t≤6)得到Rt△A2O2C2,Rt△A2O2C2与Rt△OED重叠部分的图形面积记为S,求S与t之间的函数表达式,并写出自变量t的取值范围.2016年山东省聊城市中考数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)1.在实数﹣,﹣2,0,中,最小的实数是()A.﹣2 B.0 C.﹣D.【考点】实数大小比较.【分析】根据负数的绝对值越大,这个数越小,然后根据正数大于0,负数小于0进行大小比较即可.【解答】解:实数﹣,﹣2,0,中,最小的实数是﹣2,故选A【点评】此题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.2.如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为()A.28° B.38° C.48° D.88°【考点】平行线的性质.【分析】根据平行线的性质得到∠1=∠B=68°,由三角形的外角的性质即可得到结论.【解答】解:如图,∵AB∥CD,∴∠1=∠B=68°,∵∠E=20°,∴∠D=∠1﹣∠E=48°,故选C.【点评】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.3.地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是()A.7.1×10﹣6B.7.1×10﹣7C.1.4×106D.1.4×107【考点】整式的除法.【分析】直接利用整式的除法运算法则结合科学记数法求出答案.【解答】解:∵地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,∴地球的体积约是太阳体积的倍数是:1012÷1.4×1018≈7.1×10﹣7.故选:B.【点评】此题主要考查了整式的除法运算,正确掌握运算法则是解题关键.4.把8a3﹣8a2+2a进行因式分解,结果正确的是()A.2a(4a2﹣4a+1)B.8a2(a﹣1)C.2a(2a﹣1)2D.2a(2a+1)2【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式2a,进而利用完全平方公式分解因式即可.【解答】解:8a3﹣8a2+2a=2a(4a2﹣4a+1)=2a(2a﹣1)2.故选:C.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.5.某体校要从四名射击选手中选拔一名参加省体育运动会,选拔赛中每名选手连续射靶10次,他们各自的平均成绩及其方差S2如表所示:甲乙丙丁(环)8.4 8.6 8.6 7.6S20.74 0.56 0.94 1.92如果要选出一名成绩高且发挥稳定的选手参赛,则应选择的选手是()A.甲B.乙C.丙D.丁【考点】方差.【分析】从平均成绩分析乙和丙要比甲和丁好,从方差分析甲和乙的成绩比丙和丁稳定,综合两个方面可选出乙.【解答】解:根据平均成绩可得乙和丙要比甲和丁好,根据方差可得甲和乙的成绩比丙和丁稳定,因此要选择一名成绩高且发挥稳定的学生参赛,因选择乙,故选:B【点评】此题主要考查了方差和平均数,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.用若干个大小相同的小正方形体组合成的几何体的主视图和俯视图如图所示,下面所给的四个选项中,不可能是这个几何体的左视图的是()A.B.C.D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】由俯视图可得此几何体底面有5个小正方形分为3列3排,根据主视图可得这个几何体的左视图有2层高,依此即可求解.【解答】解:由俯视图可得此几何体底面有5个小正方形分为3列3排,根据主视图可得这个几何体的左视图有2层高,可得这个几何体的左视图不可能是3层高.故选:C.【点评】此题主要考查了画三视图,关键是根据主视图和俯视图分析出每排小正方体的个数.7.二次函数y=ax2+bx+c(a,b,c为常数且a≠0)的图象如图所示,则一次函数y=ax+b与反比例函数y=的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象;二次函数的图象.【专题】函数及其图象.【分析】根据二次函数y=ax2+bx+c的图象,可以判断a、b、c的正负情况,从而可以判断一次函数y=ax+b 与反比例函数y=的图象分别在哪几个象限,从而可以解答本题.【解答】解:由二次函数y=ax2+bx+c的图象可知,a>0,b<0,c<0,则一次函数y=ax+b的图象经过第一、三、四象限,反比例函数y=的图象在二四象限,故选C.【点评】本题考查反比例函数的图象、一次函数的图象、二次函数的图象,解题的关键是明确它们各自图象的特点,利用数形结合的思想解答问题.8.在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.72【考点】一元一次方程的应用.【分析】设第一个数为x,则第二个数为x+7,第三个数为x+14.列出三个数的和的方程,再根据选项解出x,看是否存在.【解答】解:设第一个数为x,则第二个数为x+7,第三个数为x+14故三个数的和为x+x+7+x+14=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=27.故任意圈出一竖列上相邻的三个数的和不可能是72.故选:D.【点评】此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.9.如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45° B.50° C.55° D.60°【考点】圆内接四边形的性质;圆心角、弧、弦的关系;圆周角定理.【分析】先根据圆内接四边形的性质求出∠ADC的度数,再由圆周角定理得出∠DCE的度数,根据三角形外角的性质即可得出结论.【解答】解:∵四边形ABCD内接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵=,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.故选B.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.10.不等式组的解集是x>1,则m的取值范围是()A.m≥1 B.m≤1 C.m≥0 D.m≤0【考点】不等式的解集.【专题】计算题;一元一次不等式(组)及应用.【分析】表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m的范围即可.【解答】解:不等式整理得:,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0,故选D【点评】此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.11.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115° B.120° C.130° D.140°【考点】翻折变换(折叠问题).【分析】根据折叠的性质和矩形的性质得出∠BFE=∠EFB',∠B'=∠B=90°,根据三角形内角和定理求出∠CFB'=50°,进而解答即可.【解答】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°,∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.【点评】本题考查了矩形的性质,折叠的性质,三角形的内角和定理的应用,能综合运用性质进行推理和计算是解此题的关键,注意:折叠后的两个图形全等.12.聊城“水城之眼”摩天轮是亚洲三大摩天轮之一,也是全球首座建筑与摩天轮相结合的城市地标,如图,点O是摩天轮的圆心,长为110米的AB是其垂直地面的直径,小莹在地面C点处利用测角仪测得摩天轮的最高点A的仰角为33°,测得圆心O的仰角为21°,则小莹所在C点到直径AB所在直线的距离约为(tan33°≈0.65,tan21°≈0.38)()A.169米B.204米C.240米D.407米【考点】解直角三角形的应用-仰角俯角问题.【分析】过C作CD⊥AB于D,在Rt△ACD中,求得AD=CD•tan∠ACD=CD•tan33°,在Rt△BCO中,求得OD=CD•tan∠BCO=CD•tan21°,列方程即可得到结论.【解答】解:过C作CD⊥AB于D,在Rt△ACD中,AD=CD•tan∠ACD=CD•tan33°,在Rt△BCO中,OD=CD•tan∠BCO=CD•tan21°,∵AB=110m,∴AO=55m,∴A0=AD﹣OD=CD•tan33°﹣CD•tan21°=55m,∴CD==≈204m,答:小莹所在C点到直径AB所在直线的距离约为204m.故选B.【点评】此题主要考查了仰角与俯角的问题,利用两个直角三角形拥有公共直角边,能够合理的运用这条公共边是解答此题的关键.二、填空题(本题共5个小题,每小题3分,只要求填写最后结果)13.计算:=12.【考点】二次根式的乘除法.【分析】直接利用二次根式乘除运算法则化简求出答案.【解答】解:=3×÷=3=12.故答案为:12.【点评】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.14.如果关于x的一元二次方程kx2﹣3x﹣1=0有两个不相等的实根,那么k的取值范围是k>﹣且k≠0.【考点】根的判别式.【分析】根据一元二次方程的定义和△的意义得到k≠0且△>0,即(﹣3)2﹣4×k×(﹣1)>0,然后解不等式即可得到k的取值范围.【解答】解:∵关于x的一元二次方程kx2﹣3x﹣1=0有两个不相等的实数根,∴k≠0且△>0,即(﹣3)2﹣4×k×(﹣1)>0,解得:k>﹣且k≠0.故答案为:k>﹣且k≠0.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.15.如图,已知圆锥的高为,高所在直线与母线的夹角为30°,圆锥的侧面积为2π.【考点】圆锥的计算.【专题】计算题.【分析】先利用三角函数计算出BO,再利用勾股定理计算出AB,然后利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算圆锥的侧面积.【解答】解:如图,∠BAO=30°,AO=,在Rt△ABO中,∵tan∠BAO=,∴BO=tan30°=1,即圆锥的底面圆的半径为1,∴AB==2,即圆锥的母线长为2,∴圆锥的侧面积=•2π•1•2=2π.故答案为2π.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.如图,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是.【考点】概率公式;概率的意义.【分析】求出随机闭合开关S1,S2,S3,S4,S5中的三个,共有几种可能情况,以及能让灯泡L1,L2同时发光的有几种可能,由此即可解决问题.【解答】解:∵随机地闭合开关S1,S2,S3,S4,S5中的三个共有10种可能,能够使灯泡L1,L2同时发光有2种可能(S1,S2,S4或S1,S2,S5).∴随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是=.故答案为.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.17.如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2015B2016C2016的顶点B2016的坐标是(21008,0).【考点】正方形的性质;规律型:点的坐标.【分析】首先求出B1、B2、B3、B4、B5、B6、B7、B8、B9的坐标,找出这些坐标的之间的规律,然后根据规律计算出点B2016的坐标.【解答】解:∵正方形OA1B1C1边长为1,∴OB1=,∵正方形OB1B2C2是正方形OA1B1C1的对角线OB1为边,∴OB2=2,∴B2点坐标为(0,2),同理可知OB3=2,∴B3点坐标为(﹣2,2),同理可知OB4=4,B4点坐标为(﹣4,0),B5点坐标为(﹣4,﹣4),B6点坐标为(0,﹣8),B7(8,﹣8),B8(16,0)B9(16,16),B10(0,32),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,∵2016÷8=252∴B2016的纵横坐标符号与点B8的相同,横坐标为正值,纵坐标是0,∴B2016的坐标为(21008,0).故答案为:(21008,0).【点评】本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点坐标的规律发现每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍.三、解答题(本题共8个小题,共69分,解答题应写出文字说明、证明过程或推演步骤)18.计算:(﹣).【考点】分式的混合运算.【专题】计算题;分式.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=•=•=﹣.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.19.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C (﹣1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A1B2C2关于原点O成中心对称图形,写出△A1B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A2B3C3,写出△A2B3C3的各顶点的坐标.【考点】坐标与图形变化-旋转;坐标与图形变化-平移.【专题】作图题.【分析】(1)利用点C和点C1的坐标变化得到平移的方向与距离,然后利用此平移规律写出顶点A1,B1的坐标;(2)根据关于原点对称的点的坐标特征求解;(3)利用网格和旋转的性质画出△A2B3C3,然后写出△A2B3C3的各顶点的坐标.【解答】解:(1)如图,△A1B1C1为所作,因为点C(﹣1,3)平移后的对应点C1的坐标为(4,0),所以△ABC先向右平移5个单位,再向下平移3个单位得到△A1B1C1,所以点A1的坐标为(2,2),B1点的坐标为(3,﹣2);(2)因为△ABC和△A1B2C2关于原点O成中心对称图形,所以A2(3,﹣5),B2(2,﹣1),C2(1,﹣3);(3)如图,△A2B3C3为所作,A3(5,3),B3(1,2),C3(3,1);【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.20.如图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.【考点】菱形的判定.【专题】证明题.【分析】先证明△AEF≌△CED,推出四边形ADCF是平行四边形,再证明∠DAC=∠ACB,推出DA=DC,由此即可证明.【解答】证明:∵AF∥CD,∴∠AFE=∠CDE,在△AFE和△CDE中,,∴△AEF≌△CED,∴AF=CD,∵AF∥CD,∴四边形ADCF是平行四边形,∵∠B=90°,∠ACB=30°,∴∠CAB=60°,∵AD平分∠CAB,∴∠DAC=∠DAB=30°=∠ACD,∴DA=DC,∴四边形ADCF是菱形.【点评】本题考查菱形的判定、全等三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用这些知识解决问题,属于基础题,中考常考题型.21.为了让书籍开拓学生的视野,陶冶学生的情操,向阳中学开展了“五个一”课外阅读活动,为了解全校学生课外阅读情况,抽样调查了50名学生平均每天课外阅读时间(单位:min),将抽查得到的数据分成5组,下面是尚未完成的频数、频率分布表:组别分组频数(人数)频率1 10≤t<30 0.162 30≤t<50 203 50≤t<70 0.284 70≤t<90 65 90≤t<110(1)将表中空格处的数据补全,完成上面的频数、频率分布表;(2)请在给出的平面直角坐标系中画出相应的频数直方图;(3)如果该校有1500名学生,请你估计该校共有多少名学生平均每天阅读时间不少于50min?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【专题】计算题;数据的收集与整理.【分析】(1)根据总人数50,以及表格中的数据确定出所求数据,填写表格即可;(2)根据表格中的数据作出相应的频数直方图,如图所示;(3)由时间不少于50min的百分比,乘以1500即可得到结果.【解答】解:(1)根据题意填写如下:组别分组频数(人数)频率1 10≤t<30 8 0.162 30≤t<50 20 0.403 50≤t<70 14 0.284 70≤t<90 6 0.125 90≤t<110 2 0.04(2)作出条形统计图,如图所示:(3)根据题意得:1500×(0.28+0.12+0.04)=660(人),则该校共有660名学生平均每天阅读时间不少于50min.【点评】此题考查了频数分布直方图,用样本估计总体,以及频数分布表,弄清题中的数据是解本题的关键.22.为加快城市群的建设与发展,在A,B两城市间新建条城际铁路,建成后,铁路运行里程由现在的120km 缩短至114km,城际铁路的设计平均时速要比现行的平均时速快110km,运行时间仅是现行时间的,求建成后的城际铁路在A,B两地的运行时间.【考点】分式方程的应用.【分析】设城际铁路现行速度是xkm/h,设计时速是(x+110)xkm/h;现行路程是120km,设计路程是114km,由时间=,运行时间=现行时间,就可以列方程了.【解答】解:设城际铁路现行速度是xkm/h.由题意得:×=.解这个方程得:x=80.经检验:x=80是原方程的根,且符合题意.则×=×=0.6(h).答:建成后的城际铁路在A,B两地的运行时间是0.6h.【点评】考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.23.如图,在直角坐标系中,直线y=﹣x与反比例函数y=的图象交于关于原点对称的A,B两点,已知A点的纵坐标是3.(1)求反比例函数的表达式;(2)将直线y=﹣x向上平移后与反比例函数在第二象限内交于点C,如果△ABC的面积为48,求平移后的直线的函数表达式.【考点】反比例函数与一次函数的交点问题.【分析】(1)将y=3代入一次函数解析式中,求出x的值,即可得出点A的坐标,再利用反比例函数图象上点的坐标特征即可求出反比例函数的表达式;(2)根据A、B点关于原点对称,可求出点B的坐标以及线段AB的长度,设出平移后的直线的函数表达式,根据平行线间的距离公式结合三角形的面积即可得出关于b的一元一次方程,解方程即可得出结论.【解答】解:(1)令一次函数y=﹣x中y=3,则3=﹣x,解得:x=﹣6,即点A的坐标为(﹣6,3).∵点A(﹣6,3)在反比例函数y=的图象上,∴k=﹣6×3=﹣18,∴反比例函数的表达式为y=﹣.(2)∵A、B两点关于原点对称,∴点B的坐标为(6,﹣3),∴AB==6.设平移后的直线的函数表达式为y=﹣x+b(b>0),即x+2y﹣2b=0,直线y=﹣x可变形为x+2y=0,∴两直线间的距离d==b.∴S△ABC=AB•d=×6×b=48,解得:b=8.∴平移后的直线的函数表达式为y=﹣x+8.【点评】本题考查了反比例函数与一次函数交点的问题、反比例函数图象上点的坐标特征.三角形的面积公式以及平行线间的距离公式,解题的关键是:(1)求出点A的坐标;(2)找出关于b的一元一次方程.本题属于中档题,难度不大,解决该题型题目时,利用平行线间的距离公式要比通过解直角三角形简洁不少.24.如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于点D,点E为OB的中点,连接CE并延长交⊙O于点F,点F恰好落在的中点,连接AF并延长与CB的延长线相交于点G,连接OF.(1)求证:OF=BG;(2)若AB=4,求DC的长.【考点】相似三角形的判定与性质.【分析】(1)直接利用圆周角定理结合平行线的判定方法得出FO是△ABG的中位线,即可得出答案;(2)首选得出△FOE≌△CBE(ASA),则BC=FO=AB=2,进而得出AC的长,再利用相似三角形的判定与性质得出DC的长.【解答】(1)证明:∵以Rt△ABC的直角边AB为直径作⊙O,点F恰好落在的中点,∴=,∴∠AOF=∠BOF,∵∠ABC=∠ABG=90°,∴∠AOF=∠ABG,∴FO∥BG,∵AO=BO,∴FO是△ABG的中位线,∴FO=BG;(2)解:在△FOE和△CBE中,,∴△FOE≌△CBE(ASA),∴BC=FO=AB=2,∴AC==2,连接DB,∵AB为⊙O直径,∴∠ADB=90°,∴∠ADB=∠ABC,∵∠BCD=∠ACB,∴△BCD∽△ACB,∴=,∴=,解得:DC=.【点评】此题主要考查了相似三角形的判定与性质以及全等三角形的判定与性质等知识,正确得出△BCD∽△ACB是解题关键.25.如图,已知抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).CD垂直于y轴,交抛物线于点D,DE垂直与x轴,垂足为E,l是抛物线的对称轴,点F是抛物线的顶点.(1)求出二次函数的表达式以及点D的坐标;(2)若Rt△AOC沿x轴向右平移到其直角边OC与对称轴l重合,再沿对称轴l向上平移到点C与点F 重合,得到Rt△A1O1F,求此时Rt△A1O1F与矩形OCDE重叠部分的图形的面积;(3)若Rt△AOC沿x轴向右平移t个单位长度(0<t≤6)得到Rt△A2O2C2,Rt△A2O2C2与Rt△OED重叠部分的图形面积记为S,求S与t之间的函数表达式,并写出自变量t的取值范围.【考点】二次函数综合题.【分析】(1)用待定系数法求抛物线解析式;=S△A1O1F﹣S△FGH计算即可;(2)由GH∥A1O1,求出GH=1,再求出FH,S重叠部分(3)分两种情况①直接用面积公式计算,②用面积差求出即可.【解答】解:(1)∵抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).∴设抛物线的解析式为y=a(x+3)(x﹣9),∵C(0,4)在抛物线上,∴4=﹣27a,∴a=﹣,∴设抛物线的解析式为y=﹣(x+3)(x﹣9)=﹣x2+x+4,∵CD垂直于y轴,C(0,4)∴﹣x2+x+4=4,∴x=6,∵D(6,4),(2)如图1,∵点F是抛物线y=﹣x2+x+4的顶点,∴F(3,),∴FH=,∵GH∥A1O1,∴,∴,∴GH=1,∵Rt△A1O1F与矩形OCDE重叠部分是梯形A1O1HG,∴S=S△A1O1F﹣S△FGH=A1O1×O1F﹣GH×FH=×3×4﹣×1×=.重叠部分(3)①当0<t≤3时,如图2,∵C2O2∥DE,∴,∴,∴O2G=t,∴S=S△OO2G=OO2×O2G=t×t=t2,②当3<t≤6时,如图3,∵C2H∥OC,∴,∴,∴C2H=(6﹣t),∴S=S=S△A2O2C2﹣S△C2GH四边形A2O2HG=OA×OC﹣C2H×(t﹣3)=×3×4﹣×(6﹣t)(t﹣3)=t2﹣3t+12∴当0<t≤3时,S=t2,当3<t≤6时,S=t2﹣3t+12.【点评】此题是二次函数综合题,主要考查了待定系数法求函数解析式,平行线分线段成比例定理,三角形的面积计算,解本题的关键是画出图形.。
2016年山东省聊城市中考数学试卷一、选择题(本题共12个小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)1.在实数﹣,﹣2,0,中,最小的实数是( )A .﹣2 B .0 C .﹣ D .解:实数﹣,﹣2,0,中,最小的实数是﹣2,故选A2.如图,AB ∥CD ,∠B=68°,∠E=20°,则∠D 的度数为( ) A .28° B .38° C .48° D .88°解:如图,∵AB ∥CD ,∴∠1=∠B=68°,又∵∠E=20°,∴∠D=∠1﹣∠E=48°,故选C . 3.地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是( )A .7.1×10﹣6 B .7.1×10﹣7 C .1.4×106 D .1.4×107【解答】解:∵地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米, ∴地球的体积约是太阳体积的倍数是:1012÷(1.4×1018)≈7.1×10﹣7. 故选:B . 4.把8a 3﹣8a 2+2a 进行因式分解,结果正确的是( )A .2a (4a 2﹣4a+1)B .8a 2(a ﹣1)C .2a (2a ﹣1)2D .2a (2a+1)2 解:8a 3﹣8a 2+2a=2a (4a 2﹣4a+1)=2a (2a ﹣1)2.故选:C .5.某体校要从四名射击选手中选拔一名参加省体育运动会,选拔赛中每名选手连续射靶10次,他们各自的平均成绩及其方差S 2如表所示:如果要选出一名成绩高且发挥稳定的选手参赛,则应选择的选手是( ) A .甲 B .乙 C .丙 D .丁解:根据平均成绩可得乙和丙要比甲和丁好,根据方差可得甲和乙的成绩比丙和丁稳定, 因此要选择一名成绩高且发挥稳定的学生参赛,因选择乙,故选:B6.用若干个大小相同的小正方形体组合成的几何体的主视图和俯视图如图所示,下面所给的四个选项中,不可能是这个几何体的左视图的是( )A .B .C .D .解:由俯视图可得此几何体底面有5个小正方形分为3列3排,根据主视图可得这个几何体的左视图有2层高,可得这个几何体的左视图不可能是3层高.故选:C .7.二次函数y=ax 2+bx+c (a ,b ,c 为常数且a ≠0)的图象如图所示,则一次函数y=ax+b 与反比例函数y=的图象可能是( )A .B.C .D.解:由二次函数y=ax 2+bx+c 的图象可知,a>0,b<0,c <0,则一次函数y=ax+b 的图象经过第一、三、四象限,反比例函数y=的图象在二四象限,故选C .8.在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )A .27 B .51 C .69 D .72【解答】解:设第一个数为x ,则第二个数为x+7,第三个数为x+14,故三个数的和为x+x+7+x+14=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=27. 故任意圈出一竖列上相邻的三个数的和不可能是72.故选:D .9.如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45° B.50° C.55° D.60°【解答】解:∵四边形ABCD内接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵=,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.故选B.10.不等式组的解集是x>1,则m的取值范围是()A.m≥1 B.m≤1 C.m≥0 D.m≤0解:不等式整理得:,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0,故选D 11.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115° B.120° C.130° D.140°解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°,∴∠1+∠EFB'﹣∠CFB'=180°,∵∠2=40°,即∠1+∠1﹣50°=180°,∴∠CFB'=50°,解得:∠1=115°,故选A.12.聊城“水城之眼”摩天轮是亚洲三大摩天轮之一,也是全球首座建筑与摩天轮相结合的城市地标,如图,点O是摩天轮的圆心,长为110米的AB是其垂直地面的直径,小莹在地面C点处利用测角仪测得摩天轮的最高点A的仰角为33°,测得圆心O的仰角为21°,则小莹所在C点到直径AB所在直线的距离约为(tan33°≈0.65,tan21°≈0.38)()A.169米B.204米C.240米D.407米【解答】解:过C作CD⊥AB于D,在Rt△ACD中,AD=CD•tan∠ACD=CD•tan33°,在Rt△BCO中,OD=CD•tan∠BCO=CD•tan21°,∵AB=110m,∴AO=55m,∴A0=AD﹣OD=CD•tan33°﹣CD•tan21°=55m,∴CD==≈204m,答:小莹所在C点到直径AB所在直线的距离约为204m.故选B.二、填空题(本题共5个小题,每小题3分,只要求填写最后结果)13.计算:=12.【解答】解:=3×÷=3=12.故答案为:12.14.如果关于x的一元二次方程kx2﹣3x﹣1=0有两个不相等的实根,那么k的取值范围是k>﹣且k≠0.解:∵关于x的一元二次方程kx2﹣3x﹣1=0有两个不相等的实数根,∴k≠0且△>0,即(﹣3)2﹣4×k×(﹣1)>0,解得:k>﹣且k≠0.故答案为:k>﹣且k≠0.15.如图,已知圆锥的高为,高所在直线与母线的夹角为30°,圆锥的侧面积为2π.解:如图,∠BAO=30°,AO=,在Rt△ABO中,∵tan∠BAO=,∴BO=tan30°=1,即圆锥的底面圆的半径为1,∴AB==2,即圆锥的母线长为2,∴圆锥的侧面积=•2π•1•2=2π.故答案为2π.16.如图,随机地闭合开关S 1,S 2,S 3,S 4,S 5中的三个,能够使灯泡L 1,L 2同时发光的概率是.解:∵随机地闭合开关S 1,S2,S3,S 4,S 5中的三个共有10种可能,能够使灯泡L 1,L 2同时发光有2种可能(S 1,S 2,S 4或S 1,S 2,S 5).∴随机地闭合开关S 1,S 2,S 3,S 4,S 5中的三个,能够使灯泡L 1,L 2同时发光的概率是=.17.如图,在平面直角坐标系中,边长为1的正方形OA 1B 1C 1的两边在坐标轴上,以它的对角线OB 1为边作正方形OB 1B 2C 2,再以正方形OB 1B 2C 2的对角线OB 2为边作正方形OB 2B 3C 3,以此类推…、则正方形OB 2015B 2016C 2016的顶点B 2016的坐标是 (21008,0) . 【解答】解:∵正方形OA 1B 1C 1边长为1, ∴OB 1=,∵正方形OB 1B 2C 2是正方形OA 1B 1C 1的对角线OB 1为边, ∴OB 2=2,∴B 2点坐标为(0,2),同理可知OB 3=2,∴B 3点坐标为(﹣2,2),同理可知OB 4=4,B 4点坐标为(﹣4,0),B 5点坐标为(﹣4,﹣4),B 6点坐标为(0,﹣8), B 7(8,﹣8),B 8(16,0)B 9(16,16),B 10(0,32),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,∵2016÷8=252∴B 2016的纵横坐标符号与点B 8的相同,横坐标为正值,纵坐标是0, ∴B 2016的坐标为(21008,0).三、解答题(本题共8个小题,共69分,解答题应写出文字说明、证明过程或推演步骤)18.计算:(﹣).【解答】解:原式=•=•=﹣.19.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (﹣3,5),B (﹣2,1),C (﹣1,3).(1)若△ABC 经过平移后得到△A 1B 1C 1,已知点C 1的坐标为(4,0),写出顶点A 1,B 1的坐标;(2)若△ABC 和△A 1B 2C 2关于原点O 成中心对称图形,写出△A 1B 2C 2的各顶点的坐标;(3)将△ABC 绕着点O 按顺时针方向旋转90°得到△A 2B 3C 3,写出△A 2B 3C 3的各顶点的坐标. 【解答】解:(1)如图,△A 1B 1C 1为所作,因为点C (﹣1,3)平移后的对应点C 1的坐标为(4,0), 所以△ABC 先向右平移5个单位,再向下平移3个单位得到△A 1B 1C 1,所以点A 1的坐标为(2,2),B 1点的坐标为(3,﹣2); (2)因为△ABC 和△A 1B 2C 2关于原点O 成中心对称图形, 所以A 2(3,﹣5),B 2(2,﹣1),C 2(1,﹣3);(3)如图,△A 2B 3C 3为所作,A 3(5,3),B 3(1,2),C 3(3,1); 20.如图,在Rt △ABC 中,∠B=90°,点E 是AC 的中点,AC=2AB ,∠BAC 的平分线AD 交BC 于点D ,作AF ∥BC ,连接DE 并延长交AF 于点F ,连接FC . 求证:四边形ADCF 是菱形.证明:∵AF ∥CD ,∴∠AFE=∠CDE ,在△AFE 和△CDE 中,,∴△AEF ≌△CED ,∴AF=CD ,∵AF ∥CD ,∴四边形ADCF是平行四边形,∵∠B=90°,∠ACB=30°,∴∠CAB=60°,∵AD 平分∠CAB ,∴∠DAC=∠DAB=30°=∠ACD ,∴DA=DC ,∴四边形ADCF 是菱形.21.为了让书籍开拓学生的视野,陶冶学生的情操,向阳中学开展了“五个一”课外阅读活动,为了解全校学生课外阅读情况,抽样调查了50名学生平均每天课外阅读时间(单位:min),将抽查得到的数据分成5组,下面是尚未完成的频数、频率分布表:(1)将表中空格处的数据补全,完成上面的频数、频率分布表;(2)请在给出的平面直角坐标系中画出相应的频数直方图;【解答】解:(1)根据题意填写如下:(2)作出条形统计图,如图所示:(3)根据题意得:1500×(0.28+0.12+0.04)=660(人),则该校共有660名学生平均每天阅读时间不少于50min.22.为加快城市群的建设与发展,在A,B两城市间新建条城际铁路,建成后,铁路运行里程由现在的120km缩短至114km,城际铁路的设计平均时速要比现行的平均时速快110km,运行时间仅是现行时间的,求建成后的城际铁路在A,B两地的运行时间.解:设城际铁路现行速度是xkm/h.由题意得:×=.解这个方程得:x=80.经检验:x=80是原方程的根,且符合题意.则×=×=0.6(h).答:建成后的城际铁路在A,B两地的运行时间是0.6h.23.如图,在直角坐标系中,直线y=﹣x与反比例函数y=的图象交于关于原点对称的A,B 两点,已知A点的纵坐标是3.(1)求反比例函数的表达式;(2)将直线y=﹣x向上平移后与反比例函数在第二象限内交于点C,如果△ABC的面积为48,求平移后的直线的函数表达式.解:(1)令一次函数y=﹣x中y=3,则3=﹣x,解得:x=﹣6,即点A的坐标为(﹣6,3).∵点A(﹣6,3)在反比例函数y=的图象上,∴k=﹣6×3=﹣18,∴反比例函数的表达式为y=﹣.(2)∵A、B两点关于原点对称,∴点B的坐标为(6,﹣3),∴AB==6.设平移后的直线交y轴于点F,连结AF,BF,设平移后的直线函数表达式为y=﹣x+b(b>0),24.如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于点D,点E为OB的中点,连接CE并延长交⊙O于点F,点F恰好落在的中点,连接AF并延长与CB的延长线相交于点G,连接OF.(1)求证:OF=BG;(2)若AB=4,求DC的长.(1)证明:∵以Rt△ABC的直角边AB为直径作⊙O,点F恰好落在的中点,∴=,∴∠AOF=∠BOF,∵∠ABC=∠ABG=90°,∴∠AOF=∠ABG,∴FO∥BG,∵AO=BO,∴FO是△ABG的中位线,∴FO=BG;(2)解:在△FOE和△CBE中,,∴△FOE≌△CBE(ASA),∴BC=FO=AB=2,∴AC==2,连接DB,∵AB为⊙O直径,∴∠ADB=90°,∴∠ADB=∠ABC,∵∠BCD=∠ACB,25.如图,已知抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).CD垂直于y 轴,交抛物线于点D,DE垂直与x轴,垂足为E,l是抛物线的对称轴,点F是抛物线的顶点.(1)求出二次函数的表达式以及点D的坐标;(2)若Rt△AOC沿x轴向右平移到其直角边OC与对称轴l重合,再沿对称轴l向上平移到点C 与点F重合,得到Rt△A1O1F,求此时Rt△A1O1F与矩形OCDE重叠部分的图形的面积;(3)若Rt△AOC沿x轴向右平移t个单位长度(0<t≤6)得到Rt△A2O2C2,Rt△A2O2C2与Rt△OED 重叠部分的图形面积记为S,求S与t之间的函数表达式,并写出自变量t的取值范围.解:(1)∵抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).∴设抛物线的解析式为y=a(x+3)(x﹣9),∵C(0,4)在抛物线上,∴4=﹣27a,∴a=﹣,∴设抛物线的解析式为y=﹣(x+3)(x﹣9)=﹣x2+x+4,∵CD垂直于y轴,C(0,4)∴﹣x2+x+4=4,∴x=6,∴D(6,4),(2)如图1,∵点F是抛物线y=﹣x2+x+4的顶点,∴F(3,),∴FH=,∵GH∥A1O1,∴,∴,∴GH=1,∵Rt△A1O1F与矩形OCDE重叠部分是梯形A1O1HG,∴S重叠部分=S△A1O1F﹣S△FGH=A1O1×O1F﹣GH×FH=×3×4﹣×1×=.(3)①当0<t≤3时,如图2,∵C2O2∥DE,∴,∴,∴O2G=t,∴S=S△OO2G=OO2×O2G=t×t=t2,②当3<t≤6时,如图3,∵C2H∥OC,∴,∴,∴C2H=(6﹣t),=S△A2O2C2﹣S△C2GH∴S=S四边形A2O2HG=OA×OC﹣C2H×(t﹣3)=×3×4﹣×(6﹣t)(t﹣3)=t2﹣3t+12∴当0<t≤3时,S=t2,当3<t≤6时,S=t2﹣3t+12.。
2016年山东省聊城市中考数学试卷一、选择题(本题共12个小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)(2016•聊城)在实数﹣,﹣2,0,中,最小的实数是()A.﹣2 B.0 C.﹣D.2.(3分)(2016•聊城)如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为()A.28°B.38°C.48°D.88°3.(3分)(2016•聊城)地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是()A.7.1×10﹣6B.7.1×10﹣7C.1.4×106D.1.4×1074.(3分)(2016•聊城)把8a3﹣8a2+2a进行因式分解,结果正确的是()A.2a (4a2﹣4a+1)B.8a2(a﹣1)C.2a(2a﹣1)2D.2a(2a+1)25.(3分)(2016•聊城)某体校要从四名射击选手中选拔一名参加省体育运动会,选拔赛中每名选手连续射靶10次,他们各自的平均成绩及其方差S2如表所示:甲乙丙丁(环)8.4 8.6 8.6 7.6S20.74 0.56 0.94 1.92如果要选出一名成绩高且发挥稳定的选手参赛,则应选择的选手是()A.甲B.乙C.丙D.丁6.(3分)(2016•聊城)用若干个大小相同的小正方形体组合成的几何体的主视图和俯视图如图所示,下面所给的四个选项中,不可能是这个几何体的左视图的是()A.B.C.D.7.(3分)(2016•聊城)二次函数y=ax2+bx+c(a,b,c为常数且a≠0)的图象如图所示,则一次函数y=ax+b与反比例函数y=的图象可能是()A .B.C.D.8.(3分)(2016•聊城)在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.729.(3分)(2016•聊城)如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45°B.50°C.55°D.60°10.(3分)(2016•聊城)不等式组的解集是x>1,则m的取值范围是()A.m≥1 B.m≤1 C.m≥0 D.m≤011.(3分)(2016•聊城)如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115°B.120°C.130°D.140°12.(3分)(2016•聊城)聊城“水城之眼”摩天轮是亚洲三大摩天轮之一,也是全球首座建筑与摩天轮相结合的城市地标,如图,点O是摩天轮的圆心,长为110米的AB是其垂直地面的直径,小莹在地面C点处利用测角仪测得摩天轮的最高点A的仰角为33°,测得圆心O 的仰角为21°,则小莹所在C点到直径AB所在直线的距离约为(tan33°≈0.65,tan21°≈0.38)()A.169米B.204米C.240米D.407米二、填空题(本题共5个小题,每小题3分,只要求填写最后结果)13.(3分)(2016•聊城)计算:=.14.(3分)(2016•聊城)如果关于x的一元二次方程kx2﹣3x﹣1=0有两个不相等的实根,那么k的取值范围是.15.(3分)(2016•聊城)如图,已知圆锥的高为,高所在直线与母线的夹角为30°,圆锥的侧面积为.16.(3分)(2016•聊城)如图,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是.17.(3分)(2016•聊城)如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2015B2016C2016的顶点B2016的坐标是.三、解答题(本题共8个小题,共69分,解答题应写出文字说明、证明过程或推演步骤)18.(7分)(2016•聊城)计算:(﹣).19.(8分)(2016•聊城)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.20.(8分)(2016•聊城)如图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.21.(8分)(2016•聊城)为了让书籍开拓学生的视野,陶冶学生的情操,向阳中学开展了“五个一”课外阅读活动,为了解全校学生课外阅读情况,抽样调查了50名学生平均每天课外阅读时间(单位:min),将抽查得到的数据分成5组,下面是尚未完成的频数、频率分布表:组别分组频数(人数)频率1 10≤t<30 0.162 30≤t<50 203 50≤t<70 0.284 70≤t<90 65 90≤t<110(1)将表中空格处的数据补全,完成上面的频数、频率分布表;(2)请在给出的平面直角坐标系中画出相应的频数直方图;(3)如果该校有1500名学生,请你估计该校共有多少名学生平均每天阅读时间不少于50min?22.(8分)(2016•聊城)为加快城市群的建设与发展,在A,B 两城市间新建条城际铁路,建成后,铁路运行里程由现在的120km缩短至114km,城际铁路的设计平均时速要比现行的平均时速快110km,运行时间仅是现行时间的,求建成后的城际铁路在A,B两地的运行时间.23.(8分)(2016•聊城)如图,在直角坐标系中,直线y=﹣x与反比例函数y=的图象交于关于原点对称的A,B两点,已知A点的纵坐标是3.(1)求反比例函数的表达式;(2)将直线y=﹣x向上平移后与反比例函数在第二象限内交于点C,如果△ABC的面积为48,求平移后的直线的函数表达式.24.(10分)(2016•聊城)如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于点D,点E为OB的中点,连接CE并延长交⊙O于点F,点F恰好落在的中点,连接AF 并延长与CB的延长线相交于点G,连接OF.(1)求证:OF=BG;(2)若AB=4,求DC的长.25.(12分)(2016•聊城)如图,已知抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).CD垂直于y轴,交抛物线于点D,DE垂直与x轴,垂足为E,l是抛物线的对称轴,点F是抛物线的顶点.(1)求出二次函数的表达式以及点D的坐标;(2)若Rt△AOC沿x轴向右平移到其直角边OC与对称轴l重合,再沿对称轴l向上平移到点C与点F重合,得到Rt△A1O1F,求此时Rt△A1O1F与矩形OCDE重叠部分的图形的面积;(3)若Rt△AOC沿x轴向右平移t个单位长度(0<t≤6)得到Rt△A2O2C2,Rt△A2O2C2与Rt△OED重叠部分的图形面积记为S,求S与t之间的函数表达式,并写出自变量t的取值范围.2016年山东省聊城市中考数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)(2016•聊城)在实数﹣,﹣2,0,中,最小的实数是()A.﹣2 B.0 C.﹣D.【分析】根据负数的绝对值越大,这个数越小,然后根据正数大于0,负数小于0进行大小比较即可.【解答】解:实数﹣,﹣2,0,中,最小的实数是﹣2,故选A【点评】此题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.2.(3分)(2016•聊城)如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为()A.28°B.38°C.48°D.88°【分析】根据平行线的性质得到∠1=∠B=68°,由三角形的外角的性质即可得到结论.【解答】解:如图,∵AB∥CD,∴∠1=∠B=68°,∵∠E=20°,∴∠D=∠1﹣∠E=48°,故选C.【点评】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.3.(3分)(2016•聊城)地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是()A.7.1×10﹣6B.7.1×10﹣7C.1.4×106D.1.4×107【分析】直接利用整式的除法运算法则结合科学记数法求出答案.【解答】解:∵地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,∴地球的体积约是太阳体积的倍数是:1012÷(1.4×1018)≈7.1×10﹣7.故选:B.【点评】此题主要考查了整式的除法运算,正确掌握运算法则是解题关键.4.(3分)(2016•聊城)把8a3﹣8a2+2a进行因式分解,结果正确的是()A.2a(4a2﹣4a+1)B.8a2(a﹣1)C.2a(2a﹣1)2D.2a(2a+1)2【分析】首先提取公因式2a,进而利用完全平方公式分解因式即可.【解答】解:8a3﹣8a2+2a=2a(4a2﹣4a+1)=2a(2a﹣1)2.故选:C.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.5.(3分)(2016•聊城)某体校要从四名射击选手中选拔一名参加省体育运动会,选拔赛中每名选手连续射靶10次,他们各自的平均成绩及其方差S2如表所示:甲乙丙丁(环)8.4 8.6 8.6 7.6S20.74 0.56 0.94 1.92如果要选出一名成绩高且发挥稳定的选手参赛,则应选择的选手是()A.甲B.乙C.丙D.丁【分析】从平均成绩分析乙和丙要比甲和丁好,从方差分析甲和乙的成绩比丙和丁稳定,综合两个方面可选出乙.【解答】解:根据平均成绩可得乙和丙要比甲和丁好,根据方差可得甲和乙的成绩比丙和丁稳定,因此要选择一名成绩高且发挥稳定的学生参赛,因选择乙,故选:B【点评】此题主要考查了方差和平均数,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.(3分)(2016•聊城)用若干个大小相同的小正方形体组合成的几何体的主视图和俯视图如图所示,下面所给的四个选项中,不可能是这个几何体的左视图的是()A.B.C.D.【分析】由俯视图可得此几何体底面有5个小正方形分为3列3排,根据主视图可得这个几何体的左视图有2层高,依此即可求解.【解答】解:由俯视图可得此几何体底面有5个小正方形分为3列3排,根据主视图可得这个几何体的左视图有2层高,可得这个几何体的左视图不可能是3层高.故选:C.【点评】此题主要考查了画三视图,关键是根据主视图和俯视图分析出每排小正方体的个数.7.(3分)(2016•聊城)二次函数y=ax2+bx+c (a,b,c为常数且a ≠0)的图象如图所示,则一次函数y=ax+b与反比例函数y=的图象可能是()A.B .C.D.【分析】根据二次函数y=ax2+bx+c的图象,可以判断a、b、c的正负情况,从而可以判断一次函数y=ax+b与反比例函数y=的图象分别在哪几个象限,从而可以解答本题.【解答】解:由二次函数y=ax2+bx+c的图象可知,a>0,b<0,c<0,则一次函数y=ax+b的图象经过第一、三、四象限,反比例函数y=的图象在二四象限,故选C.【点评】本题考查反比例函数的图象、一次函数的图象、二次函数的图象,解题的关键是明确它们各自图象的特点,利用数形结合的思想解答问题.8.(3分)(2016•聊城)在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.72【分析】设第一个数为x,则第二个数为x+7,第三个数为x+14.列出三个数的和的方程,再根据选项解出x,看是否存在.【解答】解:设第一个数为x,则第二个数为x+7,第三个数为x+14故三个数的和为x+x+7+x+14=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=27.故任意圈出一竖列上相邻的三个数的和不可能是72.故选:D.【点评】此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.9.(3分)(2016•聊城)如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45°B.50°C.55°D.60°【分析】先根据圆内接四边形的性质求出∠ADC的度数,再由圆周角定理得出∠DCE的度数,根据三角形外角的性质即可得出结论.【解答】解:∵四边形ABCD内接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵=,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.故选B.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.10.(3分)(2016•聊城)不等式组的解集是x>1,则m的取值范围是()A.m≥1 B.m≤1 C.m≥0 D.m≤【分析】表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m的范围即可.【解答】解:不等式整理得:,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0,故选D【点评】此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.11.(3分)(2016•聊城)如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115°B.120°C.130°D.140°【分析】根据折叠的性质和矩形的性质得出∠BFE=∠EFB',∠B'=∠B=90°,根据三角形内角和定理求出∠CFB'=50°,进而解答即可.【解答】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B 落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°,∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.【点评】本题考查了矩形的性质,折叠的性质,三角形的内角和定理的应用,能综合运用性质进行推理和计算是解此题的关键,注意:折叠后的两个图形全等.12.(3分)(2016•聊城)聊城“水城之眼”摩天轮是亚洲三大摩天轮之一,也是全球首座建筑与摩天轮相结合的城市地标,如图,点O是摩天轮的圆心,长为110米的AB是其垂直地面的直径,小莹在地面C点处利用测角仪测得摩天轮的最高点A的仰角为33°,测得圆心O 的仰角为21°,则小莹所在C点到直径AB所在直线的距离约为(tan33°≈0.65,tan21°≈0.38)()A.169米B.204米C.240米D.407米【分析】过C作CD⊥AB于D,在Rt△ACD中,求得AD=CD•tan∠ACD=CD•tan33°,在Rt△BCO中,求得OD=CD•tan∠BCO=CD•tan21°,列方程即可得到结论.【解答】解:过C作CD⊥AB于D,在Rt△ACD中,AD=CD•tan∠ACD=CD•tan33°,在Rt△BCO中,OD=CD•tan∠BCO=CD•tan21°,∵AB=110m,∴AO=55m,∴A0=AD﹣OD=CD•tan33°﹣CD•tan21°=55m,∴CD==≈204m,答:小莹所在C点到直径AB所在直线的距离约为204m.故选B.【点评】此题主要考查了仰角与俯角的问题,利用两个直角三角形拥有公共直角边,能够合理的运用这条公共边是解答此题的关键.二、填空题(本题共5个小题,每小题3分,只要求填写最后结果)13.(3分)(2016•聊城)计算:=12.【分析】直接利用二次根式乘除运算法则化简求出答案.【解答】解:=3×÷=3=12.故答案为:12.【点评】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.14.(3分)(2016•聊城)如果关于x的一元二次方程kx2﹣3x﹣1=0有两个不相等的实根,那么k的取值范围是k>﹣且k≠0.【分析】根据一元二次方程的定义和△的意义得到k≠0且△>0,即(﹣3)2﹣4×k×(﹣1)>0,然后解不等式即可得到k的取值范围.【解答】解:∵关于x的一元二次方程kx2﹣3x﹣1=0有两个不相等的实数根,∴k≠0且△>0,即(﹣3)2﹣4×k×(﹣1)>0,解得:k>﹣且k≠0.故答案为:k>﹣且k≠0.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.15.(3分)(2016•聊城)如图,已知圆锥的高为,高所在直线与母线的夹角为30°,圆锥的侧面积为2π.【分析】先利用三角函数计算出BO,再利用勾股定理计算出AB,然后利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算圆锥的侧面积.【解答】解:如图,∠BAO=30°,AO=,在Rt△ABO中,∵tan∠BAO=,∴BO=tan30°=1,即圆锥的底面圆的半径为1,∴AB==2,即圆锥的母线长为2,∴圆锥的侧面积=•2π•1•2=2π.故答案为2π.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.(3分)(2016•聊城)如图,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是.【分析】求出随机闭合开关S1,S2,S3,S4,S5中的三个,共有几种可能情况,以及能让灯泡L1,L2同时发光的有几种可能,由此即可解决问题.【解答】解:∵随机地闭合开关S1,S2,S3,S4,S5中的三个共有10种可能,能够使灯泡L1,L2同时发光有2种可能(S1,S2,S4或S1,S2,S5).∴随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是=.故答案为.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.17.(3分)(2016•聊城)如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2015B2016C2016的顶点B2016的坐标是(21008,0).【分析】首先求出B1、B2、B3、B4、B5、B6、B7、B8、B9的坐标,找出这些坐标的之间的规律,然后根据规律计算出点B2016的坐标.【解答】解:∵正方形OA1B1C1边长为1,∴OB1=,∵正方形OB1B2C2是正方形OA1B1C1的对角线OB1为边,∴OB2=2,∴B2点坐标为(0,2),同理可知OB3=2,∴B3点坐标为(﹣2,2),同理可知OB4=4,B4点坐标为(﹣4,0),B5点坐标为(﹣4,﹣4),B6点坐标为(0,﹣8),B7(8,﹣8),B8(16,0)B9(16,16),B10(0,32),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,∵2016÷8=252∴B2016的纵横坐标符号与点B8的相同,横坐标为正值,纵坐标是0,∴B2016的坐标为(21008,0).故答案为:(21008,0).【点评】本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点坐标的规律发现每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍.三、解答题(本题共8个小题,共69分,解答题应写出文字说明、证明过程或推演步骤)18.(7分)(2016•聊城)计算:(﹣).【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=•=•=﹣.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.19.(8分)(2016•聊城)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.【分析】(1)利用点C和点C1的坐标变化得到平移的方向与距离,然后利用此平移规律写出顶点A1,B1的坐标;(2)根据关于原点对称的点的坐标特征求解;(3)利用网格和旋转的性质画出△A2B3C3,然后写出△A2B3C3的各顶点的坐标.【解答】解:(1)如图,△A1B1C1为所作,因为点C(﹣1,3)平移后的对应点C1的坐标为(4,0),所以△ABC先向右平移5个单位,再向下平移3个单位得到△A1B1C1,所以点A1的坐标为(2,2),B1点的坐标为(3,﹣2);(2)因为△ABC和△A1B2C2关于原点O成中心对称图形,所以A2(3,﹣5),B2(2,﹣1),C2(1,﹣3);(3)如图,△A2B3C3为所作,A3(5,3),B3(1,2),C3(3,1);【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.20.(8分)(2016•聊城)如图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.【分析】先证明△AEF≌△CED,推出四边形ADCF是平行四边形,再证明△AED≌△ABD,推出DF⊥AC,由此即可证明.【解答】证明:∵AF∥CD,∴∠AFE=∠CDE,在△AFE和△CDE中,,∴△AEF≌△CED.AF=CD,∵AF∥CD,∴四边形ADCF是平行四边形.由题意知,AE=AB,∠EAD=∠BAD,AD=AD,∴△AED≌△ABD.∴∠AED=∠B=90°,即DF⊥AC.∴四边形ADCF是菱形.【点评】本题考查菱形的判定、全等三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用这些知识解决问题,属于基础题,中考常考题型.21.(8分)(2016•聊城)为了让书籍开拓学生的视野,陶冶学生的情操,向阳中学开展了“五个一”课外阅读活动,为了解全校学生课外阅读情况,抽样调查了50名学生平均每天课外阅读时间(单位:min),将抽查得到的数据分成5组,下面是尚未完成的频数、频率分布表:组别分组频数(人数)频率1 10≤t<30 0.162 30≤t<50 203 50≤t<70 0.284 70≤t<90 65 90≤t<110(1)将表中空格处的数据补全,完成上面的频数、频率分布表;(2)请在给出的平面直角坐标系中画出相应的频数直方图;(3)如果该校有1500名学生,请你估计该校共有多少名学生平均每天阅读时间不少于50min?【分析】(1)根据总人数50,以及表格中的数据确定出所求数据,填写表格即可;(2)根据表格中的数据作出相应的频数直方图,如图所示;(3)由时间不少于50min的百分比,乘以1500即可得到结果.【解答】解:(1)根据题意填写如下:组别分组频数(人数)频率1 10≤t<30 8 0.162 30≤t<50 20 0.403 50≤t<70 14 0.284 70≤t<90 6 0.125 90≤t<110 2 0.04(2)作出条形统计图,如图所示:(3)根据题意得:1500×(0.28+0.12+0.04)=660(人),则该校共有660名学生平均每天阅读时间不少于50min.【点评】此题考查了频数分布直方图,用样本估计总体,以及频数分布表,弄清题中的数据是解本题的关键.22.(8分)(2016•聊城)为加快城市群的建设与发展,在A,B两城市间新建条城际铁路,建成后,铁路运行里程由现在的120km缩短至114km,城际铁路的设计平均时速要比现行的平均时速快110km,运行时间仅是现行时间的,求建成后的城际铁路在A,B两地的运行时间.【分析】设城际铁路现行速度是xkm/h,设计时速是(x+110)xkm/h;现行路程是120km,设计路程是114km,由时间=,运行时间=现行时间,就可以列方程了.【解答】解:设城际铁路现行速度是xkm/h.由题意得:×=.解这个方程得:x=80.经检验:x=80是原方程的根,且符合题意.则×=×=0.6(h).答:建成后的城际铁路在A,B两地的运行时间是0.6h.【点评】考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.23.(8分)(2016•聊城)如图,在直角坐标系中,直线y=﹣x与反比例函数y=的图象交于关于原点对称的A,B两点,已知A点的纵坐标是3.(1)求反比例函数的表达式;(2)将直线y=﹣x向上平移后与反比例函数在第二象限内交于点C,如果△ABC的面积为48,求平移后的直线的函数表达式.【分析】(1)将y=3代入一次函数解析式中,求出x的值,即可得出点A的坐标,再利用反比例函数图象上点的坐标特征即可求出反比例函数的表达式;(2)根据A、B点关于原点对称,可求出点B的坐标以及线段AB的长度,设出平移后的直线的函数表达式,根据平行线间的距离公式结合三角形的面积即可得出关于b的一元一次方程,解方程即可得出结论.【解答】解:(1)令一次函数y=﹣x中y=3,则3=﹣x,解得:x=﹣6,即点A的坐标为(﹣6,3).∵点A(﹣6,3)在反比例函数y=的图象上,∴k=﹣6×3=﹣18,∴反比例函数的表达式为y=﹣.(2)∵A、B两点关于原点对称,∴点B的坐标为(6,﹣3),∴AB==6.设平移后的直线的函数表达式为y=﹣x+b(b >0),即x+2y﹣2b=0,直线y=﹣x可变形为x+2y=0,∴两直线间的距离d==b.∴S△ABC=AB•d=×6×b=48,解得:b=8.∴平移后的直线的函数表达式为y=﹣x+8.【点评】本题考查了反比例函数与一次函数交点的问题、反比例函数图象上点的坐标特征.三角形的面积公式以及平行线间的距离公式,解题的关键是:(1)求出点A的坐标;(2)找出关于b的一元一次方程.本题属于中档题,难度不大,解决该题型题目时,利用平行线间的距离公式要比通过解直角三角形简洁不少.24.(10分)(2016•聊城)如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于点D,点E为OB的中点,连接CE并延长交⊙O于点F,点F恰好落在的中点,连接AF并延长与CB的延长线相交于点G,连接OF.(1)求证:OF=BG;(2)若AB=4,求DC的长.【分析】(1)直接利用圆周角定理结合平行线的判定方法得出FO是△ABG的中位线,即可得出答案;(2)首先得出△FOE≌△CBE (ASA),则BC=FO=AB=2,进而得出AC的长,再利用相似三角形的判定与性质得出DC的长.【解答】(1)证明:∵以Rt△ABC的直角边AB为直径作⊙O,点F恰好落在的中点,∴=,∴∠AOF=∠BOF,∵∠ABC=∠ABG=90°,∴∠AOF=∠ABG ,∴FO∥BG,∵AO=BO,∴FO是△ABG的中位线,∴FO=BG;(2)解:在△FOE和△CBE中,,∴△FOE≌△CBE(ASA),∴BC=FO=AB=2,∴AC==2,连接DB,∵AB 为⊙O直径,∴∠ADB=90°,∴∠ADB=∠ABC,∵∠BCD=∠ACB,∴△BCD∽△ACB,∴=,∴=,解得:DC=.【点评】此题主要考查了相似三角形的判定与性质以及全等三角形的判定与性质等知识,正确得出△BCD∽△ACB是解题关键.25.(12分)(2016•聊城)如图,已知抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).CD垂直于y轴,交抛物线于点D,DE垂直与x轴,垂足为E,l是抛物线的对称轴,点F是抛物线的顶点.(1)求出二次函数的表达式以及点D的坐标;(2)若Rt△AOC沿x轴向右平移到其直角边OC与对称轴l重合,再沿对称轴l向上平移到点C与点F重合,得到Rt△A1O1F,求此时Rt△A1O1F与矩形OCDE重叠部分的图形的面积;(3)若Rt△AOC沿x轴向右平移t个单位长度(0<t≤6)得到Rt△A2O2C2,Rt△A2O2C2与Rt△OED重叠部分的图形面积记为S,求S与t之间的函数表达式,并写出自变量t的取值范围.【分析】(1)用待定系数法求抛物线解析式;(2)由GH∥A1O 1,求出GH=1,再求出FH,S重叠部分=S△A1O1F﹣S△FGH计算即可;(3)分两种情况①直接用面积公式计算,②用面积差求出即可.【解答】解:(1)∵抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).∴设抛物线的解析式为y=a(x+3)(x﹣9),∵C (0,4)在抛物线上,∴4=﹣27a,∴a=﹣,∴设抛物线的解析式为y=﹣(x+3)(x﹣9)=﹣x2+x+4,∵CD垂直于y轴,C(0,4)∴﹣x2+x+4=4,∴x=6,∵D(6,4),(2)如图1,∵点F是抛物线y=﹣x2+x+4的顶点,∴F(3,),∴FH=,∵GH∥A1O1,∴,∴,∴GH=1,∵Rt△A1O1F与矩形OCDE重叠部分是梯形A1O1HG,∴S重叠部分=S△A1O1F﹣S△FGH=A1O1×O1F﹣GH×FH=×3×4﹣×1×=.(3)①当0<t≤3时,如图2,∵C2O2∥DE ,∴,∴,∴O2G=t,∴S=S△OO2G=OO2×O2G=t×t=t2,②当3<t≤6时,如图3,∵C2H∥OC,∴,∴,∴C2H=(6﹣t),∴S=S四边形A2O2HG=S △A2O2C2﹣S△C2GH=OA×OC﹣C2H×(t﹣3)=×3×4﹣×(6﹣t)(t﹣3)=t2﹣3t+12∴当0<t≤3时,S=t2,当3<t≤6时,S=t2﹣3t+12.【点评】此题是二次函数综合题,主要考查了待定系数法求函数解析式,平行线分线段成比例定理,三角形的面积计算,解本题的关键是画出图形.。
义务教育基础课程初中教学资料2016年山东省聊城市中考数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)1.(2016·山东聊城)在实数﹣,﹣2,0,中,最小的实数是()A.﹣2 B.0 C.﹣D.【考点】实数大小比较.【分析】根据负数的绝对值越大,这个数越小,然后根据正数大于0,负数小于0进行大小比较即可.【解答】解:实数﹣,﹣2,0,中,最小的实数是﹣2,故选A【点评】此题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.2.(2016·山东聊城)如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为()A.28° B.38° C.48° D.88°【考点】平行线的性质.【分析】根据平行线的性质得到∠1=∠B=68°,由三角形的外角的性质即可得到结论.【解答】解:如图,∵AB∥CD,∴∠1=∠B=68°,∵∠E=20°,∴∠D=∠1﹣∠E=48°,故选C.【点评】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.3.(2016·山东聊城)地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是()A.7.1×10﹣6B.7.1×10﹣7C.1.4×106D.1.4×107【考点】整式的除法.【分析】直接利用整式的除法运算法则结合科学记数法求出答案.【解答】解:∵地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,∴地球的体积约是太阳体积的倍数是:1012÷1.4×1018≈7.1×10﹣7.故选:B.【点评】此题主要考查了整式的除法运算,正确掌握运算法则是解题关键.4.(2016·山东聊城)把8a3﹣8a2+2a进行因式分解,结果正确的是()A.2a(4a2﹣4a+1)B.8a2(a﹣1)C.2a(2a﹣1)2D.2a(2a+1)2【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式2a,进而利用完全平方公式分解因式即可.【解答】解:8a3﹣8a2+2a=2a(4a2﹣4a+1)=2a(2a﹣1)2.故选:C.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.5.(2016·山东聊城)某体校要从四名射击选手中选拔一名参加省体育运动会,选拔赛中每名选手连续射靶10次,他们各自的平均成绩及其方差S2如表所示:甲乙丙丁(环)8.4 8.6 8.6 7.6S20.74 0.56 0.94 1.92如果要选出一名成绩高且发挥稳定的选手参赛,则应选择的选手是()A.甲B.乙C.丙D.丁【考点】方差.【分析】从平均成绩分析乙和丙要比甲和丁好,从方差分析甲和乙的成绩比丙和丁稳定,综合两个方面可选出乙.【解答】解:根据平均成绩可得乙和丙要比甲和丁好,根据方差可得甲和乙的成绩比丙和丁稳定,因此要选择一名成绩高且发挥稳定的学生参赛,因选择乙,故选:B【点评】此题主要考查了方差和平均数,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.(2016·山东聊城)用若干个大小相同的小正方形体组合成的几何体的主视图和俯视图如图所示,下面所给的四个选项中,不可能是这个几何体的左视图的是()A.B.C.D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】由俯视图可得此几何体底面有5个小正方形分为3列3排,根据主视图可得这个几何体的左视图有2层高,依此即可求解.【解答】解:由俯视图可得此几何体底面有5个小正方形分为3列3排,根据主视图可得这个几何体的左视图有2层高,可得这个几何体的左视图不可能是3层高.故选:C.【点评】此题主要考查了画三视图,关键是根据主视图和俯视图分析出每排小正方体的个数.7.(2016·山东聊城)二次函数y=ax2+bx+c(a,b,c为常数且a≠0)的图象如图所示,则一次函数y=ax+b 与反比例函数y=的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象;二次函数的图象.【专题】函数及其图象.【分析】根据二次函数y=ax2+bx+c的图象,可以判断a、b、c的正负情况,从而可以判断一次函数y=ax+b 与反比例函数y=的图象分别在哪几个象限,从而可以解答本题.【解答】解:由二次函数y=ax2+bx+c的图象可知,a>0,b<0,c<0,则一次函数y=ax+b的图象经过第一、三、四象限,反比例函数y=的图象在二四象限,故选C.【点评】本题考查反比例函数的图象、一次函数的图象、二次函数的图象,解题的关键是明确它们各自图象的特点,利用数形结合的思想解答问题.8.(2016·山东聊城)在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.72【考点】一元一次方程的应用.【分析】设第一个数为x,则第二个数为x+7,第三个数为x+14.列出三个数的和的方程,再根据选项解出x,看是否存在.【解答】解:设第一个数为x,则第二个数为x+7,第三个数为x+14故三个数的和为x+x+7+x+14=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=27.故任意圈出一竖列上相邻的三个数的和不可能是72.故选:D.【点评】此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.9.(2016·山东聊城)如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD 的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45° B.50° C.55° D.60°【考点】圆内接四边形的性质;圆心角、弧、弦的关系;圆周角定理.【分析】先根据圆内接四边形的性质求出∠ADC的度数,再由圆周角定理得出∠DCE的度数,根据三角形外角的性质即可得出结论.【解答】解:∵四边形ABCD内接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵=,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.故选B.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.10.(2016·山东聊城)不等式组的解集是x>1,则m的取值范围是()A.m≥1 B.m≤1 C.m≥0 D.m≤0【考点】不等式的解集.【专题】计算题;一元一次不等式(组)及应用.【分析】表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m的范围即可.【解答】解:不等式整理得:,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0,故选D【点评】此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.11.(2016·山东聊城)如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115° B.120° C.130° D.140°【考点】翻折变换(折叠问题).【分析】根据折叠的性质和矩形的性质得出∠BFE=∠EFB',∠B'=∠B=90°,根据三角形内角和定理求出∠CFB'=50°,进而解答即可.【解答】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°,∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.【点评】本题考查了矩形的性质,折叠的性质,三角形的内角和定理的应用,能综合运用性质进行推理和计算是解此题的关键,注意:折叠后的两个图形全等.12.(2016·山东聊城)聊城“水城之眼”摩天轮是亚洲三大摩天轮之一,也是全球首座建筑与摩天轮相结合的城市地标,如图,点O是摩天轮的圆心,长为110米的AB是其垂直地面的直径,小莹在地面C点处利用测角仪测得摩天轮的最高点A的仰角为33°,测得圆心O的仰角为21°,则小莹所在C点到直径AB所在直线的距离约为(tan33°≈0.65,tan21°≈0.38)()A.169米B.204米C.240米D.407米【考点】解直角三角形的应用-仰角俯角问题.【分析】过C作CD⊥AB于D,在Rt△ACD中,求得AD=CD•tan∠ACD=CD•tan33°,在Rt△BCO中,求得OD=CD•tan∠BCO=CD•tan21°,列方程即可得到结论.【解答】解:过C作CD⊥AB于D,在Rt△ACD中,AD=CD•tan∠ACD=CD•tan33°,在Rt△BCO中,OD=CD•tan∠BCO=CD•tan21°,∵AB=110m,∴AO=55m,∴A0=AD﹣OD=CD•tan33°﹣CD•tan21°=55m,∴CD==≈204m,答:小莹所在C点到直径AB所在直线的距离约为204m.故选B.【点评】此题主要考查了仰角与俯角的问题,利用两个直角三角形拥有公共直角边,能够合理的运用这条公共边是解答此题的关键.二、填空题(本题共5个小题,每小题3分,只要求填写最后结果)13.(2016·山东聊城)计算:=12.【考点】二次根式的乘除法.【分析】直接利用二次根式乘除运算法则化简求出答案.【解答】解:=3×÷=3=12.故答案为:12.【点评】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.14.(2016·山东聊城)如果关于x的一元二次方程kx2﹣3x﹣1=0有两个不相等的实根,那么k的取值范围是k>﹣且k≠0.【考点】根的判别式.【分析】根据一元二次方程的定义和△的意义得到k≠0且△>0,即(﹣3)2﹣4×k×(﹣1)>0,然后解不等式即可得到k的取值范围.【解答】解:∵关于x的一元二次方程kx2﹣3x﹣1=0有两个不相等的实数根,∴k≠0且△>0,即(﹣3)2﹣4×k×(﹣1)>0,解得:k>﹣且k≠0.故答案为:k>﹣且k≠0.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.15.(2016·山东聊城)如图,已知圆锥的高为,高所在直线与母线的夹角为30°,圆锥的侧面积为2π.【考点】圆锥的计算.【专题】计算题.【分析】先利用三角函数计算出BO,再利用勾股定理计算出AB,然后利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算圆锥的侧面积.【解答】解:如图,∠BAO=30°,AO=,在Rt△ABO中,∵tan∠BAO=,∴BO=tan30°=1,即圆锥的底面圆的半径为1,∴AB==2,即圆锥的母线长为2,∴圆锥的侧面积=•2π•1•2=2π.故答案为2π.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.(2016·山东聊城)如图,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是.【考点】概率公式;概率的意义.【分析】求出随机闭合开关S1,S2,S3,S4,S5中的三个,共有几种可能情况,以及能让灯泡L1,L2同时发光的有几种可能,由此即可解决问题.【解答】解:∵随机地闭合开关S1,S2,S3,S4,S5中的三个共有10种可能,能够使灯泡L1,L2同时发光有2种可能(S1,S2,S4或S1,S2,S5).∴随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是=.故答案为.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.17.(2016·山东聊城)如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2015B2016C2016的顶点B2016的坐标是(21008,0).【考点】正方形的性质;规律型:点的坐标.【分析】首先求出B1、B2、B3、B4、B5、B6、B7、B8、B9的坐标,找出这些坐标的之间的规律,然后根据规律计算出点B2016的坐标.【解答】解:∵正方形OA1B1C1边长为1,∴OB1=,∵正方形OB1B2C2是正方形OA1B1C1的对角线OB1为边,∴OB2=2,∴B2点坐标为(0,2),同理可知OB3=2,∴B3点坐标为(﹣2,2),同理可知OB4=4,B4点坐标为(﹣4,0),B5点坐标为(﹣4,﹣4),B6点坐标为(0,﹣8),B7(8,﹣8),B8(16,0)B9(16,16),B10(0,32),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,∵2016÷8=252∴B2016的纵横坐标符号与点B8的相同,横坐标为正值,纵坐标是0,∴B2016的坐标为(21008,0).故答案为:(21008,0).【点评】本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点坐标的规律发现每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍.三、解答题(本题共8个小题,共69分,解答题应写出文字说明、证明过程或推演步骤)18.(2016·山东聊城)计算:(﹣).【考点】分式的混合运算.【专题】计算题;分式.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=•=•=﹣.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.19.(2016·山东聊城)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A1B2C2关于原点O成中心对称图形,写出△A1B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A2B3C3,写出△A2B3C3的各顶点的坐标.【考点】坐标与图形变化-旋转;坐标与图形变化-平移.【专题】作图题.【分析】(1)利用点C和点C1的坐标变化得到平移的方向与距离,然后利用此平移规律写出顶点A1,B1的坐标;(2)根据关于原点对称的点的坐标特征求解;(3)利用网格和旋转的性质画出△A2B3C3,然后写出△A2B3C3的各顶点的坐标.【解答】解:(1)如图,△A1B1C1为所作,因为点C(﹣1,3)平移后的对应点C1的坐标为(4,0),所以△ABC先向右平移5个单位,再向下平移3个单位得到△A1B1C1,所以点A1的坐标为(2,2),B1点的坐标为(3,﹣2);(2)因为△ABC和△A1B2C2关于原点O成中心对称图形,所以A2(3,﹣5),B2(2,﹣1),C2(1,﹣3);(3)如图,△A2B3C3为所作,A3(5,3),B3(1,2),C3(3,1);【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.20.(2016·山东聊城)如图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.【考点】菱形的判定.【专题】证明题.【分析】先证明△AEF≌△CED,推出四边形ADCF是平行四边形,再证明∠DAC=∠ACB,推出DA=DC,由此即可证明.【解答】证明:∵AF∥CD,∴∠AFE=∠CDE,在△AFE和△CDE中,,∴△AEF≌△CED,∴AF=CD,∵AF∥CD,∴四边形ADCF是平行四边形,∵∠B=90°,∠ACB=30°,∴∠CAB=60°,∵AD平分∠CAB,∴∠DAC=∠DAB=30°=∠ACD,∴DA=DC,∴四边形ADCF是菱形.【点评】本题考查菱形的判定、全等三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用这些知识解决问题,属于基础题,中考常考题型.21.(2016·山东聊城)为了让书籍开拓学生的视野,陶冶学生的情操,向阳中学开展了“五个一”课外阅读活动,为了解全校学生课外阅读情况,抽样调查了50名学生平均每天课外阅读时间(单位:min),将抽查得到的数据分成5组,下面是尚未完成的频数、频率分布表:组别分组频数(人数)频率1 10≤t<30 0.162 30≤t<50 203 50≤t<70 0.284 70≤t<90 65 90≤t<110(1)将表中空格处的数据补全,完成上面的频数、频率分布表;(2)请在给出的平面直角坐标系中画出相应的频数直方图;(3)如果该校有1500名学生,请你估计该校共有多少名学生平均每天阅读时间不少于50min?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【专题】计算题;数据的收集与整理.【分析】(1)根据总人数50,以及表格中的数据确定出所求数据,填写表格即可;(2)根据表格中的数据作出相应的频数直方图,如图所示;(3)由时间不少于50min的百分比,乘以1500即可得到结果.【解答】解:(1)根据题意填写如下:组别分组频数(人数)频率1 10≤t<30 8 0.162 30≤t<50 20 0.403 50≤t<70 14 0.284 70≤t<90 6 0.125 90≤t<110 2 0.04(2)作出条形统计图,如图所示:(3)根据题意得:1500×(0.28+0.12+0.04)=660(人),则该校共有660名学生平均每天阅读时间不少于50min.【点评】此题考查了频数分布直方图,用样本估计总体,以及频数分布表,弄清题中的数据是解本题的关键.22.(2016·山东聊城)为加快城市群的建设与发展,在A,B两城市间新建条城际铁路,建成后,铁路运行里程由现在的120km缩短至114km,城际铁路的设计平均时速要比现行的平均时速快110km,运行时间仅是现行时间的,求建成后的城际铁路在A,B两地的运行时间.【考点】分式方程的应用.【分析】设城际铁路现行速度是xkm/h,设计时速是(x+110)xkm/h;现行路程是120km,设计路程是114km,由时间=,运行时间=现行时间,就可以列方程了.【解答】解:设城际铁路现行速度是xkm/h.由题意得:×=.解这个方程得:x=80.经检验:x=80是原方程的根,且符合题意.则×=×=0.6(h).答:建成后的城际铁路在A,B两地的运行时间是0.6h.【点评】考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.23.(2016·山东聊城)如图,在直角坐标系中,直线y=﹣x与反比例函数y=的图象交于关于原点对称的A,B两点,已知A点的纵坐标是3.(1)求反比例函数的表达式;(2)将直线y=﹣x向上平移后与反比例函数在第二象限内交于点C,如果△ABC的面积为48,求平移后的直线的函数表达式.【考点】反比例函数与一次函数的交点问题.【分析】(1)将y=3代入一次函数解析式中,求出x的值,即可得出点A的坐标,再利用反比例函数图象上点的坐标特征即可求出反比例函数的表达式;(2)根据A、B点关于原点对称,可求出点B的坐标以及线段AB的长度,设出平移后的直线的函数表达式,根据平行线间的距离公式结合三角形的面积即可得出关于b的一元一次方程,解方程即可得出结论.【解答】解:(1)令一次函数y=﹣x中y=3,则3=﹣x,解得:x=﹣6,即点A的坐标为(﹣6,3).∵点A(﹣6,3)在反比例函数y=的图象上,∴k=﹣6×3=﹣18,∴反比例函数的表达式为y=﹣.(2)∵A、B两点关于原点对称,∴点B的坐标为(6,﹣3),∴AB==6.设平移后的直线的函数表达式为y=﹣x+b(b>0),即x+2y﹣2b=0,直线y=﹣x可变形为x+2y=0,∴两直线间的距离d==b.∴S△ABC=AB•d=×6×b=48,解得:b=8.∴平移后的直线的函数表达式为y=﹣x+8.【点评】本题考查了反比例函数与一次函数交点的问题、反比例函数图象上点的坐标特征.三角形的面积公式以及平行线间的距离公式,解题的关键是:(1)求出点A的坐标;(2)找出关于b的一元一次方程.本题属于中档题,难度不大,解决该题型题目时,利用平行线间的距离公式要比通过解直角三角形简洁不少.24.(2016·山东聊城)如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于点D,点E为OB的中点,连接CE并延长交⊙O于点F,点F恰好落在的中点,连接AF并延长与CB的延长线相交于点G,连接OF.(1)求证:OF=BG;(2)若AB=4,求DC的长.【考点】相似三角形的判定与性质.【分析】(1)直接利用圆周角定理结合平行线的判定方法得出FO是△ABG的中位线,即可得出答案;(2)首选得出△FOE≌△CBE(ASA),则BC=FO=AB=2,进而得出AC的长,再利用相似三角形的判定与性质得出DC的长.【解答】(1)证明:∵以Rt△ABC的直角边AB为直径作⊙O,点F恰好落在的中点,∴=,∴∠AOF=∠BOF,∵∠ABC=∠ABG=90°,∴∠AOF=∠ABG,∴FO∥BG,∵AO=BO,∴FO是△ABG的中位线,∴FO=BG;(2)解:在△FOE和△CBE中,,∴△FOE≌△CBE(ASA),∴BC=FO=AB=2,∴AC==2,连接DB,∵AB为⊙O直径,∴∠ADB=90°,∴∠ADB=∠ABC,∵∠BCD=∠ACB,∴△BCD∽△ACB,∴=,∴=,解得:DC=.【点评】此题主要考查了相似三角形的判定与性质以及全等三角形的判定与性质等知识,正确得出△BCD∽△ACB是解题关键.25.(2016·山东聊城)如图,已知抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).CD 垂直于y轴,交抛物线于点D,DE垂直与x轴,垂足为E,l是抛物线的对称轴,点F是抛物线的顶点.(1)求出二次函数的表达式以及点D的坐标;(2)若Rt△AOC沿x轴向右平移到其直角边OC与对称轴l重合,再沿对称轴l向上平移到点C与点F 重合,得到Rt△A1O1F,求此时Rt△A1O1F与矩形OCDE重叠部分的图形的面积;(3)若Rt△AOC沿x轴向右平移t个单位长度(0<t≤6)得到Rt△A2O2C2,Rt△A2O2C2与Rt△OED重叠部分的图形面积记为S,求S与t之间的函数表达式,并写出自变量t的取值范围.【考点】二次函数综合题.【分析】(1)用待定系数法求抛物线解析式;=S△A1O1F﹣S△FGH计算即可;(2)由GH∥A1O1,求出GH=1,再求出FH,S重叠部分(3)分两种情况①直接用面积公式计算,②用面积差求出即可.【解答】解:(1)∵抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).∴设抛物线的解析式为y=a(x+3)(x﹣9),∵C(0,4)在抛物线上,∴4=﹣27a,∴a=﹣,∴设抛物线的解析式为y=﹣(x+3)(x﹣9)=﹣x2+x+4,∵CD垂直于y轴,C(0,4)∴﹣x2+x+4=4,∴x=6,∵D(6,4),(2)如图1,∵点F是抛物线y=﹣x2+x+4的顶点,∴F(3,),∴FH=,∵GH∥A1O1,∴,∴,∴GH=1,∵Rt△A1O1F与矩形OCDE重叠部分是梯形A1O1HG,∴S=S△A1O1F﹣S△FGH=A1O1×O1F﹣GH×FH=×3×4﹣×1×=.重叠部分(3)①当0<t≤3时,如图2,∵C2O2∥DE,∴,∴,∴O2G=t,∴S=S△OO2G=OO2×O2G=t×t=t2,②当3<t≤6时,如图3,∵C2H∥OC,∴,∴,∴C2H=(6﹣t),∴S=S=S△A2O2C2﹣S△C2GH四边形A2O2HG=OA×OC﹣C2H×(t﹣3)=×3×4﹣×(6﹣t)(t﹣3)=t2﹣3t+12∴当0<t≤3时,S=t2,当3<t≤6时,S=t2﹣3t+12.【点评】此题是二次函数综合题,主要考查了待定系数法求函数解析式,平行线分线段成比例定理,三角形的面积计算,解本题的关键是画出图形.。
山东省聊城市2016年中考数学预测试卷(一)(解析版)一、选择题:本题共12小题,每小题3分1.实数﹣的绝对值等于()A.B.﹣C.D.﹣2.如图,已知AB∥CD,若∠A=25°,∠E=40°,则∠C等于()A.40°B.65°C.115°D.25°3.下列运算正确的是()A.a+a2=2a3B.a2a3=a6C.(a2)3=a5D.a6÷a3=a34.如图是由四个小正方体搭成的一个几何体,这个几何体的俯视图是()A.B.C.D.5.下列事件:①地球绕着太阳转;②抛一枚硬币,正面朝上;③明天会下雨;④打开电视,正在播放新闻.其中,必然事件有()A.1个B.2个C.3个D.4个6.如图,M,N两点在数轴上表示的数分别是m,n,则下列式子中成立的是()A.m+n<0B.﹣m<﹣nC.|m|﹣|n|>0D.2+m<2+n7.如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A.∠ABC=90°B.AC=BDC.OA=OBD.OA=AD8.某校抽取10名学生参加“心理健康”知识测试,他们得分情况如表:那么这10名学生所得分数的众数和中位数分别是()A.95和85B.90和85C.90和87.5D.85和87.59.如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是()A.转化思想B.三角形的两边之和大于第三边C.两点之间,线段最短D.三角形的一个外角大于与它不相邻的任意一个内角10.如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1)B.(2,0)C.(3,3)D.(3,1)11.已知函数y=﹣(x﹣m)(x﹣n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()A.B.C.D.12.如图,直径AB为12的半圆,绕A点逆时针旋转60°,此时点B旋转到点B′,则图中阴影部分的面积是()A.12πB.24πC.6πD.36π二、填空题:本题共5小题,每小题3分,共15分13.方程组的解是.14.计算(+)(﹣)的结果为.15.如图,△ABC和△DCE都是边长为2的等边三角形,点B、C、E在同一条直线上,连接BD,则BD的长为.16.某学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭成,小明与小红同车的概率是.17.如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…,(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)正方形的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6,…,则顶点A2016的坐标为.三、解答题:本题共8小题,共69分18.解不等式组,并在数轴上表示解集.19.某中学组织了一次“中华民族的伟大复兴”历史知识竞赛,参赛人数1000人,为了了解本次竞赛的成绩情况,学校团委从中抽取部分学生的成绩(满分为100分,得分取整数)进行统计,并绘制出不完整的频率分布表和不完整的频率分布直方图如下:(1)求a的值,并补全频数分布直方图.(2)若成绩在80分以上(含80分)为优秀,求这次参赛的学生中成绩为优秀的约为多少人?20.已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.21.在折纸这种传统手工艺术中,蕴含许多数学思想,我们可以通过折纸得到一些特殊图形,把一张正方形纸片按照图①~④的过程折叠后展开.求证:四边形ABCD是菱形.22.如图,在我市的上空一架飞机由A向B沿水平直线方向飞行,沿航线AB的正下方有两个景点水城明珠大剧院(记为点C),光岳楼(记为点D),飞机在A处时,测得景点C、D在飞机的前方,俯角分别为60°和30°.飞机飞行了3千米到B处时,往后测得景点C的俯角为30°.而景点D恰好在飞机的正下方,求水城明珠大剧院与光岳楼之间的距离(最后结果精确到0.1千米)23.金泉街道改建工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天可以完成.(1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为0.84万元,乙队每天的施工费用为0.56万元,工程预算的施工费用为50万元.为缩短工期以减少对住户的影响,拟安排甲、乙两队合作完成这项工程,则工程预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.24.已知:如图,AB是⊙O直径,OD⊥弦BC于点F,且交⊙O于点E,若∠AEC=∠ODB.(1)求证:BD是⊙O的切线;(2)当AB=10,BC=8时,求BD的长.25.如图,二次函数y=x2+bx+c的图象交x轴于A、B两点,交y轴于点C,顶点为点P,经过B、C两点的直线为y=﹣x+3.(1)求该二次函数的关系式;(2)在该抛物线的对称轴上是否存在点M,使以点C、P、M为顶点的三角形是等腰三角形?若存在,请直接写出所有符合条件的点M的坐标;若不存在,请说明理由;(3)连接AC,在x轴上是否存在点Q,使以点P、B、Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.2016年山东省聊城市中考数学预测试卷(一)参考答案与试题解析一、选择题:本题共12小题,每小题3分1.实数﹣的绝对值等于()A.B.﹣C.D.﹣【分析】根据负数的绝对值是它的相反数解答.【解答】解:∵负数的绝对值是它的相反数,∴﹣的绝对值等于.故选A.【点评】本题考查了实数的性质,主要利用了绝对值的性质和相反数的定义.2.如图,已知AB∥CD,若∠A=25°,∠E=40°,则∠C等于()A.40°B.65°C.115°D.25°【分析】由平行线的性质可求得∠EFB=∠C,在△AEF中由三角形外角的性质可求得∠EFB,可求得答案【解答】解:∵∠EFB是△AEF的一个外角,∴∠EFB=∠A+∠E=25°+40°=65°,∵AB∥CD,∴∠C=∠EFB=65°,故选B.【点评】本题主要考查平行线的性质,掌握平行线的性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.3.下列运算正确的是()A.a+a2=2a3B.a2a3=a6C.(a2)3=a5D.a6÷a3=a3【分析】根据同底数幂的乘法,可判断A、B;根据幂的乘方,可判断C;根据同底数幂的除法,可判断D.【解答】解:A、不是同底数幂的乘法指数不能相加,故A错误;B、同底数幂的乘法底数不变指数相加,故B错误;C、幂的乘方底数不变指数相乘,故C错误;D、同底数幂的除法底数不变指数相减,故D正确;故选:D.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.4.如图是由四个小正方体搭成的一个几何体,这个几何体的俯视图是()A.B.C.D.【分析】从上向下看已知几何体,左前排只有一个小正方体,后排两个小正方体,即得到选项B中平面图形.【解答】解:几何体的俯视图有三列,两排,三列上的正方形分别为1,1,1,两排上的正方形分别为2,1,故选B.【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.5.下列事件:①地球绕着太阳转;②抛一枚硬币,正面朝上;③明天会下雨;④打开电视,正在播放新闻.其中,必然事件有()A.1个B.2个C.3个D.4个【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:①地球绕着太阳转是必然事件;②抛一枚硬币,正面朝上是随机事件;③明天会下雨是随机事件;④打开电视,正在播放新闻是随机事件,故选:A.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.如图,M,N两点在数轴上表示的数分别是m,n,则下列式子中成立的是()A.m+n<0B.﹣m<﹣nC.|m|﹣|n|>0D.2+m<2+n【分析】根据M、N两点在数轴上的位置判断出其取值范围,再对各选项进行逐一分析即可.【解答】解:M、N两点在数轴上的位置可知:﹣1<m<0,n>2,∵m+n>O,故A错误,∵﹣m>﹣n,故B错误,∵|m|﹣|n|<0,故C错误.∵2+m<2+n正确,故D正确.故选:D.【点评】本题考查的是数轴的特点,根据a、b两点在数轴上的位置判断出其取值范围是解答此题的关键.7.如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A.∠ABC=90°B.AC=BDC.OA=OBD.OA=AD【分析】矩形的性质:四个角都是直角,对角线互相平分且相等;由矩形的性质容易得出结论.【解答】解:∵四边形ABCD是矩形,∴∠ABC=∠BCD=∠CDA=∠BAD=90°,AC=BD,OA=AC,OB=BD,∴OA=OB,∴A、B、C正确,D错误,故选:D.【点评】本题考查了矩形的性质;熟练掌握矩形的性质是解决问题的关键.8.某校抽取10名学生参加“心理健康”知识测试,他们得分情况如表:那么这10名学生所得分数的众数和中位数分别是()A.95和85B.90和85C.90和87.5D.85和87.5【分析】根据众数、中位数的定义分别求解可得.【解答】解:由表可知在这10个数据中,90分出现次数最多,有4次,则这10名学生所得分数的众数是90分;∵这10名学生所得分数从小到大排列的第5个数是85分,第6个数是90分,∴这10名学生所得分数的中位数是=87.5(分),故选:C.【点评】本题考查了众数和中位数的定义,一组数据中出现次数最多的数据叫做众数,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.9.如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是()A.转化思想B.三角形的两边之和大于第三边C.两点之间,线段最短D.三角形的一个外角大于与它不相邻的任意一个内角【分析】利用两点之间线段最短分析并验证即可即可.【解答】解:∵点B和点B′关于直线l对称,且点C在l上,∴CB=CB′,又∵AB′交l与C,且两条直线相交只有一个交点,∴CB′+CA最短,即CA+CB的值最小,将轴对称最短路径问题利用线段的性质定理两点之间,线段最短,体现了转化思想,验证时利用三角形的两边之和大于第三边.故选D.【点评】此题主要考查了轴对称最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.10.如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1)B.(2,0)C.(3,3)D.(3,1)【分析】根据位似变换的性质可知,△ODC∽△OBA,相似比是,根据已知数据可以求出点C的坐标.【解答】解:由题意得,△ODC∽△OBA,相似比是,∴=,又OB=6,AB=3,∴OD=2,CD=1,∴点C的坐标为:(2,1),故选:A.【点评】本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用.11.已知函数y=﹣(x﹣m)(x﹣n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()A.B.C.D.【分析】根据二次函数图象判断出m<﹣1,n=1,然后求出m+n<0,再根据一次函数与反比例函数图象的性质判断即可.【解答】解:由图可知,m<﹣1,n=1,所以,m+n<0,所以,一次函数y=mx+n经过第二四象限,且与y轴相交于点(0,1),反比例函数y=的图象位于第二四象限,纵观各选项,只有C选项图形符合.故选C.【点评】本题考查了二次函数图象,一次函数图象,反比例函数图象,观察二次函数图象判断出m、n的取值是解题的关键.12.如图,直径AB为12的半圆,绕A点逆时针旋转60°,此时点B旋转到点B′,则图中阴影部分的面积是()A.12πB.24πC.6πD.36π【分析】根据题意得出AB=AB′=12,∠BAB′=60°,根据图形得出图中阴影部分的面积S=+π×62﹣π×62,求出即可.【解答】解:∵AB=AB′=12,∠BAB′=60°∴图中阴影部分的面积是:S=S扇形B′AB +S半圆O′﹣S半圆O=+π×62﹣π×62=24π.故选B.【点评】本题考查的是扇形的面积及旋转的性质,通过做此题培养了学生的计算能力和观察图形的能力,题目比较好,难度适中.二、填空题:本题共5小题,每小题3分,共15分13.方程组的解是.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:3x=3,即x=1,把x=1代入①得:y=﹣3,则方程组的解为,故答案为:【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.14.计算(+)(﹣)的结果为﹣1.【分析】根据平方差公式:(a+b)(a﹣b)=a2﹣b2,求出算式(+)(﹣)的结果为多少即可.【解答】解:(+)(﹣)==2﹣3=﹣1∴(+)(﹣)的结果为﹣1.故答案为:﹣1.【点评】(1)此题主要考查了二次根式的混合运算,要熟练掌握,解答此题的关键是要明确:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式”,多个不同类的二次根式的和可以看“多项式”.(2)此题还考查了平方差公式的应用:(a+b)(a﹣b)=a2﹣b2,要熟练掌握.15.如图,△ABC和△DCE都是边长为2的等边三角形,点B、C、E在同一条直线上,连接BD,则BD的长为2.【分析】作DF⊥CE于F,构建两个直角三角形,运用勾股定理逐一解答即可.【解答】解:过D作DF⊥CE于F,根据等腰三角形的三线合一,得:CF=1.在直角三角形CDF中,根据勾股定理,得:DF2=3.在直角三角形BDF中,BF=BC+CF=2+1=3,根据勾股定理得:BD==2.【点评】熟练运用等腰三角形的三线合一和勾股定理.16.某学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭成,小明与小红同车的概率是.【分析】首先用A,B,C分别表示给九年级的三辆车,然后根据题意画树状图,再由树状图求得所有等可能的结果与小明与小红同车的情况,然后利用概率公式求解即可求得答案.【解答】解:用A,B,C分别表示给九年级的三辆车,画树状图得:∵共有9种等可能的结果,小明与小红同车的有3种情况,∴小明与小红同车的概率是:=.故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.17.如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…,(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)正方形的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6,…,则顶点A2016的坐标为(504,﹣504).【分析】首先判断A2016在第四象限,再探究规律后,利用规律解决问题.【解答】解:经过观察可知A2016在第四象限,∵2016÷4=504,∴A2016是第504个正方形的顶点,第一个正方形A4(1,﹣1),第二个正方形A8(2,﹣2),第三个正方形A12(3,﹣3),…∴第504个正方形顶点A2016(504,﹣504).故答案为(504,﹣504).【点评】本题考查规律型:点的坐标,解题的关键是学会探究规律、发现规律、利用规律解决问题,属于中考常考题型.三、解答题:本题共8小题,共69分18.解不等式组,并在数轴上表示解集.【分析】先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【解答】解:∵解不等式①得:x<2,解不等式②得:x≥﹣1,∴不等式组的解集为﹣1≤x<2,在数轴上表示不等式组的解集为:.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,能求出不等式组的解集是解此题的关键.19.某中学组织了一次“中华民族的伟大复兴”历史知识竞赛,参赛人数1000人,为了了解本次竞赛的成绩情况,学校团委从中抽取部分学生的成绩(满分为100分,得分取整数)进行统计,并绘制出不完整的频率分布表和不完整的频率分布直方图如下:(1)求a的值,并补全频数分布直方图.(2)若成绩在80分以上(含80分)为优秀,求这次参赛的学生中成绩为优秀的约为多少人?【分析】(1)根据频数=总数×百分数,求出第二组人数,再求出最后一组人数,即可解决问题.(2)利用样本估计总体的思想解决问题.【解答】解:(1)第一组的频数为8,频率为0.08,所以被抽取的学生总数为8÷0.08=100(人).第二组60.5~70.5的频数=100×0.12=12(人).第三组的频率==0.2,第四组的频数=100﹣8﹣12﹣20﹣32=28(人),第四组是频率==0.32.故答案分别为8,12,0.2,0.32,28.所以a=28÷100=0.28.补全频数分布直方图如下,(2)1000×=600(人).所以这次参赛的学生中成绩为优秀的约为600人.【点评】本题考查频数分布表、用样本估计总体、频数分布表、中位数等知识,解题的关键是记住知识,学会利用样本估计总体的思想解决问题,属于中考常考题型.20.已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.【分析】(1)根据反比例函数的图象是双曲线.当k>0时,则图象在一、三象限,且双曲线是关于原点对称的;(2)由对称性得到△OAC的面积为3.设A(x、),则利用三角形的面积公式得到关于m的方程,借助于方程来求m的值.【解答】解:(1)根据反比例函数的图象关于原点对称知,该函数图象的另一支在第三象限,且m﹣7>0,则m>7;(2)∵点B与点A关于x轴对称,若△OAB的面积为6,∴△OAC的面积为3.设A(x,),则x=3,解得m=13.【点评】本题考查了反比例函数的性质、图象,反比例函数图象上点的坐标特征等知识点.根据题意得到△OAC的面积是解题的关键.21.在折纸这种传统手工艺术中,蕴含许多数学思想,我们可以通过折纸得到一些特殊图形,把一张正方形纸片按照图①~④的过程折叠后展开.求证:四边形ABCD是菱形.【分析】根据折叠的性质得到∠MAD=∠DAC=∠MAC ,∠CAB=∠NAB=∠CAN ,∠DCA=∠MCD=∠ACM ,∠ACB=∠NCB=∠ACN ,再根据正方形的性质得∠MAC=∠∠MCA=∠NAC=∠NCA ,所以∠DAC=∠BAC=∠BCA=∠DCA ,于是可判断四边形ABCD 为平行四边形,且DA=DC ,然后根据菱形的判定方法得到四边形ABCD 为菱形.【解答】解:∵△AMG 沿AG 折叠,使AM 落在AC 上,∴∠MAD=∠DAC=∠MAC ,同理可得∠CAB=∠NAB=∠CAN ,∠DCA=∠MCD=∠ACM ,∠ACB=∠NCB=∠ACN ,∵四边形AMCN 是正方形,∴∠MAC=∠MCA=∠NAC=∠NCA ,∴∠DAC=∠BAC=∠BCA=∠DCA∴AD ∥BC ,AB ∥DC ,∴四边形ABCD 为平行四边形,∵∠DAC=∠DCA ,∴AD=CD ,∴四边形ABCD 为菱形.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了菱形的判定方法以及正方形的性质.22.如图,在我市的上空一架飞机由A 向B 沿水平直线方向飞行,沿航线AB 的正下方有两个景点水城明珠大剧院(记为点C ),光岳楼(记为点D ),飞机在A 处时,测得景点C 、D 在飞机的前方,俯角分别为60°和30°.飞机飞行了3千米到B 处时,往后测得景点C 的俯角为30°.而景点D 恰好在飞机的正下方,求水城明珠大剧院与光岳楼之间的距离(最后结果精确到0.1千米)【分析】首先证明△ABC是直角三角形,分别在RT△ABC,RT△ABD中求出BC、BD、BE,再在RT△CDE中利用勾股定理即可解决问题.【解答】解:由题意,∠BAC=60°,∠ABC=30°,∠BAD=90°,∴∠ACB=180°﹣∠ABC﹣∠BAC=180°﹣30°﹣60°=90°,∴在RT△ABC中,BC=ABcos30°=3×=(千米),在RT△ABD中,BD=ABtan30°=3×=(千米),过点C作CE⊥BD于点E,∵AB⊥BD,∠ABC=30°,∴∠CBE=60°,∴BE=BCcos60°=×=,DE=BD﹣BE=﹣=,CE=BCsin60°=×=,∴CD===≈2.3(千米).【点评】本题考查解直角三角形应用﹣俯角俯角、三角函数、勾股定理等知识,解题的关键是添加辅助线构造直角三角形,属于中考常考题型.23.金泉街道改建工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天可以完成.(1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为0.84万元,乙队每天的施工费用为0.56万元,工程预算的施工费用为50万元.为缩短工期以减少对住户的影响,拟安排甲、乙两队合作完成这项工程,则工程预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.【分析】(1)设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要x天,工程任务是1,工作效率分别是:;工作量=时间×工作效率,等量关系为:前10天甲的工作量+后30天甲乙合做工作量=1.据此可列方程求解.(2)在(1)的基础上,求得甲乙单独完成这项需要的天数,得到甲乙的工作效率,用(甲的工作效率+乙的工作效率)×合做天数=1得出合做天数,再进一步计算出每个队的费用,回答题目的问题.【解答】解:(1)设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要x 天.根据题意得:+30×(+)=1.解得:x=90.经检验:x=90是原方程的根.∴x=×90=60.答:甲、乙两队单独完成这项工程各需要60天和90天.(2)设甲、乙两队合作完成这项工程需要y天.可得:y(+)=1.解得:y=36.需要施工费用:36×(0.84+0.56)=50.4.∵50.4>50∴工程预算的施工费用不够用,需追加预算0.4万元.【点评】通过第一问可以得出甲、乙两队单独完成这项工程各需要天数,也就知道了甲乙的工作效率,在第二问中甲乙工作效率是没有变的,要充分运用这个结论.找到合适的等量关系是解决问题的关键.24.已知:如图,AB是⊙O直径,OD⊥弦BC于点F,且交⊙O于点E,若∠AEC=∠ODB.(1)求证:BD是⊙O的切线;(2)当AB=10,BC=8时,求BD的长.【分析】从切线的判定为目标,来求BD⊥AB,连接AC通过相似来证得;通过已知条件和第一步求得的三角形相似求得BD的长度.【解答】(1)证明:连接AC,∵AB是⊙O的直径∴∠ACB=90°又∵OD⊥BC∴AC∥OE∴∠CAB=∠EOB由对的圆周角相等∴∠AEC=∠ABC又∵∠AEC=∠ODB∴∠ODB=∠OBC∴△DBF∽△OBD∴∠OBD=90°即BD⊥AB又∵AB是直径∴BD是⊙O的切线.(2)解:∵OD⊥弦BC于点F,且点O圆心,∴BF=FC∴BF=4由题意OB是半径即为5∴在直角三角形OBF中OF为3由以上(1)得到△DBF∽△OBD∴即得BD=.【点评】本题考查了切线的判定及其应用,通过三角形相似求得,本题思路很好,是一道不错的题.25.如图,二次函数y=x2+bx+c的图象交x轴于A、B两点,交y轴于点C,顶点为点P,经过B、C两点的直线为y=﹣x+3.(1)求该二次函数的关系式;(2)在该抛物线的对称轴上是否存在点M,使以点C、P、M为顶点的三角形是等腰三角形?若存在,请直接写出所有符合条件的点M的坐标;若不存在,请说明理由;(3)连接AC,在x轴上是否存在点Q,使以点P、B、Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.【分析】(1)先求出B、C坐标,代入抛物线解析式解方程组即可解决问题.(2)分三种情形讨论即可①CM=CP,②PM=PC,③MP=MC,画出图形即可解决问题.(3)分两种情形讨论即可①=时,△ABC∽△PBQ1,列出方程即可解决.②当=时,△ABC∽△Q2BP,列出方程即可解决.【解答】解:(1)∵直线y=﹣x+3经过B、C两点,∴B(3,0),C(0,3),∵二次函数y=x2+bx+c图象交x轴于A、B两点,交y轴于点C,∴解得,∴二次函数解析式为y=x2﹣4x+3.(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴该抛物线的对称轴为直线x=2,顶点坐标为P(2,﹣1),∴如图1所示,满足条件的点M分别为M1(2,7),M2(2,2﹣1),M3(2,),M4(2,﹣2﹣1).(3)由(1)(2)得A(1,0),BP=,BC=3,AB=2,如图2所示,连接BP,∠CBA=∠ABP=45°,①=时,△ABC∽△PBQ1,此时,=,∴BQ1=3,∴Q1(0,0).②当=时,△ABC∽△Q2BP,此时,=,∴BQ2=,∴Q2(,0),综上所述,存在点Q使得以点P、B、Q为顶点的三角形与△ABC相似.点Q坐标(0,0)或(,0).【点评】本题考查二次函数综合题、待定系数法、等腰三角形的判定和性质等知识,解题的关键是学会分类讨论,考虑问题要全面,不能漏解,属于中考常考题型.。
2016年山东省聊城市中考数学试卷一、选择题(本题共12个小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)(2016•聊城)在实数﹣,﹣2,0,中,最小的实数是( )A.﹣2 B.0 C.﹣D.2.(3分)(2016•聊城)如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为( )A.28°B.38°C.48°D.88°3.(3分)(2016•聊城)地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是( )A.7.1×10﹣6B.7.1×10﹣7C.1.4×106D.1.4×1074.(3分)(2016•聊城)把8a3﹣8a2+2a进行因式分解,结果正确的是( )A.2a(4a2﹣4a+1)B.8a2(a﹣1)C.2a(2a﹣1)2D.2a(2a+1)25.(3分)(2016•聊城)某体校要从四名射击选手中选拔一名参加省体育运动会,选拔赛中每名选手连续射靶10次,他们各自的平均成绩及其方差S2如表所示:甲乙丙丁(环)8.4 8.6 8.6 7.6S20.74 0.56 0.94 1.92如果要选出一名成绩高且发挥稳定的选手参赛,则应选择的选手是( )A.甲B.乙C.丙D.丁6.(3分)(2016•聊城)用若干个大小相同的小正方形体组合成的几何体的主视图和俯视图如图所示,下面所给的四个选项中,不可能是这个几何体的左视图的是( )A.B.C.D.7.(3分)(2016•聊城)二次函数y=ax2+bx+c(a,b,c为常数且a≠0)的图象如图所示,则一次函数y=ax+b与反比例函数y=的图象可能是( )A.B.C.D.8.(3分)(2016•聊城)在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )A.27 B.51 C.69 D.729.(3分)(2016•聊城)如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为( )A.45°B.50°C.55°D.60°10.(3分)(2016•聊城)不等式组的解集是x>1,则m的取值范围是( )A.m≥1 B.m≤1 C.m≥0 D.m≤011.(3分)(2016•聊城)如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为( )A.115°B.120°C.130°D.140°12.(3分)(2016•聊城)聊城“水城之眼”摩天轮是亚洲三大摩天轮之一,也是全球首座建筑与摩天轮相结合的城市地标,如图,点O是摩天轮的圆心,长为110米的AB是其垂直地面的直径,小莹在地面C点处利用测角仪测得摩天轮的最高点A的仰角为33°,测得圆心O的仰角为21°,则小莹所在C点到直径AB所在直线的距离约为(tan33°≈0.65,tan21°≈0.38)( )A.169米B.204米C.240米D.407米二、填空题(本题共5个小题,每小题3分,只要求填写最后结果)13.(3分)(2016•聊城)计算:=______.14.(3分)(2016•聊城)如果关于x的一元二次方程kx2﹣3x﹣1=0有两个不相等的实根,那么k的取值范围是______.15.(3分)(2016•聊城)如图,已知圆锥的高为,高所在直线与母线的夹角为30°,圆锥的侧面积为______.16.(3分)(2016•聊城)如图,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是______.17.(3分)(2016•聊城)如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2015B2016C2016的顶点B2016的坐标是______.三、解答题(本题共8个小题,共69分,解答题应写出文字说明、证明过程或推演步骤)18.(7分)(2016•聊城)计算:(﹣).19.(8分)(2016•聊城)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.20.(8分)(2016•聊城)如图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.21.(8分)(2016•聊城)为了让书籍开拓学生的视野,陶冶学生的情操,向阳中学开展了“五个一”课外阅读活动,为了解全校学生课外阅读情况,抽样调查了50名学生平均每天课外阅读时间(单位:min),将抽查得到的数据分成5组,下面是尚未完成的频数、频率分布表:组别分组频数(人数)频率1 10≤t<30 0.162 30≤t<50 203 50≤t<70 0.284 70≤t<90 65 90≤t<110(1)将表中空格处的数据补全,完成上面的频数、频率分布表;(2)请在给出的平面直角坐标系中画出相应的频数直方图;(3)如果该校有1500名学生,请你估计该校共有多少名学生平均每天阅读时间不少于50min?22.(8分)(2016•聊城)为加快城市群的建设与发展,在A,B两城市间新建条城际铁路,建成后,铁路运行里程由现在的120km缩短至114km,城际铁路的设计平均时速要比现行的平均时速快110km,运行时间仅是现行时间的,求建成后的城际铁路在A,B两地的运行时间.23.(8分)(2016•聊城)如图,在直角坐标系中,直线y=﹣x与反比例函数y=的图象交于关于原点对称的A,B两点,已知A点的纵坐标是3.(1)求反比例函数的表达式;(2)将直线y=﹣x向上平移后与反比例函数在第二象限内交于点C,如果△ABC的面积为48,求平移后的直线的函数表达式.24.(10分)(2016•聊城)如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于点D,点E为OB的中点,连接CE并延长交⊙O于点F,点F恰好落在的中点,连接AF并延长与CB的延长线相交于点G,连接OF.(1)求证:OF=BG;(2)若AB=4,求DC的长.25.(12分)(2016•聊城)如图,已知抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).CD垂直于y轴,交抛物线于点D,DE垂直与x轴,垂足为E,l是抛物线的对称轴,点F是抛物线的顶点.(1)求出二次函数的表达式以及点D的坐标;(2)若Rt△AOC沿x轴向右平移到其直角边OC与对称轴l重合,再沿对称轴l向上平移到点C与点F重合,得到Rt△A1O1F,求此时Rt△A1O1F与矩形OCDE重叠部分的图形的面积;(3)若Rt△AOC沿x轴向右平移t个单位长度(0<t≤6)得到Rt△A2O2C2,Rt△A2O2C2与Rt△OED重叠部分的图形面积记为S,求S与t之间的函数表达式,并写出自变量t的取值范围.2016年山东省聊城市中考数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)(2016•聊城)在实数﹣,﹣2,0,中,最小的实数是( )A.﹣2 B.0 C.﹣D.【考点】实数大小比较.【分析】根据负数的绝对值越大,这个数越小,然后根据正数大于0,负数小于0进行大小比较即可.【解答】解:实数﹣,﹣2,0,中,最小的实数是﹣2,故选A【点评】此题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.2.(3分)(2016•聊城)如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为( )A.28°B.38°C.48°D.88°【考点】平行线的性质.【分析】根据平行线的性质得到∠1=∠B=68°,由三角形的外角的性质即可得到结论.【解答】解:如图,∵AB∥CD,∴∠1=∠B=68°,∵∠E=20°,∴∠D=∠1﹣∠E=48°,故选C.【点评】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.3.(3分)(2016•聊城)地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是( )A.7.1×10﹣6B.7.1×10﹣7C.1.4×106D.1.4×107【考点】整式的除法.【分析】直接利用整式的除法运算法则结合科学记数法求出答案.【解答】解:∵地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,∴地球的体积约是太阳体积的倍数是:1012÷(1.4×1018)≈7.1×10﹣7.故选:B.【点评】此题主要考查了整式的除法运算,正确掌握运算法则是解题关键.4.(3分)(2016•聊城)把8a3﹣8a2+2a进行因式分解,结果正确的是( )A.2a(4a2﹣4a+1)B.8a2(a﹣1)C.2a(2a﹣1)2D.2a(2a+1)2【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式2a,进而利用完全平方公式分解因式即可.【解答】解:8a3﹣8a2+2a=2a(4a2﹣4a+1)=2a(2a﹣1)2.故选:C.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.5.(3分)(2016•聊城)某体校要从四名射击选手中选拔一名参加省体育运动会,选拔赛中每名选手连续射靶10次,他们各自的平均成绩及其方差S2如表所示:甲乙丙丁(环)8.4 8.6 8.6 7.6S20.74 0.56 0.94 1.92如果要选出一名成绩高且发挥稳定的选手参赛,则应选择的选手是( )A.甲B.乙C.丙D.丁【考点】方差.【分析】从平均成绩分析乙和丙要比甲和丁好,从方差分析甲和乙的成绩比丙和丁稳定,综合两个方面可选出乙.【解答】解:根据平均成绩可得乙和丙要比甲和丁好,根据方差可得甲和乙的成绩比丙和丁稳定,因此要选择一名成绩高且发挥稳定的学生参赛,因选择乙,故选:B【点评】此题主要考查了方差和平均数,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 6.(3分)(2016•聊城)用若干个大小相同的小正方形体组合成的几何体的主视图和俯视图如图所示,下面所给的四个选项中,不可能是这个几何体的左视图的是( )A.B.C.D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】由俯视图可得此几何体底面有5个小正方形分为3列3排,根据主视图可得这个几何体的左视图有2层高,依此即可求解.【解答】解:由俯视图可得此几何体底面有5个小正方形分为3列3排,根据主视图可得这个几何体的左视图有2层高,可得这个几何体的左视图不可能是3层高.故选:C.【点评】此题主要考查了画三视图,关键是根据主视图和俯视图分析出每排小正方体的个数.7.(3分)(2016•聊城)二次函数y=ax2+bx+c(a,b,c为常数且a≠0)的图象如图所示,则一次函数y=ax+b与反比例函数y=的图象可能是( )A.B.C.D.【考点】反比例函数的图象;一次函数的图象;二次函数的图象.【专题】函数及其图象.【分析】根据二次函数y=ax2+bx+c的图象,可以判断a、b、c的正负情况,从而可以判断一次函数y=ax+b与反比例函数y=的图象分别在哪几个象限,从而可以解答本题.【解答】解:由二次函数y=ax2+bx+c的图象可知,a>0,b<0,c<0,则一次函数y=ax+b的图象经过第一、三、四象限,反比例函数y=的图象在二四象限,故选C.【点评】本题考查反比例函数的图象、一次函数的图象、二次函数的图象,解题的关键是明确它们各自图象的特点,利用数形结合的思想解答问题.8.(3分)(2016•聊城)在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )A.27 B.51 C.69 D.72【考点】一元一次方程的应用.【分析】设第一个数为x,则第二个数为x+7,第三个数为x+14.列出三个数的和的方程,再根据选项解出x,看是否存在.【解答】解:设第一个数为x,则第二个数为x+7,第三个数为x+14故三个数的和为x+x+7+x+14=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=27.故任意圈出一竖列上相邻的三个数的和不可能是72.故选:D.【点评】此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.9.(3分)(2016•聊城)如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为( )A.45°B.50°C.55°D.60°【考点】圆内接四边形的性质;圆心角、弧、弦的关系;圆周角定理.【分析】先根据圆内接四边形的性质求出∠ADC的度数,再由圆周角定理得出∠DCE的度数,根据三角形外角的性质即可得出结论.【解答】解:∵四边形ABCD内接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵=,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.故选B.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.10.(3分)(2016•聊城)不等式组的解集是x>1,则m的取值范围是( )A.m≥1 B.m≤1 C.m≥0 D.m≤0【考点】不等式的解集.【专题】计算题;一元一次不等式(组)及应用.【分析】表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m的范围即可.【解答】解:不等式整理得:,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0,故选D【点评】此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.11.(3分)(2016•聊城)如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为( )A.115°B.120°C.130°D.140°【考点】翻折变换(折叠问题).【分析】根据折叠的性质和矩形的性质得出∠BFE=∠EFB',∠B'=∠B=90°,根据三角形内角和定理求出∠CFB'=50°,进而解答即可.【解答】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B 落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°,∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.【点评】本题考查了矩形的性质,折叠的性质,三角形的内角和定理的应用,能综合运用性质进行推理和计算是解此题的关键,注意:折叠后的两个图形全等.12.(3分)(2016•聊城)聊城“水城之眼”摩天轮是亚洲三大摩天轮之一,也是全球首座建筑与摩天轮相结合的城市地标,如图,点O是摩天轮的圆心,长为110米的AB是其垂直地面的直径,小莹在地面C点处利用测角仪测得摩天轮的最高点A的仰角为33°,测得圆心O的仰角为21°,则小莹所在C点到直径AB所在直线的距离约为(tan33°≈0.65,tan21°≈0.38)( )A.169米B.204米C.240米D.407米【考点】解直角三角形的应用-仰角俯角问题.【分析】过C作CD⊥AB于D,在Rt△ACD中,求得AD=CD•tan∠ACD=CD•tan33°,在Rt△BCO中,求得OD=CD•tan∠BCO=CD•tan21°,列方程即可得到结论.【解答】解:过C作CD⊥AB于D,在Rt△ACD中,AD=CD•tan∠ACD=CD•tan33°,在Rt△BCO中,OD=CD•tan∠BCO=CD•tan21°,∵AB=110m,∴AO=55m,∴A0=AD﹣OD=CD•tan33°﹣CD•tan21°=55m,∴CD==≈204m,答:小莹所在C点到直径AB所在直线的距离约为204m.故选B.【点评】此题主要考查了仰角与俯角的问题,利用两个直角三角形拥有公共直角边,能够合理的运用这条公共边是解答此题的关键.二、填空题(本题共5个小题,每小题3分,只要求填写最后结果)13.(3分)(2016•聊城)计算:= 12 .【考点】二次根式的乘除法.【分析】直接利用二次根式乘除运算法则化简求出答案.【解答】解:=3×÷=3=12.故答案为:12.【点评】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.14.(3分)(2016•聊城)如果关于x的一元二次方程kx2﹣3x﹣1=0有两个不相等的实根,那么k的取值范围是 k>﹣且k≠0 .【考点】根的判别式.【分析】根据一元二次方程的定义和△的意义得到k≠0且△>0,即(﹣3)2﹣4×k×(﹣1)>0,然后解不等式即可得到k的取值范围.【解答】解:∵关于x的一元二次方程kx2﹣3x﹣1=0有两个不相等的实数根,∴k≠0且△>0,即(﹣3)2﹣4×k×(﹣1)>0,解得:k>﹣且k≠0.故答案为:k>﹣且k≠0.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.15.(3分)(2016•聊城)如图,已知圆锥的高为,高所在直线与母线的夹角为30°,圆锥的侧面积为 2π .【考点】圆锥的计算.【专题】计算题.【分析】先利用三角函数计算出BO,再利用勾股定理计算出AB,然后利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算圆锥的侧面积.【解答】解:如图,∠BAO=30°,AO=,在Rt△ABO中,∵tan∠BAO=,∴BO=tan30°=1,即圆锥的底面圆的半径为1,∴AB==2,即圆锥的母线长为2,∴圆锥的侧面积=•2π•1•2=2π.故答案为2π.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.(3分)(2016•聊城)如图,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是 .【考点】概率公式;概率的意义.【分析】求出随机闭合开关S1,S2,S3,S4,S5中的三个,共有几种可能情况,以及能让灯泡L1,L2同时发光的有几种可能,由此即可解决问题.【解答】解:∵随机地闭合开关S1,S2,S3,S4,S5中的三个共有10种可能,能够使灯泡L1,L2同时发光有2种可能(S1,S2,S4或S1,S2,S5).∴随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是=.故答案为.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.17.(3分)(2016•聊城)如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2015B2016C2016的顶点B2016的坐标是 (21008,0) .【考点】正方形的性质;规律型:点的坐标.【分析】首先求出B1、B2、B3、B4、B5、B6、B7、B8、B9的坐标,找出这些坐标的之间的规律,然后根据规律计算出点B2016的坐标.【解答】解:∵正方形OA1B1C1边长为1,∴OB1=,∵正方形OB1B2C2是正方形OA1B1C1的对角线OB1为边,∴OB2=2,∴B2点坐标为(0,2),同理可知OB3=2,∴B3点坐标为(﹣2,2),同理可知OB4=4,B4点坐标为(﹣4,0),B5点坐标为(﹣4,﹣4),B6点坐标为(0,﹣8),B7(8,﹣8),B8(16,0)B9(16,16),B10(0,32),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,∵2016÷8=252∴B2016的纵横坐标符号与点B8的相同,横坐标为正值,纵坐标是0,∴B2016的坐标为(21008,0).故答案为:(21008,0).【点评】本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点坐标的规律发现每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍.三、解答题(本题共8个小题,共69分,解答题应写出文字说明、证明过程或推演步骤)18.(7分)(2016•聊城)计算:(﹣).【考点】分式的混合运算.【专题】计算题;分式.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=•=•=﹣.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.19.(8分)(2016•聊城)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.【考点】坐标与图形变化-旋转;坐标与图形变化-平移.【专题】作图题.【分析】(1)利用点C和点C1的坐标变化得到平移的方向与距离,然后利用此平移规律写出顶点A1,B1的坐标;(2)根据关于原点对称的点的坐标特征求解;(3)利用网格和旋转的性质画出△A2B3C3,然后写出△A2B3C3的各顶点的坐标.【解答】解:(1)如图,△A1B1C1为所作,因为点C(﹣1,3)平移后的对应点C1的坐标为(4,0),所以△ABC先向右平移5个单位,再向下平移3个单位得到△A1B1C1,所以点A1的坐标为(2,2),B1点的坐标为(3,﹣2);(2)因为△ABC和△A1B2C2关于原点O成中心对称图形,所以A2(3,﹣5),B2(2,﹣1),C2(1,﹣3);(3)如图,△A2B3C3为所作,A3(5,3),B3(1,2),C3(3,1);【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.20.(8分)(2016•聊城)如图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.【考点】菱形的判定.【专题】证明题.【分析】先证明△AEF≌△CED,推出四边形ADCF是平行四边形,再证明△AED≌△ABD,推出DF⊥AC,由此即可证明.【解答】证明:∵AF∥CD,∴∠AFE=∠CDE,在△AFE和△CDE中,,∴△AEF≌△CED.AF=CD,∵AF∥CD,∴四边形ADCF是平行四边形.由题意知,AE=AB,∠EAD=∠BAD,AD=AD,∴△AED≌△ABD.∴∠AED=∠B=90°,即DF⊥AC.∴四边形ADCF是菱形.【点评】本题考查菱形的判定、全等三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用这些知识解决问题,属于基础题,中考常考题型.21.(8分)(2016•聊城)为了让书籍开拓学生的视野,陶冶学生的情操,向阳中学开展了“五个一”课外阅读活动,为了解全校学生课外阅读情况,抽样调查了50名学生平均每天课外阅读时间(单位:min),将抽查得到的数据分成5组,下面是尚未完成的频数、频率分布表:组别分组频数(人数)频率1 10≤t<30 0.162 30≤t<50 203 50≤t<70 0.284 70≤t<90 65 90≤t<110(1)将表中空格处的数据补全,完成上面的频数、频率分布表;(2)请在给出的平面直角坐标系中画出相应的频数直方图;(3)如果该校有1500名学生,请你估计该校共有多少名学生平均每天阅读时间不少于50min?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【专题】计算题;数据的收集与整理.【分析】(1)根据总人数50,以及表格中的数据确定出所求数据,填写表格即可;(2)根据表格中的数据作出相应的频数直方图,如图所示;(3)由时间不少于50min的百分比,乘以1500即可得到结果.【解答】解:(1)根据题意填写如下:组别分组频数(人数)频率1 10≤t<30 8 0.162 30≤t<50 20 0.403 50≤t<70 14 0.284 70≤t<90 6 0.125 90≤t<110 2 0.04(2)作出条形统计图,如图所示:(3)根据题意得:1500×(0.28+0.12+0.04)=660(人),则该校共有660名学生平均每天阅读时间不少于50min.【点评】此题考查了频数分布直方图,用样本估计总体,以及频数分布表,弄清题中的数据是解本题的关键.22.(8分)(2016•聊城)为加快城市群的建设与发展,在A,B两城市间新建条城际铁路,建成后,铁路运行里程由现在的120km缩短至114km,城际铁路的设计平均时速要比现行的平均时速快110km,运行时间仅是现行时间的,求建成后的城际铁路在A,B两地的运行时间.【考点】分式方程的应用.【分析】设城际铁路现行速度是xkm/h,设计时速是(x+110)xkm/h;现行路程是120km,设计路程是114km,由时间=,运行时间=现行时间,就可以列方程了.【解答】解:设城际铁路现行速度是xkm/h.由题意得:×=.解这个方程得:x=80.经检验:x=80是原方程的根,且符合题意.则×=×=0.6(h).答:建成后的城际铁路在A,B两地的运行时间是0.6h.【点评】考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.23.(8分)(2016•聊城)如图,在直角坐标系中,直线y=﹣x与反比例函数y=的图象交于关于原点对称的A,B两点,已知A点的纵坐标是3.(1)求反比例函数的表达式;(2)将直线y=﹣x向上平移后与反比例函数在第二象限内交于点C,如果△ABC的面积为48,求平移后的直线的函数表达式.【考点】反比例函数与一次函数的交点问题.【分析】(1)将y=3代入一次函数解析式中,求出x的值,即可得出点A的坐标,再利用反比例函数图象上点的坐标特征即可求出反比例函数的表达式;(2)设平移后的直线分别交x、y轴于点E、F,过点O作OD⊥EF于点D,根据A、B 点关于原点对称,可求出点B的坐标以及线段AB的长度,根据三角形ABC为48可求出OD的长度,设OF=a,则OE=2a,利用面积法即可求出OF的长度,再根据平移的性质即可得出直线EF的解析式.【解答】解:(1)令一次函数y=﹣x中y=3,则3=﹣x,解得:x=﹣6,即点A的坐标为(﹣6,3).∵点A(﹣6,3)在反比例函数y=的图象上,∴k=﹣6×3=﹣18,∴反比例函数的表达式为y=﹣.(2)设平移后的直线分别交x、y轴于点E、F,过点O作OD⊥EF于点D,如图所示.∵A、B两点关于原点对称,∴点B的坐标为(6,﹣3),∴AB==6,∴S△ABC=AB•OD=×6OD=48,∴OD=.设OF=a,则OE=2a,EF=,∴OF•OE=EF•OD,即a•2a=×,解得:a=8.∴直线EF的函数表达式为y=﹣x+8.【点评】本题考查了反比例函数与一次函数交点的问题、反比例函数图象上点的坐标特征.三角形的面积公式以及平行线间的距离公式,解题的关键是:(1)求出点A的坐标;(2)求出OF的长度.本题属于中档题,难度不大,解决该题型题目时,巧妙的利用面积法要比找相似三角形简单明了的多.24.(10分)(2016•聊城)如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于点D,点E为OB的中点,连接CE并延长交⊙O于点F,点F恰好落在的中点,连接AF并延长与CB的延长线相交于点G,连接OF.(1)求证:OF=BG;(2)若AB=4,求DC的长.【考点】相似三角形的判定与性质.【分析】(1)直接利用圆周角定理结合平行线的判定方法得出FO是△ABG的中位线,即可得出答案;(2)首先得出△FOE≌△CBE(ASA),则BC=FO=AB=2,进而得出AC的长,再利用相似三角形的判定与性质得出DC的长.【解答】(1)证明:∵以Rt△ABC的直角边AB为直径作⊙O,点F恰好落在的中点,∴=,∴∠AOF=∠BOF,∵∠ABC=∠ABG=90°,∴∠AOF=∠ABG,∴FO∥BG,∵AO=BO,∴FO是△ABG的中位线,∴FO=BG;(2)解:在△FOE和△CBE中,,∴△FOE≌△CBE(ASA),∴BC=FO=AB=2,∴AC==2,连接DB,∵AB为⊙O直径,∴∠ADB=90°,∴∠ADB=∠ABC,∵∠BCD=∠ACB,∴△BCD∽△ACB,∴=,∴=,解得:DC=.【点评】此题主要考查了相似三角形的判定与性质以及全等三角形的判定与性质等知识,正确得出△BCD∽△ACB是解题关键.25.(12分)(2016•聊城)如图,已知抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).CD垂直于y轴,交抛物线于点D,DE垂直与x轴,垂足为E,l是抛物线的对称轴,点F是抛物线的顶点.(1)求出二次函数的表达式以及点D的坐标;(2)若Rt△AOC沿x轴向右平移到其直角边OC与对称轴l重合,再沿对称轴l向上平移到点C与点F重合,得到Rt△A1O1F,求此时Rt△A1O1F与矩形OCDE重叠部分的图形的面积;(3)若Rt△AOC沿x轴向右平移t个单位长度(0<t≤6)得到Rt△A2O2C2,Rt△A2O2C2与Rt△OED重叠部分的图形面积记为S,求S与t之间的函数表达式,并写出自变量t的取值范围.【考点】二次函数综合题.【分析】(1)用待定系数法求抛物线解析式;(2)由GH∥A1O1,求出GH=1,再求出FH,S重叠部分=S△A1O1F﹣S△FGH计算即可;(3)分两种情况①直接用面积公式计算,②用面积差求出即可.【解答】解:(1)∵抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).∴设抛物线的解析式为y=a(x+3)(x﹣9),∵C(0,4)在抛物线上,∴4=﹣27a,∴a=﹣,∴设抛物线的解析式为y=﹣(x+3)(x﹣9)=﹣x2+x+4,∵CD垂直于y轴,C(0,4)∴﹣x2+x+4=4,∴x=6,∴D(6,4),(2)如图1,。
2015年山东省聊城市中考数学模拟一、选择题(本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项符合题目要求).()...建筑业“营改增”同步进行.分析称此项改革或带来超过8000亿元的减税规模,可进一步鼓励和刺激投资,房地产价格也可能因此调整.请用科学记数法表示出此项改革或带来超过多少元的减税列说法正确的是()①BE=CF ②AE是∠DAB的角平分线③∠DAE+∠DCF=120°.7.若函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,那么m的值为()1m的竹竿的影长是0.8m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),他先测得留在墙壁上的影高为1.2m,又测得地面的影长为2.6m,请你帮她算一下,树高是()垂足为点D,且∠BAC=∠DAC,CD=6,cos∠ACD=,则⊙O的半径是()10.如图,矩形OABC的顶点O是坐标原点,边OA在x轴上,边OC在y轴上.若矩形OA1B1C1与矩形OABC关于点O位似,且矩形OA1B1C1的面积等于矩形OABC面积的,则点B1的坐标是()(1)二次函数y=ax2+bx+c有最小值,最小值为﹣3;(2)当时,y<0;(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论12.如图,一次函数y=x+3的图象与x轴,y轴交于A,B两点,与反比例函数的图象相交于C,D两点,分别过C,D两点作y轴,x轴的垂线,垂足为E,F,连接CF,DE.有下列四个结论:①△CEF与△DEF的面积相等;②△AOB∽△FOE;③△DCE≌△CDF;④AC=BD.其中正确的结论是()二、填空题(本题共5个小题,每小题3分,共15分.只要求填写最后结果)13.若与(x+1)0都有意义,则x的取值范围为.14.因式分解:4a3﹣12a2+9a=.15.在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是,那么袋子中共有球个.16.如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为(度).17.(3分)(2013•临沂)对于实数a,b,定义运算“﹡”:a﹡b=.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1﹡x2=.三、解答题(本题共8个小题,共69分.解答应写出文字说明、证明过程或推演步骤18.(4分)(2015•聊城模拟)解不等式组:.19.(8分)(2008•聊城)某百货商场经理对新进某一品牌几种号码的男式跑步鞋的销售情况进行了一周的统计,得到一组数据后,绘制了频数(双)频率统计表与频数分布直方图如下:请你根据图表中提供的信息,解答以下问题:(1)写出表中a,b,c的值;(2)补全频数分布直方图;(3)根据市场实际情况,该商场计划再进1000双这种跑步鞋,请你帮助商场经理估计一下需要进多少双41号的跑步鞋?一周销售量统计表20.(8分)已知:平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E,F,G分别是OC,OD,AB的中点.求证:(1)BE⊥AC;(2)EG=EF.21.(8分)(2015•聊城模拟)莘县旅游资源丰富,其中燕塔是莘县著名旅游景点(如图①).一天身高1.5m的小明从A处仰视观看燕塔顶部,其仰角为30°.小明又向西走了30m,∠APB=15°(如图②).请你帮小明算出雁塔的高度.(结果保留一位小数,参考数据:≈1.41,≈1.73)22.(9分)如图,已知A(﹣4,0.5),B(﹣1,2)是一次函数y=ax+b与反比例函数(m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.23.(10分)(2013•枣庄)如图,AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.(1)求证:EF是⊙O的切线;(2)求证:AC2=AD•AB;(3)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.24.(10分)(2014•梅州)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?25.(12分)(2014•宜宾)如图,已知抛物线y=x2+bx+c的顶点坐标为M(0,﹣1),与x轴交于A、B两点.(1)求抛物线的解析式;(2)判断△MAB的形状,并说明理由;(3)过原点的任意直线(不与y轴重合)交抛物线于C、D两点,连接MC,MD,试判断MC、MD是否垂直,并说明理由.。
2016年山东省聊城市中考数学试卷一.选择题(本题共12个小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)1.(2016•聊城)在实数﹣,﹣2,0,中,最小的实数是()A. ﹣2B. 0C. ﹣D.【答案】A【考点】实数大小比较【解析】【解答】解:实数﹣,﹣2,0,中,最小的实数是﹣2,故选A【分析】根据负数的绝对值越大,这个数越小,然后根据正数大于0,负数小于0进行大小比较即可.此题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.2.(2016•聊城)如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为()A. 28°B. 38°C. 48°D. 88°【答案】C【考点】平行线的性质【解析】【解答】解:如图,∵AB∥CD,∴∠1=∠B=68°,∵∠E=20°,∴∠D=∠1﹣∠E=48°,故选C.【分析】根据平行线的性质得到∠1=∠B=68°,由三角形的外角的性质即可得到结论.本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.3.(2016•聊城)地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是()A. 7.1×10﹣6B. 7.1×10﹣7C. 1.4×106D. 1.4×107【答案】B【考点】科学记数法—表示绝对值较小的数【解析】【解答】解:∵地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,∴地球的体积约是太阳体积的倍数是:1012÷1.4×1018≈7.1×10﹣7.故选:B.【分析】直接利用整式的除法运算法则结合科学记数法求出答案.此题主要考查了整式的除法运算,正确掌握运算法则是解题关键.4.(2016•聊城)把8a3﹣8a2+2a进行因式分解,结果正确的是()A. 2a(4a2﹣4a+1)B. 8a2(a﹣1)C. 2a(2a﹣1)2D. 2a(2a+1)2【答案】C【考点】提公因式法与公式法的综合运用【解析】【解答】解:8a3﹣8a2+2a=2a(4a2﹣4a+1)=2a(2a﹣1)2.故选:C.【分析】首先提取公因式2a,进而利用完全平方公式分解因式即可.此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.5.(2016•聊城)某体校要从四名射击选手中选拔一名参加省体育运动会,选拔赛中每名选手连续射靶10次,他们各自的平均成绩及其方差S2如表所示:(环) 8.4如果要选出一名成绩高且发挥稳定的选手参赛,则应选择的选手是()A. 甲B. 乙C. 丙D. 丁【答案】B【考点】方差【解析】【解答】解:根据平均成绩可得乙和丙要比甲和丁好,根据方差可得甲和乙的成绩比丙和丁稳定,因此要选择一名成绩高且发挥稳定的学生参赛,因选择乙,故选:B【分析】从平均成绩分析乙和丙要比甲和丁好,从方差分析甲和乙的成绩比丙和丁稳定,综合两个方面可选出乙.此题主要考查了方差和平均数,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.(2016•聊城)用若干个大小相同的小正方形体组合成的几何体的主视图和俯视图如图所示,下面所给的四个选项中,不可能是这个几何体的左视图的是()A. B. C. D.【答案】C【考点】简单组合体的三视图,由三视图判断几何体【解析】【解答】解:由俯视图可得此几何体底面有5个小正方形分为3列3排,根据主视图可得这个几何体的左视图有2层高,可得这个几何体的左视图不可能是3层高.故选:C.【分析】由俯视图可得此几何体底面有5个小正方形分为3列3排,根据主视图可得这个几何体的左视图有2层高,依此即可求解.此题主要考查了画三视图,关键是根据主视图和俯视图分析出每排小正方体的个数.7.(2016•聊城)二次函数y=ax2+bx+c(a,b,c为常数且a≠0)的图象如图所示,则一次函数y=ax+b与反比例函数y= 的图象可能是()A. B. C. D.【答案】C【考点】一次函数的图象,反比例函数的图象,二次函数的图象【解析】【解答】解:由二次函数y=ax2+bx+c的图象可知,a>0,b<0,c<0,则一次函数y=ax+b的图象经过第一、三、四象限,反比例函数y= 的图象在二四象限,故选C.【分析】根据二次函数y=ax2+bx+c的图象,可以判断a、b、c的正负情况,从而可以判断一次函数y=ax+b 与反比例函数y= 的图象分别在哪几个象限,从而可以解答本题.本题考查反比例函数的图象、一次函数的图象、二次函数的图象,解题的关键是明确它们各自图象的特点,利用数形结合的思想解答问题.8.(2016•聊城)在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A. 27B. 51C. 69D. 72【答案】D【考点】一元一次方程的应用【解析】【解答】解:设第一个数为x,则第二个数为x+7,第三个数为x+14故三个数的和为x+x+7+x+14=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=27.故任意圈出一竖列上相邻的三个数的和不可能是72.故选:D.【分析】设第一个数为x,则第二个数为x+7,第三个数为x+14.列出三个数的和的方程,再根据选项解出x,看是否存在.此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.9.(2016•聊城)如图,四边形ABCD内接于⊙O,F是上一点,且= ,连接CF并延长交AD 的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A. 45°B. 50°C. 55°D. 60°【答案】B【考点】圆心角、弧、弦的关系,圆周角定理,圆内接四边形的性质【解析】【解答】解:∵四边形ABCD内接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵= ,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.故选B.【分析】先根据圆内接四边形的性质求出∠ADC的度数,再由圆周角定理得出∠DCE的度数,根据三角形外角的性质即可得出结论.本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.10.(2016•聊城)不等式组的解集是x>1,则m的取值范围是()A. m≥1B. m≤1C. m≥0D. m≤0【答案】D【考点】不等式的解集【解析】【解答】解:不等式整理得:,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0,故选D【分析】表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m的范围即可.此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.11.(2016•聊城)如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A. 115°B. 120°C. 130°D. 140°【答案】A【考点】翻折变换(折叠问题)【解析】【解答】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°,∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.【分析】根据折叠的性质和矩形的性质得出∠BFE=∠EFB',∠B'=∠B=90°,根据三角形内角和定理求出∠CFB'=50°,进而解答即可.本题考查了矩形的性质,折叠的性质,三角形的内角和定理的应用,能综合运用性质进行推理和计算是解此题的关键,注意:折叠后的两个图形全等.12.(2016•聊城)聊城“水城之眼”摩天轮是亚洲三大摩天轮之一,也是全球首座建筑与摩天轮相结合的城市地标,如图,点O是摩天轮的圆心,长为110米的AB是其垂直地面的直径,小莹在地面C点处利用测角仪测得摩天轮的最高点A的仰角为33°,测得圆心O的仰角为21°,则小莹所在C点到直径AB所在直线的距离约为(tan33°≈0.65,tan21°≈0.38)()A. 169米B. 204米C. 240米D. 407米【答案】B【考点】解直角三角形的应用-仰角俯角问题【解析】【解答】解:过C作CD⊥AB于D,在Rt△ACD中,AD=CD•tan∠ACD=CD•tan33°,在Rt△BCO中,OD=CD•tan∠BCO=CD•tan21°,∵AB=110m,∴AO=55m,∴A0=AD﹣OD=CD•tan33°﹣CD•tan21°=55m,∴CD= = ≈204m,答:小莹所在C点到直径AB所在直线的距离约为204m.故选B.【分析】过C作CD⊥AB于D,在Rt△ACD中,求得AD=CD•tan∠ACD=CD•tan33°,在Rt△BCO中,求得OD=CD•tan∠BCO=CD•tan21°,列方程即可得到结论.此题主要考查了仰角与俯角的问题,利用两个直角三角形拥有公共直角边,能够合理的运用这条公共边是解答此题的关键.二.填空题(本题共5个小题,每小题3分,只要求填写最后结果)13.(2016•聊城)计算:=________.【答案】12【考点】二次根式的乘除法【解析】【解答】解:=3 × ÷ =3=12.故答案为:12.【分析】直接利用二次根式乘除运算法则化简求出答案.此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.14.(2016•聊城)如果关于x的一元二次方程kx2﹣3x﹣1=0有两个不相等的实根,那么k的取值范围是________.【答案】k>﹣且k≠0【考点】根的判别式【解析】【解答】解:∵关于x的一元二次方程kx2﹣3x﹣1=0有两个不相等的实数根,∴k≠0且△>0,即(﹣3)2﹣4×k×(﹣1)>0,解得:k>﹣且k≠0.故答案为:k>﹣且k≠0.【分析】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.根据一元二次方程的定义和△的意义得到k≠0且△>0,即(﹣3)2﹣4×k×(﹣1)>0,然后解不等式即可得到k的取值范围.15.(2016•聊城)如图,已知圆锥的高为3 ,高所在直线与母线的夹角为30°,圆锥的侧面积为________.【答案】2π【考点】圆锥的计算【解析】【解答】解:如图,∠BAO=30°,AO= 3 ,在Rt△ABO中,∵tan∠BAO= BOAO ,∴BO= 3 tan30°=1,即圆锥的底面圆的半径为1,∴AB= 32-12 =2,即圆锥的母线长为2,∴圆锥的侧面积= 12 •2π•1•2=2π.故答案为2π.【分析】先利用三角函数计算出BO,再利用勾股定理计算出AB,然后利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算圆锥的侧面积.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.(2016•聊城)如图,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是________.【答案】15【考点】概率的意义,概率公式【解析】【解答】解:∵随机地闭合开关S1,S2,S3,S4,S5中的三个共有10种可能,能够使灯泡L1,L2同时发光有2种可能(S1,S2,S4或S1,S2,S5).∴随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是210 = 15 .故答案为15 .【分析】求出随机闭合开关S1,S2,S3,S4,S5中的三个,共有几种可能情况,以及能让灯泡L1,L2同时发光的有几种可能,由此即可解决问题.此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)= mn .17.(2016•聊城)如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2015B2016C2016的顶点B2016的坐标是________.【答案】(21008,0)【考点】正方形的性质【解析】【解答】解:∵正方形OA1B1C1边长为1,∴OB1= 2 ,∵正方形OB1B2C2是正方形OA1B1C1的对角线OB1为边,∴OB2=2,∴B2点坐标为(0,2),同理可知OB3=2 2 ,∴B3点坐标为(﹣2,2),同理可知OB4=4,B4点坐标为(﹣4,0),B5点坐标为(﹣4,﹣4),B6点坐标为(0,﹣8),B7(8,﹣8),B8(16,0)B9(16,16),B10(0,32),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的 2 倍,∵2016÷8=252∴B2016的纵横坐标符号与点B8的相同,横坐标为正值,纵坐标是0,∴B2016的坐标为(21008,0).故答案为:(21008,0).【分析】首先求出B1、B2、B3、B4、B5、B6、B7、B8、B9的坐标,找出这些坐标的之间的规律,然后根据规律计算出点B2016的坐标.本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点坐标的规律发现每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的 2 倍.三.解答题(本题共8个小题,共69分,解答题应写出文字说明、证明过程或推演步骤)18.(2016•聊城)计算:().【答案】解:原式= •= •=﹣.【考点】分式的混合运算【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.19.(2016•聊城)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A1B2C2关于原点O成中心对称图形,写出△A1B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A2B3C3,写出△A2B3C3的各顶点的坐标.【答案】(1)解:如图,△A1B1C1为所作,因为点C(﹣1,3)平移后的对应点C1的坐标为(4,0),所以△ABC先向右平移5个单位,再向下平移3个单位得到△A1B1C1,所以点A1的坐标为(2,2),B1点的坐标为(3,﹣2)(2)解:因为△ABC和△A1B2C2关于原点O成中心对称图形,所以A2(3,﹣5),B2(2,﹣1),C2(1,﹣3);(3)解:如图,△A2B3C3为所作,A3(5,3),B3(1,2),C3(3,1);【考点】坐标与图形变化-平移,坐标与图形变化-旋转【解析】【分析】(1)利用点C和点C1的坐标变化得到平移的方向与距离,然后利用此平移规律写出顶点A1,B1的坐标;(2)根据关于原点对称的点的坐标特征求解;(3)利用网格和旋转的性质画出△A2B3C3,然后写出△A2B3C3的各顶点的坐标.本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.20.(2016•聊城)如图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC的平分线AD交BC 于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.【答案】证明:∵AF∥CD,∴∠AFE=∠CDE,在△AFE和△CDE中,,∴△AEF≌△CED,∴AF=CD,∵AF∥CD,∴四边形ADCF是平行四边形,∵∠B=90°,∠ACB=30°,∴∠CAB=60°,∵AD平分∠CAB,∴∠DAC=∠DAB=30°=∠ACD,∴DA=DC,∴四边形ADCF是菱形.【考点】菱形的判定【解析】【分析】先证明△AEF≌△CED,推出四边形ADCF是平行四边形,再证明∠DAC=∠ACB,推出DA=DC,由此即可证明.本题考查菱形的判定、全等三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用这些知识解决问题,属于基础题,中考常考题型.21.(2016•聊城)为了让书籍开拓学生的视野,陶冶学生的情操,向阳中学开展了“五个一”课外阅读活动,为了解全校学生课外阅读情况,抽样调查了50名学生平均每天课外阅读时间(单位:min),将抽查得到的数据分成5组,下面是尚未完成的频数、频率分布表:(1)将表中空格处的数据补全,完成上面的频数、频率分布表;________ ________ ________ ________ ________ ________(2)请在给出的平面直角坐标系中画出相应的频数直方图;(3)如果该校有1500名学生,请你估计该校共有多少名学生平均每天阅读时间不少于50min?【答案】(1)8;0.40;14;0.12;2;0.04(2)解:作出条形统计图,如图所示:(3)解:根据题意得:1500×(0.28+0.12+0.04)=660(人),则该校共有660名学生平均每天阅读时间不少于50min【考点】用样本估计总体,频数(率)分布表,频数(率)分布直方图【解析】【解答】(1)由总人数50人可知,①50×0.16=8人;②20÷50=0.40;③50×0.28=14;④6÷50=0.12;⑤50-8-20-14-6=2;⑥2÷50=0.04【分析】(1)根据总人数50,以及表格中的数据确定出所求数据,填写表格即可;(2)根据表格中的数据作出相应的频数直方图,如图所示;(3)由时间不少于50min的百分比,乘以1500即可得到结果.此题考查了频数分布直方图,用样本估计总体,以及频数分布表,弄清题中的数据是解本题的关键.22.(2016•聊城)为加快城市群的建设与发展,在A,B两城市间新建条城际铁路,建成后,铁路运行里程由现在的120km缩短至114km,城际铁路的设计平均时速要比现行的平均时速快110km,运行时间仅是现行时间的(1)求建成后的城际铁路在A,B两地的运行时间.【答案】(1)解:设城际铁路现行速度是xkm/h.由题意得:× = .解这个方程得:x=80.经检验:x=80是原方程的根,且符合题意.则× = × =0.6(h).答:建成后的城际铁路在A,B两地的运行时间是0.6h【考点】分式方程的应用【解析】【分析】设城际铁路现行速度是xkm/h,设计时速是(x+110)xkm/h;现行路程是120km,设计路程是114km,由时间= 路程/速度,运行时间= 现行时间,就可以列方程了.考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.23.(2016•聊城)如图,在直角坐标系中,直线y=﹣12 x与反比例函数y= kx 的图象交于关于原点对称的A,B两点,已知A点的纵坐标是3.(1)求反比例函数的表达式;(2)将直线y=﹣12 x向上平移后与反比例函数在第二象限内交于点C,如果△ABC的面积为48,求平移后的直线的函数表达式.【答案】(1)解:令一次函数y=﹣12 x中y=3,则3=﹣12 x,解得:x=﹣6,即点A的坐标为(﹣6,3).∵点A(﹣6,3)在反比例函数y= kx 的图象上,∴k=﹣6×3=﹣18,∴反比例函数的表达式为y=﹣18x(2)解:∵A、B两点关于原点对称,∴点B的坐标为(6,﹣3),∴AB= [6−(−6)]2+(−3−3)2 =6 5 .设平移后的直线的函数表达式为y=﹣12 x+b(b>0),即x+2y﹣2b=0,直线y=﹣12 x可变形为x+2y=0,∴两直线间的距离d= |x+2y−(x+2y−2b)|12+22 = 255 b.∴S△ABC= 12 AB•d= 12 ×6 5 × 255 b=48,解得:b=8.∴平移后的直线的函数表达式为y=﹣12 x+8.【考点】反比例函数与一次函数的交点问题【解析】【分析】(1)将y=3代入一次函数解析式中,求出x的值,即可得出点A的坐标,再利用反比例函数图象上点的坐标特征即可求出反比例函数的表达式;(2)根据A、B点关于原点对称,可求出点B 的坐标以及线段AB的长度,设出平移后的直线的函数表达式,根据平行线间的距离公式结合三角形的面积即可得出关于b的一元一次方程,解方程即可得出结论.本题考查了反比例函数与一次函数交点的问题、反比例函数图象上点的坐标特征.三角形的面积公式以及平行线间的距离公式,解题的关键是:(1)求出点A的坐标;(2)找出关于b的一元一次方程.本题属于中档题,难度不大,解决该题型题目时,利用平行线间的距离公式要比通过解直角三角形简洁不少.24.(2016•聊城)如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于点D,点E为OB的中点,连接CE并延长交⊙O于点F,点F恰好落在AB∧的中点,连接AF并延长与CB的延长线相交于点G,连接OF.(1)求证:OF= 12 BG;(2)若AB=4,求DC的长.【答案】(1)证明:∵以Rt△ABC的直角边AB为直径作⊙O,点F恰好落在的中点,∴ AF∧=BF∧,∴∠AOF=∠BOF,∵∠ABC=∠ABG=90°,∴∠AOF=∠ABG,∴FO∥BG,∵AO=BO,∴FO是△ABG的中位线,∴FO= 12 BG;(2)解:在△FOE和△CBE中,{∠FOE=∠CBEEO=BE∠OEF=∠CEB ,∴△FOE≌△CBE(ASA),∴BC=FO= 12 AB=2,∴AC= AB2+BC2 =2 5 ,连接DB,∵AB为⊙O直径,∴∠ADB=90°,∴∠ADB=∠ABC,∵∠BCD=∠ACB,∴△BCD∽△ACB,∴ BCAC=CDBC ,∴ 225 = DC2 ,解得:DC= 255 .【考点】相似三角形的判定与性质【解析】【分析】(1)直接利用圆周角定理结合平行线的判定方法得出FO是△ABG的中位线,即可得出答案;(2)首选得出△FOE≌△CBE(ASA),则BC=FO= 12 AB=2,进而得出AC的长,再利用相似三角形的判定与性质得出DC的长.此题主要考查了相似三角形的判定与性质以及全等三角形的判定与性质等知识,正确得出△BCD∽△ACB是解题关键.25.(2016•聊城)如图,已知抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).CD垂直于y轴,交抛物线于点D,DE垂直与x轴,垂足为E,l是抛物线的对称轴,点F是抛物线的顶点.(1)求出二次函数的表达式以及点D的坐标;(2)若Rt△AOC沿x轴向右平移到其直角边OC与对称轴l重合,再沿对称轴l向上平移到点C与点F重合,得到Rt△A1O1F,求此时Rt△A1O1F与矩形OCDE重叠部分的图形的面积;(3)若Rt△AOC沿x轴向右平移t个单位长度(0<t≤6)得到Rt△A2O2C2,Rt△A2O2C2与Rt△OED重叠部分的图形面积记为S,求S与t之间的函数表达式,并写出自变量t的取值范围.【答案】(1)解:∵抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).∴设抛物线的解析式为y=a(x+3)(x﹣9),∵C(0,4)在抛物线上,∴4=﹣27a,∴a=﹣427 ,∴设抛物线的解析式为y=﹣427 (x+3)(x﹣9)=﹣427 x2+ 89 x+4,∵CD垂直于y轴,C(0,4)∴﹣427 x2+ 89 x+4=4,∴x=6,∵D(6,4),(2)解:如图1,∵点F是抛物线y=﹣427 x2+ 89 x+4的顶点,∴F(3,163 ),∴FH= 43 ,∵GH∥A1O1,∴ GHA1O1=FHFG ,∴ GH3=434 ,∴GH=1,∵Rt△A1O1F与矩形OCDE重叠部分是梯形A1O1HG,=S△A1O1F﹣S△FGH= 12 A1O1×O1F﹣12 GH×FH= 12 ×3×4﹣12 ×1× 43 = 163∴S重叠部分(3)②当3<t≤6时,如图3,∵C2H∥OC,∴ DC2CD=C2HOC ,∴ 6−t6=C2H4 ,∴C2H= 23 (6﹣t),∴S=S=S△A2O2C2﹣S△C2GH四边形A2O2HG= 12 OA×OC﹣12 C2H×(t﹣3)= 12 ×3×4﹣12 × 23 (6﹣t)(t﹣3)= 13 t2﹣3t+12∴当0<t≤3时,S= 13 t2,当3<t≤6时,S= 13 t2﹣3t+12【考点】待定系数法求二次函数解析式,三角形的面积,平行线分线段成比例【解析】【分析】(1)用待定系数法求抛物线解析式;(2)由GH∥A1O1,求出GH=1,再求出FH,S=S△A1O1F﹣S△FGH计算即可;(3)分两种情况①直接用面积公式计算,②用面积差求出即可.此题是重叠部分二次函数综合题,主要考查了待定系数法求函数解析式,平行线分线段成比例定理,三角形的面积计算,解本题的关键是画出图形.。
山东省聊城市2016年中考数学预测试卷(七)一、选择题(共12小题,每小题3分,满分36分)1.(﹣)﹣2的倒数是()A.4 B.C.﹣4 D.﹣2.如图,a∥b,将三角尺的直角顶点放在直线a上,若∠1=40°,则∠2=()A.30° B.40° C.50° D.60°3.一个几何体的三视图如图所示,这个几何体是()A.圆锥 B.圆柱 C.三棱锥D.三棱柱4.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害,为了让人们更好地了解雾霾,张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均值约为15微米,其中15微米(1米=1000000微米)用科学记数法可表示为()A.1.5×105米B.0.15×10﹣1米 C.1.5×10﹣5米D.15×10﹣6米5.不等式组的解集在数轴上可表示为()A.B.C.D.6.关于x的一元二次方程kx2+4x+4=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k>﹣1且k≠0 C.k<1 D.k<1且k≠07.如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为()A.7 B.14 C.17 D.208.下列说法正确的是()A.“打开电视机,正在播《民生面对面》”是必然事件B.“一个不透明的袋中装有6个红球,从中摸出1个球是红球”是随机事件C.“概率为0.0001的事件”是不可能事件D.“在操场上向上抛出的篮球一定会下落”是确定事件9.去年某校有1500人参加中考,为了了解他们的数学成绩,从中抽取了200名考生的数学成绩,其中有60名考生的数学成绩达到优秀,那么该校考生数学成绩达到优秀的约有()A.400名B.450名C.475名D.500名10.如图,菱形ABCD的周长为8,∠ABC=120°,则AC的长为()A.2 B.2 C.D.111.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应该假设这个三角形中()A.有一个内角小于60°B.每一个内角都小于60°C.有一个内角大于60°D.每一个内角都大于60°12.函数y=和y=在第一象限内的图象如图所示,点P是y=的图象上一动点,作PC⊥x轴于点C,交y=的图象于点A,作PD⊥y轴于点D,交y=的图象于点B,给出如下结论:①△ODB与△OCA的面积相等;②PA与PB始终相等;③四边形PAOB的面积大小不会发生变化;④PA=3AC,其中正确的结论序号是()A.①②③B.②③④C.①③④D.①②④二、填空题(共5小题,每小题3分,满分15分)13.计算(﹣)×的结果是______.14.已知扇形的圆心角为120°,弧长为4π,则扇形的面积是______.15.一个质地均匀的正方体的每个面上都标有数字1,2,3中的一个,其展开图如图所示,随机抛掷此正方体一次,则朝上与朝下的面上数字相同的概率是______.16.如图,抛物线y1=x2﹣2向右平移一个单位得到抛物线y2,则图中阴影部分的面积S=______.17.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是______.三、解答题(共8小题,满分69分)18.先化简分式:( +2﹣x)÷,然后在﹣2,﹣1,0,1,2中选一个合适的代入求值.19.某中学九年级甲、乙两班分别选5名同学参加“奋发向上,崇德向善”演讲比赛,其预赛成绩如图所示:(1)根据如图填写如表:(2)根据上表数据,分别从平均数、中位数、众数、方差的角度分析哪班的成绩较好.20.如图,在△ABC中,AB=AC,D为BC边的中点,以AB、BD为邻边作▱ABDE,连接AD,EC.求证:四边形ADCE是矩形.21.如图是我市投入使用的“大鼻子”校车,其安全隐患主要是超速和超载,某中学九年级数学活动小组设计了如下检测公路上行驶汽车速度的实验,先在笔直的车道l旁边选取一点A,再在l上确定点B,使AB⊥l,测得AB的长为30米,又在l上选取点C,D,使∠CAB=30°,∠DAB=60°,如图所示.(1)求CD的长;(精确到0.1米,参考数据:≈1.41,≈1.73)(2)已知本路段对校车的限速为40千米/时,若测得某校车从点C到点D用时3秒,则这辆校车是否超速?并说明理由.22.我市某县为创建省文明卫生城市,计划将城市道路两旁的人行道进行改造,经调查可知,若该工程由甲工程队单独来做恰好在规定时间内完成;若该工程由乙工程队单独完成,则需要的天数是规定时间的2倍,若甲、乙两工程队合作6天后,余下的工程由甲工程队单独来做还需3天完成.(1)问该县要求完成这项工程规定的时间是多少天?(2)已知甲工程队做一天需付给工资5万元,乙工程队做一天需付给工资3万元.现该工程由甲、乙两个工程队合作完成,该县准备了工程工资款65万元.请问该县准备的工程工资款是否够用?23.甲、乙两车同时从A地前往B地,乙行驶途中有一次停车修理,修好后乙车的行驶速度是原来的2倍,两车行驶路程y(千米)与行驶时间x(时)的函数图象如图所示,(1)求乙车到达B地所用的时间a的值;(2)行驶过程中,出发多长时间两车首次相遇?(3)当x=3时,求甲、乙两车之间的距离.24.(10分)(2016•聊城模拟)如图,C是以AB为直径的⊙O上一点,AD和过点C的切线互相垂直,垂足为点D.(1)求证:AC平分∠BAD;(2)若CD=3,tan∠DAC=,求⊙O的直径.25.(12分)(2016•聊城模拟)如图,等边△ABO放置在平面直角坐标系中,OA=4,动点P、Q同时从O、B两点出发,分别沿OA、BO方向匀速运动,它们的速度均为每秒1个单位长度,当点P到达点A时,P、Q两点停止运动,设点P的运动时间为x(s)(0<x<4),解答下列问题:(1)求点Q的坐标(用含x的代数式表示)(2)设△OPQ的面积为S,求S与x之间的函数关系式;当x为何值时,S有最大值?最大值是多少?(3)是否存在某个时刻x,使△OPQ的面积为个平方单位?若存在,求出相应的x值;若不存在,请说明理由.2016年山东省聊城市中考数学预测试卷(七)参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(﹣)﹣2的倒数是()A.4 B.C.﹣4 D.﹣【考点】负整数指数幂;倒数.【分析】原式利用负整数指数幂法则及倒数的定义计算即可得到结果.【解答】解:(﹣)﹣2=4,则(﹣)﹣2的倒数是,故选B2.如图,a∥b,将三角尺的直角顶点放在直线a上,若∠1=40°,则∠2=()A.30° B.40° C.50° D.60°【考点】平行线的性质.【分析】先求出∠3的度数,根据平行线的性质得出∠2=∠3,代入求出即可.【解答】解:∵∠1=40°,∴∠3=90°﹣40=50°,∵直线a∥直线b,∴∠2=∠3=50°,故选C.3.一个几何体的三视图如图所示,这个几何体是()A.圆锥 B.圆柱 C.三棱锥D.三棱柱【考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选D.4.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害,为了让人们更好地了解雾霾,张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均值约为15微米,其中15微米(1米=1000000微米)用科学记数法可表示为()A.1.5×105米B.0.15×10﹣1米 C.1.5×10﹣5米D.15×10﹣6米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:15微米=15÷1 000 000米=0.000015米=1.5×10﹣5米,故选:C.5.不等式组的解集在数轴上可表示为()A .B .C .D .【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可. 【解答】解:,由①得,x ≥﹣2,由②得,x >1,故不等式组的解集为:﹣2≤x <1. 在数轴上表示为:.故选B .6.关于x 的一元二次方程kx 2+4x+4=0有两个不相等的实数根,则k 的取值范围是( ) A .k >﹣1 B .k >﹣1且k ≠0 C .k <1 D .k <1且k ≠0【考点】根的判别式.【分析】先根据方程有两个不相等的实数根得出关于k 的不等式组,求出k 的取值范围即可. 【解答】解:∵一元二次方程kx 2+4x+4=0有两个不相等的实数根,∴,即,解得k <1且k ≠0.故k 的取值范围是k <1且k ≠0. 故选:D .7.如图,在△ABC 中,分别以点A 和点B 为圆心,大于AB 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD .若△ADC 的周长为10,AB=7,则△ABC 的周长为( )A.7 B.14 C.17 D.20【考点】线段垂直平分线的性质.【分析】首先根据题意可得MN是AB的垂直平分线,即可得AD=BD,又由△ADC的周长为10,求得AC+BC的长,则可求得△ABC的周长.【解答】解:∵在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.∴MN是AB的垂直平分线,∴AD=BD,∵△ADC的周长为10,∴AC+AD+CD=AC+BD+CD=AC+BC=10,∵AB=7,∴△ABC的周长为:AC+BC+AB=10+7=17.故选C.8.下列说法正确的是()A.“打开电视机,正在播《民生面对面》”是必然事件B.“一个不透明的袋中装有6个红球,从中摸出1个球是红球”是随机事件C.“概率为0.0001的事件”是不可能事件D.“在操场上向上抛出的篮球一定会下落”是确定事件【考点】随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:“打开电视机,正在播《民生面对面》”是随机事件,A错误;“一个不透明的袋中装有6个红球,从中摸出1个球是红球”是必然事件,B错误;“概率为0.0001的事件”是随机事件,C错误;“在操场上向上抛出的篮球一定会下落”是确定事件,D正确,故选:D.9.去年某校有1500人参加中考,为了了解他们的数学成绩,从中抽取了200名考生的数学成绩,其中有60名考生的数学成绩达到优秀,那么该校考生数学成绩达到优秀的约有()A.400名B.450名C.475名D.500名【考点】用样本估计总体.【分析】根据已知求出该校考生的优秀率,再根据该校的总人数,即可求出答案.【解答】解:∵抽取200名考生的数学成绩,其中有60名考生的数学成绩达到优秀,∴该校考生的优秀率是:×100%=30%,∴该校考生数学成绩达到优秀的约有:1500×30%=450(名);故选B.10.如图,菱形ABCD的周长为8,∠ABC=120°,则AC的长为()A.2 B.2 C.D.1【考点】菱形的性质.【分析】由菱形ABCD的周长为8,∠ABC=120°,可求得AB的长,∠ABD的度数,且证得AC⊥BD,继而利用特殊角的三角函数值,求得答案.【解答】解:∵菱形ABCD的周长为8,∠ABC=120°,∴AB=2,∠ABD=∠ABC=60°,AC⊥BD,∴OA=AB•sin60°=2×=,∴AC=2OA=2.故选A.11.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应该假设这个三角形中()A.有一个内角小于60°B.每一个内角都小于60°C.有一个内角大于60°D.每一个内角都大于60°【考点】反证法.【分析】熟记反证法的步骤,然后进行判断即可.【解答】解:用反证法证明“三角形中必有一个内角小于或等于60°”时,应先假设三角形中每一个内角都不小于或等于60°,即每一个内角都大于60°.故选:D.12.函数y=和y=在第一象限内的图象如图所示,点P是y=的图象上一动点,作PC⊥x轴于点C,交y=的图象于点A,作PD⊥y轴于点D,交y=的图象于点B,给出如下结论:①△ODB与△OCA的面积相等;②PA与PB始终相等;③四边形PAOB的面积大小不会发生变化;④PA=3AC,其中正确的结论序号是()A.①②③B.②③④C.①③④D.①②④【考点】反比例函数综合题.【分析】设点P的坐标为(m,)(m>0),则A(m,),C(m,0),B(,),D (0,).①根据反比例函数系数k的几何意义即可得出S△ODB=S△OCA,该结论正确;②由点的坐标可找出PA=,PB=,由此可得出只有m=2是PA=PB,该结论不成;③利用分割图形法求图形面积结合反比例系数k的几何意义即可得知该结论成立;④结合点的坐标即可找出PA=,AC=,由此可得出该结论成立.综上即可得出正确的结论为①③④.【解答】解:设点P的坐标为(m,)(m>0),则A(m,),C(m,0),B(,),D(0,).①S△ODB=×1=,S△OCA=×1=,∴△ODB与△OCA的面积相等,①成立;②PA=﹣=,PB=m﹣=,令PA=PB,即=,解得:m=2.∴当m=2时,PA=PB,②不正确;③S四边形PAOB=S矩形OCPD﹣S△ODB﹣S△OCA=4﹣﹣=3.∴四边形PAOB的面积大小不会发生变化,③正确;④∵PA=﹣=,AC=﹣0=,∵=3×,∴PA=3AC,④正确.综上可知:正确的结论有①③④.故选C.二、填空题(共5小题,每小题3分,满分15分)13.计算(﹣)×的结果是 2 .【考点】二次根式的混合运算.【分析】根据二次根式的混合运算顺序,首先计算小括号里面的,然后计算乘法,求出算式(﹣)×的结果是多少即可.【解答】解:(﹣)×=(3﹣2)×=×=2即(﹣)×的结果是2.故答案为:2.14.已知扇形的圆心角为120°,弧长为4π,则扇形的面积是12π.【考点】扇形面积的计算;弧长的计算.【分析】利用弧长公式即可求扇形的半径,进而利用扇形的面积公式即可求得扇形的面积.【解答】解:设扇形的半径为r.则=4π,解得r=6,∴扇形的面积==12π,故答案为:12π.15.一个质地均匀的正方体的每个面上都标有数字1,2,3中的一个,其展开图如图所示,随机抛掷此正方体一次,则朝上与朝下的面上数字相同的概率是.【考点】列表法与树状图法;几何体的展开图.【分析】由随机抛掷此正方体一次,共有6种等可能的结果,其中朝上与朝下的面上数字相同的有2种情况,直接利用概率公式求解即可求得答案.【解答】解:如图:3的对面是2,1的对面是1;∵随机抛掷此正方体一次,共有6种等可能的结果,其中朝上与朝下的面上数字相同的有2种情况,∴朝上与朝下的面上数字相同的概率是: =.故答案为:.16.如图,抛物线y1=x2﹣2向右平移一个单位得到抛物线y2,则图中阴影部分的面积S= 2 .【考点】二次函数图象与几何变换.【分析】根据阴影部分的面积等于底边是1,高是2的平行四边形的面积即可得出结论.【解答】解:∵抛物线y1=x2﹣2向右平移一个单位得到抛物线y2,∴图中阴影部分的面积S=1×2=2.故答案为:2.17.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是()n﹣1×75°.【考点】等腰三角形的性质.【分析】先根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第n个三角形中以A n为顶点的内角度数.【解答】解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得∠EA3A2=()2×75°,∠FA4A3=()3×75°,∴第n个三角形中以A n为顶点的内角度数是()n﹣1×75°.故答案为:()n﹣1×75°.三、解答题(共8小题,满分69分)18.先化简分式:( +2﹣x)÷,然后在﹣2,﹣1,0,1,2中选一个合适的代入求值.【考点】分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x=0代入计算即可求出值.【解答】解:原式=•=•=﹣,当x=0时,原式=.19.某中学九年级甲、乙两班分别选5名同学参加“奋发向上,崇德向善”演讲比赛,其预赛成绩如图所示:(1)根据如图填写如表:(2)根据上表数据,分别从平均数、中位数、众数、方差的角度分析哪班的成绩较好.【考点】方差;条形统计图;加权平均数;中位数;众数.【分析】(1)利用条形统计图,结合众数、方差、中位数的定义分别求出答案;(2)利用平均数、众数、方差、中位数的定义分析得出答案.【解答】解:(1)甲的众数为:8.5,方差为: [(8.5﹣8.5)2+(7.5﹣8.5)2+(8﹣8.5)2+(8.5﹣8.5)2+(10﹣8.5)2] =0.7,乙的中位数是:8;(2)从平均数看,两班平均数相同,则甲、乙两班的成绩一样好;从中位数看,甲班的中位数大,所以甲班的成绩较好;从众数看,乙班的众数大,所以乙班的成绩较好;从方差看,甲班的方差小,所以甲班的成绩更稳定.20.如图,在△ABC中,AB=AC,D为BC边的中点,以AB、BD为邻边作▱ABDE,连接AD,EC.求证:四边形ADCE是矩形.【考点】矩形的判定.【分析】由等腰三角形的三线合一性质得出AD⊥BC,BD=CD,∠ADC=90°,由平行四边形的性质得出AE∥BD,AE=BD,得出AE∥CD,AE=CD,证出四边形ADCE是平行四边形,即可得出结论.【解答】证明:∵AB=AC,D为BC边的中点,∴AD⊥BC,BD=CD,∴∠A DC=90°,∵四边形ABDE是平行四边形,∴AE∥BD,AE=BD,∴AE∥CD,AE=CD,∴四边形ADCE是平行四边形,又∵∠ADC=90°,∴四边形ADCE是矩形.21.如图是我市投入使用的“大鼻子”校车,其安全隐患主要是超速和超载,某中学九年级数学活动小组设计了如下检测公路上行驶汽车速度的实验,先在笔直的车道l旁边选取一点A,再在l上确定点B,使AB⊥l,测得AB的长为30米,又在l上选取点C,D,使∠CAB=30°,∠DAB=60°,如图所示.(1)求CD的长;(精确到0.1米,参考数据:≈1.41,≈1.73)(2)已知本路段对校车的限速为40千米/时,若测得某校车从点C到点D用时3秒,则这辆校车是否超速?并说明理由.【考点】解直角三角形的应用.【分析】(1)分别在Rt△ADB与Rt△ACB中,利用正切函数,即可求得DB与BC的长,继而求得CD的长;(2)由从C到D用时3秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.【解答】解:(1)由題意得,在Rt△ADB中,AB=30米,∴BD==30=51.9(米),在Rt△ABC中,BC==10=17.3(米),则CD=BD﹣BC=51.9﹣17.3=34.6(米);(2)超速.理由:∵汽车从C到D用时3秒,∴校车速度为34.6÷3×3.6≈41.52(千米/小时),∵41.52>40,∴此校车在CD路段超速.22.我市某县为创建省文明卫生城市,计划将城市道路两旁的人行道进行改造,经调查可知,若该工程由甲工程队单独来做恰好在规定时间内完成;若该工程由乙工程队单独完成,则需要的天数是规定时间的2倍,若甲、乙两工程队合作6天后,余下的工程由甲工程队单独来做还需3天完成.(1)问该县要求完成这项工程规定的时间是多少天?(2)已知甲工程队做一天需付给工资5万元,乙工程队做一天需付给工资3万元.现该工程由甲、乙两个工程队合作完成,该县准备了工程工资款65万元.请问该县准备的工程工资款是否够用?【考点】分式方程的应用.【分析】(1)本题是工程问题,也就是总工作量、效率与时间问题,根据题意,规定时间就是甲单独需要的时间,所以设规定时间是x天,那么甲单独完成的时间就是x天,乙单独完成的时间为2x,甲乙一天的工作效率分别为,甲、乙两工程队合作6天的工作量表示为,甲又单独干了3天表示为,没交代具体工作量是多少的情况下,一般是总工作量为1,所以列方程;(2)由(1)可以知道甲乙分别单独做需要的时间,用工作量除以两队合作一天的工作效率就是二者合作所用的时间,就可以进一步求出所需的工资款,作出判断,是否够用.【解答】解:(1)设规定时间是x天,根据题意得,,解得x=12,经检验:x=12是原方程的解.答:该县要求完成这项工程规定的时间是12天;(2)由(1)知,由甲工程队单独做需12天,乙工程队单独做需24天,∴甲乙两工程队合作需要的天数是1÷()=8天,∴所需工程工资款为(5+3)×8=64万<65万,故该县准备的工程工资款已够用.23.甲、乙两车同时从A地前往B地,乙行驶途中有一次停车修理,修好后乙车的行驶速度是原来的2倍,两车行驶路程y(千米)与行驶时间x(时)的函数图象如图所示,(1)求乙车到达B地所用的时间a的值;(2)行驶过程中,出发多长时间两车首次相遇?(3)当x=3时,求甲、乙两车之间的距离.【考点】一次函数的应用.【分析】(1)根据函数图象可以设出在2.8≤x≤a时乙车对应的函数解析式,从而可以求得a的值;(2)根据函数图象求出在0≤x≤6时,甲车对应的函数解析式然后与乙车对应的函数解析式联立方程组,从而可以解答本题;(3)将x=3分别代入甲车和乙车对应的函数解析式,从而可以解答本题.【解答】解:(1)当0≤x≤2时,设乙车在这段时间内对应的函数解析式为:y=kx.∵点(2,100)在y=kx上,∴100=2k,得k=50,∴当2.8≤x≤a时设乙车对应的函数解析式为:y=100x+b.∵点(2.8,100)在y=100x+b上,∴100=100×2.8+b,解得,b=﹣180,∴y=100x﹣180.将y=360代入y=100x﹣180,得x=5.4.即a的值是5.4.答:乙车到达B地所用的时间a的值为5.4小时;(2)当0≤x≤6时,设甲车对应的函数的解析式为:y=mx∵点(6,360)在y=mx上,∴360=6m得m=60∴y=60x由图象可知甲乙两车相遇在2.8≤x≤5.4之间∴,解得:,即行驶过程中,两车出发4.5小时时两车首次相遇;(3)将x=3代入y=60x得,y=180;将x=3代入y=100x﹣180得,y=120.180﹣120=60.即当x=3时,甲、乙两车之间的距离是60千米.24.(10分)(2016•聊城模拟)如图,C是以AB为直径的⊙O上一点,AD和过点C的切线互相垂直,垂足为点D.(1)求证:AC平分∠BAD;(2)若CD=3,tan∠DAC=,求⊙O的直径.【考点】切线的性质;角平分线的性质;解直角三角形.【分析】(1)如图连接OC,只要证明∠DAC=∠ACO,∠ACO=∠CAB即可.(2)连接BC,只要证明△ADC∽△ACB,得=,再求出AD、AC即可解决问题.【解答】(1)证明:如图连接OC,∵CD切⊙O于点C,∴OC⊥CD,∵AD⊥CD,∴AD∥OC,∴∠DAC=∠ACO,∵OA=OC,∴∠ACO=∠CAB,∴∠DAC=∠CAB,∴AC平分∠BAD.(2)如图连接BC.∵AB是⊙O直径,∴∠ACB=90°,∵AD⊥CD,∴∠ADC=90°,∴∠ADC=∠ACB,∵∠DAC=∠CAB,∴△ADC∽△ACB,∴=,∵tan∠ADC==,CD=3,∴AD=6,∴AC===3,∴=,∴AB=,即⊙O的直径为.25.(12分)(2016•聊城模拟)如图,等边△ABO放置在平面直角坐标系中,OA=4,动点P、Q同时从O、B两点出发,分别沿OA、BO方向匀速运动,它们的速度均为每秒1个单位长度,当点P到达点A时,P、Q两点停止运动,设点P的运动时间为x(s)(0<x<4),解答下列问题:(1)求点Q的坐标(用含x的代数式表示)(2)设△OPQ的面积为S,求S与x之间的函数关系式;当x为何值时,S有最大值?最大值是多少?(3)是否存在某个时刻x,使△OPQ的面积为个平方单位?若存在,求出相应的x值;若不存在,请说明理由.【考点】三角形综合题.【分析】(1)过点Q作QD⊥OA于点D,解直角三角形QOD,分别求出OD,QD和x的关系式,即可得到点Q的坐标;(2)由三角形面积公式可得s与x之间的二次函数关系式,然后利用配方法求得其最大值即可;(3)存在某个时刻x的值,使△OPQ的面积为个平方单位,由(2)可知把y=代入求出对应的x值即可.【解答】解:(1)过点Q作QD⊥OA于点D,如图所示:∵△ABO是等边三角形,∴∠AOB=60°,∵动点Q从B点出发,速度为每秒1个单位长度,∴BQ=x,∴OQ=4﹣x,在Rt△QOD中,OD=OQ•cos60°=(4﹣x)×=2﹣x,QD=OQ•sin60°=(4﹣x)×=2﹣x,∴点Q的坐标为(2﹣x,2﹣x);(2)∵动点P从O点出发,速度为每秒1个单位长度,∴OP=x,∴S=OP•QD=x(2﹣x)=﹣x2+x,=﹣(x﹣2)2+(0<x<4),∵a=﹣<0,∴当x=2时,S有最大值,最大值为;(3)存在某个时刻x的值,使△OPQ的面积为个平方单位,理由如下:,假设存在某个时刻,使△OPQ的面积为个平方单位,由(2)可知)=﹣x2+x=,解得x=1或x=3,∵0<x<4,∴x=1或x=3都成了,即当x=1s或3s时,能使△OPQ的面积为个平方单位.。