EPON技术及工作原理
- 格式:doc
- 大小:297.50 KB
- 文档页数:20
10G EPON解决方案一、引言随着互联网的高速发展和用户对宽带需求的不断增长,传统的1G EPON已经不能满足用户对高速、稳定、可靠的网络连接的需求。
因此,10G EPON作为下一代EPON技术,成为了解决这一问题的有效方案。
本文将详细介绍10G EPON解决方案的相关技术和应用。
二、技术原理1. EPON简介EPON(Ethernet Passive Optical Network)是一种基于以太网技术的被动光纤网络,它通过光纤传输数据,将用户与网络服务提供商之间的距离扩展到数十公里。
EPON采用了点对多点的拓扑结构,光线被分配到多个用户终端上。
2. 10G EPON技术10G EPON是在传统的1G EPON基础上进行了升级,提供了更高的传输速率和更大的带宽容量。
它采用了WDM(Wavelength Division Multiplexing)技术,将上行和下行数据分别传输在不同的波长上,从而实现了同时传输10Gbps的数据。
3. 10G EPON的主要特点- 高速传输:10G EPON提供了10Gbps的传输速率,满足了用户对高速网络连接的需求。
- 高带宽容量:10G EPON的带宽容量更大,能够支持更多的用户同时访问网络,提高了网络的承载能力。
- 兼容性:10G EPON与现有的EPON设备兼容,可以无缝升级。
三、应用场景1. 宽带接入10G EPON可以用于提供宽带接入服务,满足用户对高速网络的需求。
用户可以通过10G EPON接入网络,享受高速、稳定的网络连接。
2. 数据中心数据中心对网络带宽和传输速率的要求非常高。
采用10G EPON解决方案可以满足数据中心对高速、大容量网络的需求,提高数据中心的运行效率和可靠性。
3. 视频监控视频监控需要传输大量的视频数据,对网络带宽和稳定性要求较高。
使用10G EPON技术可以实现高清、实时的视频传输,提供更好的监控效果。
四、部署方案1. 网络架构10G EPON网络架构包括OLT(Optical Line Terminal)、ONU(Optical Network Unit)和光分纤器。
10G EPON解决方案一、概述10G EPON(Ethernet Passive Optical Network)解决方案是一种基于以太网技术的被动光纤网络,旨在提供高速、高带宽的数据传输服务。
该解决方案采用了光纤传输技术,通过光纤将数据从中心节点传输到终端用户,实现了高速宽带接入。
二、技术原理1. 光纤传输:10G EPON解决方案利用光纤作为传输介质,通过光信号的传输实现数据的高速传输。
光纤具有低损耗、大带宽等优点,能够满足高速数据传输的需求。
2. EPON技术:EPON(Ethernet Passive Optical Network)是一种基于以太网技术的光纤传输网络。
EPON网络由OLT(Optical Line Terminal)和ONU(Optical Network Unit)组成,OLT负责数据的发送和接收,ONU负责数据的接收和发送。
3. 10G技术:10G EPON解决方案采用了10Gbps的传输速率,能够满足大容量、高带宽的数据传输需求。
10G技术能够实现更快的数据传输速度,提供更好的用户体验。
三、方案特点1. 高带宽:10G EPON解决方案提供了10Gbps的传输速率,能够满足大容量、高带宽的数据传输需求。
用户可以享受到更快的上网速度和更好的网络体验。
2. 灵便性:10G EPON解决方案可以根据用户需求进行灵便的扩展和升级。
用户可以根据实际情况选择不同的OLT和ONU设备,以满足不同规模和需求的网络部署。
3. 高可靠性:10G EPON解决方案采用了冗余设计和多路径传输,提高了网络的可靠性和稳定性。
即使浮现单点故障,也能够保证网络的正常运行。
4. 易于管理:10G EPON解决方案提供了简单易用的管理界面,用户可以通过该界面进行网络的配置、监控和故障排除。
管理人员可以轻松地管理和维护网络设备。
四、应用场景1. 家庭宽带接入:10G EPON解决方案可以提供高速、高带宽的宽带接入服务,满足家庭用户对高清视频、在线游戏等高带宽应用的需求。
浅谈EPON技术及应用随着现代科技的不断发展,人们对通信的要求不断提高。
为了满足人们对宽带增长的要求,实现接入网的高速化、宽带化和智能化,各种接入技术层出不穷,如LAN、数字用户(DSL,Digital Subscriber Line)、电缆调制解调器(CM,Cable Modem)、电力线通信(PLC,Power Line Communication)等,然而被认为最有前途的是光接入技术,无源光网络(PON)具有以维护、高宽带、低成本等优点,是通过单一平台综合接入语音、数据、视频等多种业务的理想平台。
一 EPON的概述无源光网络产生自20世纪80年代以来经过几个发展阶段,起初人们认为将ATM技术与PON技术结合的APON/BPON技术是实现综合接入的理想模式,但由于数据业务爆炸式的增长,ATM技术暴露出效率不高、协议复杂等弱点,因而未能大规模应用。
在这种背景下两个引人关注的PON新标准出台,其中之一是ITU/FSAN负责制定用来代替APON/BPON的GPON标准,另一个是IEEE 802.3ah工作组制定的EPON标准。
2000年12月,在IEEE的赞助下,成立了EFM(以太网第一英里)研究小组,开始了EPON技术的标准化工作。
EPON标准IEEE802.3ah于2004年6月正式公布。
进一步增强EPON 竞争力,IEEE于2006年成立了802.3av工作组开展了10G EPON系统的研究,从而使得带宽能力方面得到了一定程度上的提高,但带宽使用效率上尚无明显改善。
随后,10GEPON标准IEEE802.3av在2009年9月正式颁布。
EPON(Ethernet Passive Optical Network)以太网无源光网络,由IEEE802.3EFM (Ethernet for the First Mile)提出,是PON技术中的一种,它将简单经济的以太网技术与PON的传输结构结合起来,从而实现了再以太网上提供语音、数据、视频等多种业务。
10G EPON解决方案一、引言随着互联网的快速发展和用户对高速宽带的需求不断增长,传统的以太网技术已经无法满足大规模用户的需求。
因此,10G EPON(Ethernet Passive Optical Network)解决方案应运而生。
本文将详细介绍10G EPON解决方案的技术原理、优势以及应用场景。
二、技术原理1. EPON概述EPON是一种基于光纤传输的以太网接入技术,它采用了分布式光纤网络架构,将光纤作为传输介质,通过光纤传输数据。
EPON主要由OLT(Optical Line Terminal)和ONU(Optical Network Unit)两部份组成。
2. 10G EPON的特点10G EPON是一种高速的EPON技术,它的主要特点包括:- 高带宽:10G EPON提供了10Gbps的传输速率,比传统的EPON技术提升了数倍。
- 高密度:10G EPON支持更多的用户接入,可以满足大规模用户的需求。
- 高可靠性:10G EPON采用了冗余设计和光纤传输技术,提供了更高的网络可靠性。
3. 技术原理10G EPON的技术原理主要包括以下几个方面:- 光模块:10G EPON使用了高速光模块,能够实现高速数据的传输。
- 光纤传输:10G EPON通过光纤传输数据,光纤具有低损耗、高带宽的特点。
- OLT和ONU通信:OLT和ONU之间通过光纤进行通信,实现数据的传输和交换。
三、优势1. 高速传输:10G EPON提供了10Gbps的传输速率,比传统的EPON技术提升了数倍,可以满足用户对高速宽带的需求。
2. 高带宽:10G EPON支持更多的用户接入,可以满足大规模用户的需求,提供更好的用户体验。
3. 高可靠性:10G EPON采用了冗余设计和光纤传输技术,提供了更高的网络可靠性,减少了网络故障的发生。
4. 灵便性:10G EPON支持灵便的网络拓扑结构,可以根据实际需求进行扩展和调整。
EPON的关键技术及实现原理EPON(Ethernet Passive Optical Network)是一种基于以太网技术的无源光网络,它使用光纤作为传输介质,在光线从中心局传入用户终端的过程中不需要中继节点的参与。
EPON将以太网和光纤接入技术结合,实现了大带宽、高可靠性和低成本的宽带接入。
一、光传输技术光传输技术是EPON中最基础的技术之一,它包括了光纤的选择和光纤传输的参数设计。
在EPON中,一般采用单模光纤进行传输,因为它具有更低的衰减和更高的带宽。
此外,还需要考虑光纤的长度、连接等参数的设计,以实现光信号的高速传输。
二、光分配技术光分配技术是EPON中的关键技术之一,它主要包括了光发送和接收的技术。
EPON使用了一种被称为比例脉冲宽度调制(PON)的技术,它通过在一个周期内改变光脉冲的宽度来传输数字信号。
在EPON中,光发送端使用激光器将数字信号转换为光信号,并通过光纤传输到用户终端,光接收端再将光信号转换为数字信号,实现数据的传输。
三、以太网技术以太网技术是EPON的核心技术之一,EPON使用以太网协议作为数据的传输协议,这使得EPON可以兼容现有的以太网设备和系统。
EPON将以太网帧封装在光信号中进行传输,用户终端上的以太网设备可以直接接入EPON,无需进行额外的协议转换。
四、调度控制技术调度控制技术是EPON中的关键技术之一,它主要用于实现共享信道的调度和管理。
EPON中采用了一种被称为动态带宽分配(DBA)的技术,它可以根据不同的用户需求和网络负载情况动态地分配带宽资源。
DBA技术通过控制ONU(光网络单元)的发送速率和发送时隙来实现带宽的分配,从而提高网络的效率和性能。
EPON的实现原理主要是基于光纤传输和以太网技术的结合。
当用户需要接入宽带网络时,光纤连接到用户终端设备的光接收端口,光信号经过光分配器进入光纤传输中。
同时,用户终端设备上的以太网设备通过以太网接口与EPON网络相连,可以直接发送和接收数据。
10G EPON解决方案概述:10G EPON(Ethernet Passive Optical Network)是一种基于以太网的被动光纤接入技术,它提供了高带宽、高速率的网络连接。
本文将详细介绍10G EPON解决方案的技术原理、优势和应用场景。
一、技术原理:10G EPON采用了分时多路复用(TDM)技术,通过光纤传输数据和信号。
它利用了光纤的高带宽特性,将光信号转换为电信号,实现高速率的数据传输。
在10G EPON系统中,OLT(Optical Line Terminal)和ONU(Optical Network Unit)是核心设备。
OLT负责与上层网络连接,将数据传输到ONU,而ONU则提供网络接入服务。
二、优势:1. 高带宽:10G EPON提供了10Gbps的传输速率,满足了现代网络对大带宽的需求。
2. 高可靠性:由于EPON采用了光纤传输,光纤的抗干扰性能强,能有效减少信号衰减和噪声干扰。
3. 灵便性:10G EPON支持多种业务接入,可以满足不同用户的需求,如语音、视频和数据传输等。
4. 成本效益:相比于其他传输技术,10G EPON的设备和维护成本较低,适合大规模部署。
三、应用场景:1. 宽带接入:10G EPON可用于提供高速宽带接入服务,满足用户对高速互联网的需求。
2. 数据中心:10G EPON可用于数据中心的互联,实现高速、稳定的数据传输。
3. 企业网络:10G EPON可用于企业内部网络的建设,提供高带宽和高可靠性的网络连接。
4. 智能家居:10G EPON可用于智能家居系统的建设,实现智能设备之间的高速通信。
四、部署流程:1. 设计网络拓扑结构:根据实际需求,设计网络拓扑结构,确定OLT和ONU的部署位置。
2. 安装光纤:在拓扑结构确定后,进行光纤的安装和连接,确保信号传输的畅通。
3. 配置OLT和ONU:对OLT和ONU进行配置,设定相关参数,确保设备能够正常工作。
EPON技术工作原理及应用1.1 PON技术发展光纤接入从技术上可分为两大类:有源光网络(AON,Active Optical Network)和无源光网络(PON,Passive Optical Network)。
1983年,BT实验室首先发明了PON技术;PON是一种纯介质网络,由于消除了局端与客户端之间的有源设备,它能避免外部设备的电磁干扰和雷电影响,减少线路和外部设备的故障率,提高系统可靠性,同时可节省维护成本,是电信维护部门长期期待的技术。
PON的业务透明性较好,原则上可适用于任何制式和速率的信号。
目前基于PON的实用技术主要有APON/BPON、GPON、EPON/GEPON等几种,其主要差异在于采用了不同的二层技术。
图1 PON的两个主要标准体系APON是上世纪90年代中期就被ITU和全业务接入网论坛(FSAN)标准化的PON技术,FSAN在2001年底又将APON更名为BPON,APON的最高速率为622Mbps,二层采用的是ATM封装和传送技术,因此存在带宽不足、技术复杂、价格高、承载IP业务效率低等问题,未能取得市场上的成功。
为更好适应IP业务,第一英里以太网联盟(EFMA)在2001年初提出了在二层用以太网取代ATM的EPON技术,IEEE 802.3ah工作小组对其进行了标准化,EPON可以支持1.25Gbps 对称速率,随着光器件的进一步成熟,将来速率还能升级到10Gbps。
由于其将以太网技术与PON技术完美结合,因此成为了非常适合IP业务的宽带接入技术。
对于Gbps速率的EPON 系统也常被称为GEPON。
100M的EPON与1G的EPON的不同在速率上的差异,在其中所包含的原理和技术,是一致的,目前业界主要推广的是GEPON,百兆位的EPON也有不多的一些应用。
在后面文档中提到的EPON,如果没有特别说明,都是指千兆位的GEPON。
EPON是几种最佳的技术和网络结构的结合。
EPON采用点到多点结构,无源光纤传输方式,在以太网上提供多种业务。
目前,IP/Ethernet应用占到整个局域网通信的95%以上,EPON 由于使用上述经济而高效的结构,从而成为连接接入网最终用户的一种最有效的通信方法。
10Gbps以太主干和城域环的出现也将使EPON成为未来全光网中最佳的最后一公里的解决方案。
在一个EPON中,不需任何复杂的协议,光信号就能准确地传送到最终用户,来自最终用户的数据也能被集中传送到中心网络。
在物理层,EPON使用1000BASE的以太PHY,同时在PON的传输机制上,通过新增加的MAC控制命令来控制和优化各光网络单元(ONU)与光线路终端(OLT)之间突发性数据通信和实时的TDM通信,在协议的第二层,EPON采用成熟的全双工以太技术,使用TDM,由于ONU在自己的时隙内发送数据报,因此没有碰撞,不需CDMA/CD,从而充分利用带宽。
另外,EPON通过在MAC层中实现802.1p来提供与APON/GPON类似的QoS。
在EFMA提出EPON概念的同时,FSAN又提出了GPON,FSAN与ITU对其进行了标准化,其技术特色是在二层采用ITU-T定义的GFP(通用成帧规程)对Ethernet、TDM、ATM 等多种业务进行封装映射,能提供1.25Gbps和2.5Gbps下行速率,和155M、622M、1.25Gbps、2.5Gbps几种上行速率,并具有较强的OAM功能。
如果不考虑EPON可以看得到的不久将提升到10Gbps速率(10G以太网已经成熟),当前在高速率和支持多业务方面,GPON有优势,但技术的复杂和成本目前要高于EPON,产品的成熟性也逊于EPON。
光纤接入从90年代初就走上了舞台,总的说来是一种“说得多,做得少”的技术。
PON系统无疑是其中佼佼者,EPON与GPON,两种技术各有千秋,无论是EPON技术还是GPON技术,其应用在很大程度上决定于光纤接入成本的快速降低和业务需求,而价格则是最核心因素,ADSL的发展就充分证明了这一点。
实现全光纤的FTTH是宽带接入的发展方向,但是实现全部的光纤接入,需要一个过程。
设备、光纤、工程成本和应用的业务需求,都是其广泛推广与使用的关键因素。
第一步从FTTB 开始,充分利用PON的技术,和现有的以太网的优势(成本底、使用广),然后逐步过渡到FTTH是一条比较合理的选择。
1.2 EPON的基本原理与其它PON技术一样,EPON技术采用点到多点的用户网络拓扑结构,利用光纤实现数据、语音和视频的全业务接入的目的,主要由OLT、ODN、ONU三个部分构成,如下图2。
图2:EPON的网络结构其中OLT作为整个网络/节点的核心和主导部分,完成ONU注册和管理、全网的同步和管理以及协议的转换、与上联网络之间的通信等功能;ONU作为用户端设备在整个网络中属于从属部分,完成与OLT之间的正常通信并为终端用户提供不同的应用端口;ODN在网络中的定义为从OLT-ONU的线路部分,包括光缆、配线部分以及分光器(Splitter)全部为无源器件,是整个网络信号传输的载体。
其中光缆部分选用G.652、G.657系列的全部型号光纤,分光器可以从1:2-1:32可选(1:64的分光器因成本原因基本上在现网上没进行使用,OLT到ONU之间的传输距离一般10km-20km,原则上是10KM用1:32的分光器,20KM用1:16,因为分光器分光比例越高,光衰耗越大。
OLT(Optical Line Terminal)放在中心机房,ONU(Optical Network Unit)放在用户设备端附近或与其合为一体。
OND 是无源光纤分支器,是一个连接OLT和ONU的无源设备,它的功能是分发下行数据,并集中上行数据。
EPON中使用单芯光纤,在一根芯上转送上下行两个波(上行波长:1310nm,下行波长:1490nm,另外还可以在这个芯上下行叠加1550nm的波长,来传递模拟电视信号)。
OLT既是一个交换机或路由器,又是一个多业务提供平台,它提供面向无源光纤网络的光纤接口(PON接口)。
根据以太网向城域和广域发展的趋势,OLT上将提供多个1 Gbps和10Gbps的以太接口,可以支持WDM传输。
OLT还支持ATM、FR以及OC3/12/48/192等速率的SONET的连接。
如果需要支持传统的TDM话音,普通电话线(POTS)和其他类型的TDM通信(T1/E1)可以被复用连接到出接口,OLT除了提供网络集中和接入的功能外,还可以针对用户的QoS/SLA的不同要求进行带宽分配,网络安全和管理配置。
OLT 根据需要可以配置多块OLC(Optical Line Card),OLC与多个ONU通过POS(无源分光器)连接,POS是一个简单设备,它不需要电源,可以置于相对宽松的环境中,一般一个POS 的分光比为8、16、32、64,并可以多级连接,一个OLT PON端口下最多可以连接的ONU 数量与设备密切相关,一般是固定的。
在EPON中系统,OLT到ONU间的距离最大可达20km。
在下行方向,IP数据、语音、视频等多种业务由位于中心局的OLT,采用广播方式,通过ODN中的1:N无源分光器分配到PON上的所有ONU单元。
在上行方向,来自各个ONU 的多种业务信息互不干扰地通过ODN中的1:N无源分光器耦合到同一根光纤,最终送到位于局端OLT接收端。
根据ONU在所处位置的不同,EPON的应用模式又可分为FTTC(光纤到路边)、FTTB(光纤到大楼)、光纤到办公室(FTTO)和光纤到家(FTTH)等多种类型。
在FTTC结构中,ONU放置在路边或电线杆的分线盒边,从ONU到各个用户之间采用双绞线铜缆;传送宽带图像业务,则采用同轴电缆。
FTTC的主要特点之一是到用户家里面部分仍可采用现有的铜缆设施,可以推迟入户的光纤投资。
从目前来看,FTTC在提供2 Mbps 以下窄带业务时是OAN(称光纤接入网)中最现实、最经济的方案,但如需提供窄带与宽带的综合业务,则这一结构不甚理想。
在FTTB结构中,ONU被直接放到楼内,光纤到大楼后可以采用ADSL、Cable、LAN,即FTTB+ADSL、FTTB+Cable和FTTB+LAN等方式接入用户家中。
FTTB与FTTC相比,光纤化程度进一步提高,因而更适用于高密度以及需提供窄带和宽带综合业务的用户区。
FTTO和FTTH结构均在路边设置无源分光器,并将ONU移至用户的办公室或家中,是真正全透明的光纤网络,它们不受任何传输制式、带宽、波长和传输技术的约束,是光纤接入网络发展的理想模式和长远目标。
1.3 EPON的技术优点EPON的优点主要表现在:●相对成本低,维护简单,容易扩展,易于升级。
EPON结构在传输途中不需电源,没有电子部件,因此容易铺设,基本不用维护,长期运营成本和管理成本的节省很大;EPON系统对局端资源占用很少,模块化程度高,系统初期投入低,扩展容易,投资回报率高;EPON 系统是面向未来的技术,大多数EPON系统都是一个多业务平台,对于向全IP网络过渡是一个很好的选择。
●提供非常高的带宽。
EPON目前可以提供上下行对称的1.25Gbps的带宽,并且随着以太技术的发展可以升级到10Gbps。
●服务范围大,EPON作为一种点到多点网络,可以利用局端单个光模块及光纤资源,服务大量终端用户。
●带宽分配灵活,服务有保证。
对带宽的分配和保证都有一套完整的体系。
EPON可以通过DBA(动态带宽算法)、DiffServ、PQ/WFQ、WRED等来实现对每个用户进行带宽分配,并保证每个用户的QoS。
1.4 EPON的传输原理EPON与APON最大的区别是EPON根据IEEE802.3协议,包长可变至1518字节传送数据,而APON根据ATM协议,按照固定长度53个字节包来传送数据,其中48个字节负荷,5个字节开销。
这种差别意味着APON运载IP协议的数据效率低且困难。
用APON传送IP业务,数据包被分成每48个字节一组,然后在每一组前附加上5个字节开销。
这个过程耗时且复杂,也给OLT和ONU增加了额外的成本。
此外,每一48个字节段就要浪费5个字节,造成沉重的开销,即所谓的ATM包的税头。
相反,以太网传送IP流量,相对于ATM开销急剧下降。
EPON从OLT到多个ONU下行传输数据和从多个ONU到OLT上行数据传输是十分不同的。
所采取的不同的上行/下行技术分别如图3所示:当OLT启动后,它会周期性的在本端口上广播允许接入的时隙等信息。
ONU上电后,根据OLT广播的允许接入信息,主动发起注册请求,OLT通过对ONU的认证(本过程可选),允许ONU接入,并给请求注册的ONU分配一个本OLT端口唯一的一个逻辑链路标识(LLID)。