最新第10讲体育比赛中的数学问题
- 格式:doc
- 大小:51.00 KB
- 文档页数:4
体育比赛中的数学问题【例2】⑴(★★)赛制介绍淘汰赛:每两个队用一场比赛定胜负,胜者之间再按前述规则比赛定胜负单循环赛:每两个队之间都要比赛一场,无主客场之分。
有n 个队参加的单循环赛中,每个队要参加的比赛场数为(n-1)场双循环赛:每两个队之间都要比赛两场,有主客场之分。
五个班进行足球比赛,每两个班之间都要赛一场,那么每个班要赛几场?一共要进行多少场比赛?有n 个队参加的双循环赛中,每个队要参加的比赛场数为2(n-1)场一、比赛赛制【例1】⑴(★★) ⑵(★★)几个学校举行篮球比赛,每两个学校都要赛一场,共赛了28 场,那么有几个学校参加了比赛?8 只球队进行淘汰赛,为了决出冠军,需要进行多少场比赛?⑵(★★)20 名羽毛球运动员参加单打比赛,两两配对进行淘汰赛,那么决出冠军一共要比赛多少场?【例3】(★★★) 【例4】参加世界杯足球赛的国家共有32 个(称32 强),每四个国家编入一个小组,⑴(★★★) 在第一轮单循环赛中,每个国家都必须而且只能分别和本小组的其他各国进A、B、C、D、E 五位同学一起比赛象棋,每两人都要比赛一盘。
到行一场比赛,赛出16 强后,进入淘汰赛,每两个国家用一场比赛定胜负,产生8 强、4 强、2 强,最后决出冠军、亚军、第三名,第四名。
至此,本现在为止,A 已经赛4 盘,B 赛3 盘,C 赛2 盘,D 赛1 盘。
问:此时E 同学赛了几盘?届世界杯的所有比赛结束。
根据以上信息,算一算,世界杯的足球赛全程共有几场?1⑵(★★★) 二、比赛得分网校的四位学员进行乒乓球比赛,每两个人只能比赛一次,他们的编【例5】(★★★)号分别为1,2,3,4,到现在为止,编号为1,2,3 的学员已参加比班上四名同学进行跳棋比赛,每两名同学都要赛一局。
每局胜者得2 分,平赛的场数正好分别等于他们的编号。
编号为 4 的运动员已经赛了几者各得1 分,负者得0 分。
已知甲、乙、丙三名同学得分分别为3 分、4 分、场?编号为1,2,3,4,5,6 的六个运动员进行乒乓球单循环赛。
体育比赛中的数学体育比赛中的数学是组合问题的重要组成部分,主要结合逻辑推理考察孩子的分析能力和思维的灵活性,走美杯每年都会考到本知识点,这个内容也是2015年四年级学而思杯很可能考到的内容,家长可以让孩子看这个资料适当预习下,咱们这讲内容会在春季下半册书上学习。
一、对单循环赛、淘汰赛的认识在体育比赛中,每两个人之间都要赛一场并且只赛一场,称这样的比赛为单循环赛。
例如:有n 个队参加比赛,其中每个队都要和其他队各赛一场,即每个队都赛了(n- 1) 场。
每一场比赛都被算在两个(n- 1) 中,也就是说在n 个(n- 1) 每一场比赛都计算了两次。
那么一共进行了n ⨯(n- 1) ÷ 2 场比赛。
练习1 (2008 年第四届“IMC 国际数学邀请赛”(新加坡)初赛)学校进行乒乓球选拔赛,每个选手都要和其它所有选手各赛一场,一共进行了36 场比赛,有()人参加了选拔赛。
A、8B、9C、10分析:36 ⨯ 2 =72 (场)。
如果有n 个选手,那么n ⨯(n- 1) =72。
两个连续的自然数乘积为72,n =9 。
在体育比赛中,规定每一场赛事中败者淘汰胜者晋级,称这类比赛为淘汰赛。
在淘汰赛中,每一轮淘汰掉一半选手,直至产生最后的冠军。
n 个队进行淘汰赛,每进行一场比赛就要淘汰一个队,最后只剩下冠军,也就是说其它选手都被淘汰掉了,决出冠军需要进行(n- 1) 场比赛。
练习 2 16 个人进行淘汰赛,(1)决出冠军需要进行几场比赛?冠军一共参加了几场比赛?(2)要决出前三名需要进行几场比赛?分析:(1)第16 ÷2 =8 (场),8 名胜利者晋级!第二轮:8 ÷2 =4 (场),4 名胜利者晋级!第三轮:4 ÷2 =2 (场),2 名胜利者晋级!第四轮:2 ÷2 = 1 (场),决出冠军!要决出冠军共需要进行8 +4 +2 + 1 = 15 (场)。
在每一轮比赛中,冠军都参加了其中一场比赛,冠军一共参加了1 ⨯ 4 =4 场比赛。
体育比赛中的数学一、基础知识1.淘汰赛:n 个队进行淘汰赛,第一至少要打n-1场比赛,每场比赛淘汰一名选手。
2.单循环赛:n支队伍进行单循环赛,将进行n(n-1)÷2场,其中每支队都进行(n-1)场。
3. 体育比赛中的总分(记为A)问题三分制:胜、平、负按3、1、0积分制度,其中2m≤A≤3m,每多出现一场平局,总分就会减少1分;二分制∶胜、平、负按 2、1、0积分制度,其中A=2m,不管比赛情况如何、最后的总分总是不变的。
4.一个小组内:胜的总场数等于负的总场数;平的总场数一定是偶数。
二、例题精讲【例1】16支羽毛球队伍进行淘汰赛,最终决出冠、亚、季军各1队。
那么这次淘汰赛共进行多少场比赛?【例2】四年级五个班进行足球比赛,每两个班之间都要赛一场,那么每个班要赛几场?一总共要进行多少场比赛?(如果参赛队每两队之间都要赛一场、这种比赛称为单循环赛)【巩固】学校进行乒乓球选拔赛,每个参赛选手都要和其他所有选手各赛一场,一共进行了36场比赛,有多少人参加了选拔赛?【例3】参加世界杯足球赛的国家共有32个(称32强),每四个国家编入一个小组,在第一轮单循环赛中,每个国家都必须而且只能分别和本小组的其他各国进行一场比赛,赛出16强后,进入淘汰赛,每两个国家用一场比赛定胜负,产生8强、4强、2强,最后决出冠军、亚军、第三名,第四名.至此,本届世界杯的所有比赛结束.根据以上信息,算一算,世界杯的足球赛全程共有几场?【例4】A、B、C、D、E、F六人赛棋,采用单循环制,现在知道:A、B、C、D、E五人已经分别赛过5、4、3、2、1盘.问:这时F已赛过了多少盘?【巩固】有8个选手进行乒乓球单循环赛,结果每人获胜局数各不相同,那么冠军胜了几局?【例5】六个人进行象棋单循环赛,规定胜者得2分,负者得0分,和棋双方各得1分,比赛结束后统计发现,六个人的得分和加起来一定是多少?已知冠军得7分,负了一场,问冠军胜了多少场?【巩固】东亚男足邀请赛共有四支足球队进行单循环赛,即每两队之间都要进行一场比赛,每场比赛胜者得3分,负者得0分,平局两队各得1分。
2023年高考数学复习----《与体育比赛规则有关的概率问题》规律方法与典型例题讲解【规律方法】1、在与体育比赛规则有关的问题中,一般都会涉及分组,处理该类问题时主要借助于排列组合.对于分组问题,要注意平均分组与非平均分组,另外,在算概率时注意“直接法”与“间接法”的灵活运用.2、与体育比赛有关的问题中最常见的就是输赢问题,经常涉及“多人淘汰制问题”“ 三局两胜制问题”“ 五局三胜制问题”“ 七局四胜制问题”,解决这些问题的关键是认识“三局两胜制”“ 五局三胜制”等所进行的场数,赢了几场与第几场赢,用互斥事件分类,分析事件的独立性,用分步乘法计数原理计算概率,在分类时要注意“不重不漏”.3、在体育比赛问题中,比赛何时结束也是经常要考虑的问题,由于比赛赛制已经确定,而比赛的平均场次不确定,需要对比赛的平均场次进行确定,常用的方法就是求以场数为随机变量的数学期望,然后比较大小.4、有些比赛会采取积分制,考查得分的分布列与数学期望是常考题型,解题的关键是辨别它的概率模型,常见的概率分布模型有:两点分布、超几何分布、二项分布、正态分布,要注意分布是相互独立的,超几何分布不是,值得注意的是,在比赛中往往是伪二项分布,有的只是局部二项分布.【典型例题】例1、(2022春·湖北十堰·高三校联考阶段练习)为了丰富孩子们的校园生活,某校团委牵头,发起同一年级两个级部A、B进行体育运动和文化项目比赛,由A部、B部争夺最后的综合冠军.决赛先进行两天,每天实行三局两胜制,即先赢两局的级部获得该天胜利,此时该天比赛结束.若A 部、B 部中的一方能连续两天胜利,则其为最终冠军;若前两天A 部、B 部各赢一天,则第三天只进行一局附加赛,该附加赛的获胜方为最终冠军.设每局比赛A部获胜的概率为()01p p <<,每局比赛的结果没有平局且结果互相独立.(1)记第一天需要进行的比赛局数为X ,求()E X ,并求当()E X 取最大值时p 的值; (2)当12p =时,记一共进行的比赛局数为Y ,求()5P Y ≤.【解析】(1)X 可能取值为2,3.()()22221221P X p p p p ==+−=−+;()()232122P X p p p p ==−=−+.故()()()2222221322222E X p p p p p p =−++−+=−++,即()215222E X p ⎛⎫=−−+ ⎪⎝⎭,则当12p =时,()E X 取得最大值.(2)当12p =时,双方前两天的比分为2∶0或0∶2的概率均为111224⨯=;比分为2∶1或1∶2的概率均为111122224⨯⨯⨯=. ()5P Y ≤,则4Y =或5Y =.4Y =即获胜方两天均为2∶0获胜,不妨设A 部胜,概率为1114416⨯=,同理B 部胜,概率为1114416⨯=,故()1864112P Y ==⨯=; 5Y =即获胜方前两天的比分为2∶0和2∶1或者2∶0和0∶2再加附加赛,不妨设最终A 部获胜,当前两天的比分为2∶0和2∶1时,先从两天中选出一天,比赛比分为2∶1,三场比赛前两场,A 部一胜一负,第三场比赛A获胜,另外一天比赛比分为2:0,故概率为11228C 4C 11112212⎛⎫⨯⨯⨯= ⎪⎝⋅⨯⎭,当前两天比分为2∶0和0∶2,附加赛A 获胜时,两天中选出一天,比赛比分为2:0,概率为121111C 44216⨯⨯⨯=,故最终A 部获胜的概率为11381616+=,同理B 部胜,概率为316, 故()3865132P Y ==⨯=. 所以()()()131545882P Y P Y P Y ≤==+==+=.例2、(2022·江苏盐城·江苏省滨海中学校考模拟预测)甲、乙两人组成“虎队”代表班级参加学校体育节的篮球投篮比赛活动,每轮活动由甲、乙两人各投篮一次,在一轮活动中,如果两人都投中,则“虎队”得3分;如果只有一个人投中,则“虎队”得1分;如果两人都没投中,则“虎队”得0分.已知甲每轮投中的概率是34,乙每轮投中的概率是23;每轮活动中甲、乙投中与否互不影响.各轮结果亦互不影响.(1)假设“虎队”参加两轮活动,求:“虎队”至少投中3个的概率; (2)①设“虎队”两轮得分之和为X ,求X 的分布列;②设“虎队”n 轮得分之和为n X ,求n X 的期望值.(参考公式()E X Y EX EY +=+) 【解析】(1)设甲、乙在第n 轮投中分别记作事件n A ,n B ,“虎队”至少投中3个记作事件C ,则()()()()()()12121212121212121212P C P A A B B P A A B B P A A B B P A A B B P A A B B =++++ 2222112233232232C 1C 144343343⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅⋅−⋅+⋅⋅⋅−+⋅= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭11126443++=.(2)①“虎队”两轮得分之和X 的可能取值为:0,1,2,3,4,6, 则()2232101143144P X ⎛⎫⎛⎫==−⋅−= ⎪⎪⎝⎭⎝⎭,()2233232210121111443433144P X ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫==⨯⋅−⋅−+−⋅⋅−=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,()3232323232322111111434343434343P X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⋅−⋅⋅−+⋅−⋅−⋅+−⋅⋅⋅− ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭323225114343144⎛⎫⎛⎫+−⋅⋅−⋅= ⎪ ⎪⎝⎭⎝⎭, ()32321232114343144P X ⎡⎤⎛⎫⎛⎫==⨯⋅⋅−⋅−= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,()22332223604211443334144P X ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫==⨯⋅−⋅+⋅−⋅=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,()223236643144P X ⎛⎫⎛⎫==⋅= ⎪ ⎪⎝⎭⎝⎭.故X 的分布列如下图所示:②10,1,3X =,()13210114312P X ⎛⎫⎛⎫==−⋅−= ⎪ ⎪⎝⎭⎝⎭,()132325111434312P X ⎛⎫⎛⎫==⋅−+−⋅= ⎪ ⎪⎝⎭⎝⎭,()132634312P X ==⋅=,∴1562313121212EX =⨯+⨯=,12312n EX n EX n =⋅=. 例3、(2022·陕西西安·长安一中校考模拟预测)某校高三男生体育课上做投篮球游戏,两人一组,每轮游戏中,每小组两人每人投篮两次,投篮投进的次数之和不少于3次称为“优秀小组”.小明与小亮同一小组,小明、小亮投篮投进的概率分别为12,p p . (1)若123p =,212p =,则在第一轮游戏他们获“优秀小组”的概率;(2)若1243p p +=则游戏中小明小亮小组要想获得“优秀小组”次数为16次,则理论上至少要进行多少轮游戏才行?并求此时12,p p 的值.【解析】(1)由题可知,所以可能的情况有①小明投中1次,小亮投中2次;②小明投中2次,小亮投中1次;③小明投中2次,小亮投中2次.故所求概率12212222222221112211221143322332233229P C C C C C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅⋅+⋅⋅+⋅⋅= ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)他们在一轮游戏中获“优秀小组”的概率为()()()()()()()()()222222122122211222122221221212121123P C p p C p C p C p p C p C p p p p p p p =−+−+=+−因为1243p p +=,所以()()221212833P p p p p =− 因为101p ≤≤,201p ≤≤,1243p p +=,所以1113p ≤≤,2113p ≤≤,又21212429p p p p +⎛⎫≤= ⎪⎝⎭ 所以121499p p <≤,令12t p p =,以1499t <≤,则28()33P h t t t ==−+当49t =时,max 1627P =,他们小组在n 轮游戏中获“优秀小组”次数ξ满足~(,)B n p ξ 由max ()16np =,则27n =,所以理论上至少要进行27轮游戏.此时1243p p +=,1249p p =,2123p p ==。
体育比赛中的数学问题一.知识点总结1.单循环赛:每两个队之间都要比赛一场,无主客场之分。
(通俗的说就是除了不和自己比赛,其他人都要比)2.双循环赛:每两个队都要比赛一场,有主客场之分。
(每个队和同一个对手交换场地赛两次)一共比赛场数=(人数-1)×人数3.淘汰赛:每两个队用一场比赛定胜负,经过若干轮之后,最后决出冠军。
(每场比赛输者打包回家)二.做题方法1.点线图2.列表法3.极端性分析------根据个人比赛场数,猜个人最高分根据得分,猜“战况”三.例题分析例题1:三年级四个班进行足球比赛,每两个班之间都要赛一场,每个班赛几场?一共要进行多少场比赛?解析:除了不和自己赛,和其他班都要赛,所以每个班赛4-1=3场一共进行的场数:3×4÷2=6场学案1:每个学校都要赛一场,共赛了28场,那么有几个学校参加比赛?解析:方法一:“老土方法”:1+2+3+4+……7=287+1=8个方法二:(人数-1)×人数=28×2=567×8=56,所以为8人例题2:20名羽毛球运动员参加单打比赛,淘汰赛,那么冠军一共要比赛多少场?解析:第一轮:20÷2=10(场),10名胜利者进入下一轮比赛第二轮:10÷2=5(场),5名胜利者进入下一轮比赛第三轮:5÷2=2(场)....1人,3名胜利者进入下一轮比赛第四轮:2÷2=1(场)胜利者和第三轮中剩下的一人进入下一轮比赛第五轮:2÷2=1(场)冠军一共参加了5场比赛。
决出冠军一共要比赛的场数:一场比赛淘汰一人,除了冠军不被淘汰20-1=19场例题3:规定投中一球得5分,投不进得2分,涛涛共投进6个球,得了16分,涛涛投中几个球?解析:方法一:(鸡兔同笼)6个球全投进得5×6=30分少得了30-16=14分有1个不进的球就少得5+2=7分,不但没得5分,反而倒扣2分所以没进的个数14÷7=2个进的个数6-2=4个方法二:5×() -2 ×() = 16根据个位数字特点猜数,5×( 4 ) -2 ×( 2 ) = 16 进了4个学案2:规定投进一球得3分,投不进倒扣1分,如果大明得30分,且知他有6个球没进,他共进几个球?解析:方法一:(鸡兔同笼)假设6个没进的球也进,30+6×(3+1)=54分共投54÷3=18个方法二:3×() -1 ×( 6 ) = 30(30+6)÷3=12个12+6=18个例题4:A,B,C,D,E,五位同学一起比赛象棋,单循环比赛,A已经赛了4盘,B已经赛了3盘,C赛了2盘,D赛了1盘,此时E赛了几盘?解析:利用点线图所以E赛2盘例题5:A,B,C,D,E,五位同学一起比赛乒乓球,单循环比赛,胜者得2分,负者不得分,比赛结果如下:(1)A与E并列第一(2)B是第三名(3)C和D并列第四名求B得分?解析:根据个人比赛场数猜最高分每人比赛4场,全胜得8分,有并列第一,就没有全胜,所以不可能得8分;有并列倒数第一,所以没有全败,没有0分;而每个人得分是个偶数,在0和8之间的偶数只有2,4,6,三个分数,三个名次,所以B得4分学案3:四名同学单循环比赛,胜者得2分,负者得0分,平者各得1分。
体育比赛中的数学【知识导学】体育比赛一、赛制1.淘汰赛:每比赛一场淘汰一支队伍,n支队伍的淘汰赛,决出冠军一共需要比n-1场。
2.单循环赛:每两支队伍之间比且只比一场比赛。
n支队伍的淘汰赛,每支队伍需要n-1场,一共需要比n×(n-1)÷2场。
二、求场数1.比赛结束,公式法;2.比赛未结束,点线图法。
三、求积分1. 求场数;2. 求积分的范围(设单循环赛共比m场)2-1-0积分是小于等于2m;3-1-0积分是介于2m和3m之间。
3.单循环赛中,胜的总场数等于负的总场数,平局场数一定是偶数。
【例1】十六支篮球队按以下的单淘汰赛的规则进行比赛:分成八组两两对决,决出八个队伍晋级,再决出四个队……最后决出冠军。
请问总共进行了几场比赛?【练习1】二十支篮球队进行单淘汰赛,只要输一场就会被淘汰,那么为了决出冠军需要举行几场比赛?【例2】20名羽毛球运动员参加单打比赛,两辆配对进行单循环赛,那么冠军一共要比赛多少场?一共要进行几场比赛?【练习2】8位同学进行网球循环赛,规则是每个人都要和其他所有人比一场,那么这8个人总共要举行多少场比赛?【例3】A、B、C、D、E五位同学一起比赛象棋,每两人都要比赛一盘。
到现在为止,A已经赛4盘,B赛3盘,C赛2盘,D赛1盘。
问:此时E同学塞了几盘?【练习3】编号为1,2,3,4,5,6的六个运动员进行乒乓球单循环赛。
到现在为止,编号为1,2,3,4,5的运动员已参加比赛的场数正好分别等于他们的编号数。
编号为6的运动员已经赛了几场?【例4】班上四名同学进行跳棋比赛,每两名同学都要赛一局。
每局胜者的2分,平者各得1分,负者得0分。
(1)四个同学的得分加起来一定是多少分?(2)第一名最多得多少分?最少得多少分?(3)最后一名最多得多少分?(4)已知甲、乙、丙三名同学得分分别为3分、4分、4分,且丙同学无平局,甲同学有胜局,乙同学有平局,那么丁同学得分是多少?【练习4】在中国象棋比赛中,有胜平负三种结果:获胜得2分,战平得1分,失败得0分。
2010年四年级秋季班第⼗讲体育⽐赛中的数学问题程雪2010 年四年级秋季班第⼗讲体育⽐赛中的数学问题程雪四年级秋季班(七级下)10.1第⼗讲体育⽐赛中的数学问题⼀、场次若队伍为n,那么⽐赛总场次m 为——(注意:这⾥的总场次m 指的是站在组委会的⾓度计算共有多少场⽐赛。
)1、淘汰赛:胜者进⼊下⼀轮⽐赛,负者直接淘汰。
m = n-1 ——淘汰掉多少队伍,就意味着⽐多少场⽐赛2、单循环:⽐赛的每两⽀队伍都要⽐且只⽐⼀场m = 1+2+3+……+(n-1) ——类似于握⼿问题=(n-1)·n÷2 ——每⽀队伍都要⽐(n-1)场,n ⽀队伍共⽐(n-1)·n 场,但每场⽐赛都算了2 遍,所以最后要除以2。
3、双循环:⽐赛的每两⽀队伍都要⽐且⽐两场,⽐如⾜球中的主客场制度。
m =(n-1)·n例1 20 名⽻⽑球运动员参加单打⽐赛,两两配对进⾏单循环赛,那么冠军⼀共要⽐赛多少场?⼀共要进⾏多少场⽐赛?解析:单循环赛中,每个参赛运动员都要和除⾃⼰之外的运动员⽐赛,都要⽐20-1=19(场),冠军也是。
如果问⼀共进⾏多少场⽐赛,才是19×20÷2=190(场)(尖⼦)学案1 蓝蓝组织16 ⼈去体育场进⾏⽻⽑球⽐赛,两两配对进⾏淘汰赛,要决出冠军,⼀共要进⾏多少场⽐赛?解析:本题是淘汰赛,要决出冠军,即要淘汰掉16-1=15 ⽀队伍,那么就需要15 场⽐赛。
例2 学⽽思的⼏个校区举⾏篮球⽐赛,每两个校区都要赛⼀场,共赛了28 场,那么有⼏个校区参加了⽐赛?解析:本题是单循环,但知道的是总场次,要求队伍数。
即(n-1).n÷2=28,那么(n-1).n=28×2=56,注意(n-1)与n 是两个连续的⾃然数,想到7×8=56,所以有8 个校区。
或者想到1+2+……+7=28,即n-1=7,那么n=8⼆、积分总场次是m,总积分A 有如下规律(注意:这⾥的总积分A 指的是所有参赛队伍的积分和。
体育比赛中的数学问题【知识点与方法】体育比赛中的数学问题,一般主要是指“体操队列”和“安排比赛场次”等问题,这一讲我们主要学习有关“比赛场次”的知识。
在研究比赛场次的有关知识时,图示、列表、连线有助于我们理清思路,发现问题的本质。
经典例题19名同学进行乒乓球淘汰赛,要决出冠军,一共要进行几场比赛?(淘汰赛是比赛一场淘汰一个人)【思路导航】淘汰赛是比赛一场淘汰一个人,最后只有一个人获得了冠军,也就是说只有一个人没有被淘汰,反之,淘汰了8人,所以要进行8场比赛。
列式:9-1=8(场)画龙点睛经过一场比赛才能淘汰一名参赛队员或一个运动队,因此,淘汰赛的比赛场次=参赛运动员人数或运动队的个数-1。
举一反三132名同学进行乒乓球淘汰赛,要决出冠军,一共要进行几场比赛?经典例题25个足球队举行足球循环赛,一共要进行几场比赛?【思路导航】因为举行的是足球循环比赛,所以每两个队都必须有且只能有一场比赛。
为了既不遗漏,也不重复,可以用连线的方法:A B C D E从上图可以看出:A和B、C、D、E分别要赛1场,共4场;B 和C、D、E分别要赛1场,共3场;C和D、E分别要赛1场,共2场;D和E要赛1场。
所以一共要进行的比赛场次是:4+3+2+1=10(场)。
画龙点睛也可以用以下公式来计算或验算循环赛制的比赛场次:参赛人数×(参赛人数-1)÷2=循环比赛的场次如例2可以这样列式计算:5×4÷2=10(场)举一反三2二年级八个班进行足球循环赛,一共要进行几场比赛?经典例题3射箭比赛规定:射中一箭得5分,射不中倒扣2分。
小红射了5箭,射中3次。
按照规则,她应得多少分?【思路导航】按照规则,她射中3箭应得5×3=15(分),但她还有2箭没有射中,所以还要扣除2×2=4(分)。
列式如下:射中得分:5×3=15(分)没中次数:5-3=2(次)倒扣分: 2×2=4(分)应得分: 15-4=11(分)举一反三3足球队进行射门训练。
体育比赛中的数学问题练习题一.夯实基础1.东东、西西、北北三人进行乒乓球单循环赛,结果3人获胜的场数各不相同.问第一名胜了几场?2.四个人进行象棋单循环赛,规定胜者得2分,负者得0分,和棋双方各得1分,比赛结束后统计发现,四个人的得分和加起来一定是多少?3. 8只球队进行淘汰赛,为了决出冠军,需要进行多少场比赛?4.振华小学组织了一次投篮比赛,规定投进一球得3分,投不进倒扣1分.小亮投了5个球,投进了3个.那么,他应该得多少分?5.八一队、北京队、江苏队、山东队、广东队五队进行象棋友谊赛,每两个队都要赛一场,一个月过后,八一队赛了4场,北京队赛了3场,江苏队赛了2场,山东队赛了1场.那么广东队赛了几场?二.拓展提高:6.班里举行投篮比赛,规定投中一个球得5分,投不进扣2分.小立一共投了6个球,得了16分,那么小立投中了几个球?7.学而思要举行足球联赛,有5个校区参加比赛,每个区出2个代表队.每个队都要与其他队赛一场,这些比赛分别在5个校区的体育场进行,那么平均每个体育场都要举行多少场比赛?8.学校组织了一次投篮比赛,规定投进一球得3分,投不进倒扣1分,如果大明得30分,且知他有6个球没有投进,那么大明共投了几个球?9. 编号为1,2,3,4,5,6的六个运动员进行乒乓球单循环赛。
到现在为止,编号为1,2,3,4,5的运动员已参加比赛的场数正好分别等于他们的编号数。
编号为6的运动员已经赛了几场?三.杯赛演练:10.(“IMC国际数学邀请赛”(新加坡)初赛)学校进行乒乓球选拔赛,每个参赛选手都要和其他所有选手各赛一场,一共进行了36场比赛,有多少人参加了选拔赛?11.(走进美妙数学花园少年数学邀请赛)三人打乒乓球,每场两人,输者退下换另一人,这样继续下去,在甲打了9场,乙打了6场时,丙最多打几场?12. (“迎春杯”决赛试题)四个足球队进行单循环比赛,每两队都要赛一场,如果踢平,每队各得l分,否则胜队得3分,负队得0分,比赛结果,各队的总得分恰好是四个连续的自然数,问:输给第一名的队的总分是多少?(要求说明理由)答案:1.解析:三人进行单循环赛,即每两人都要赛一场,共进行3×2÷2=3(场)比赛.每场比赛都有一人获胜,由三人获胜的场数各不相同,所以三人获胜的场数分别为2、1、0.显然,第一名是胜了2场.2.解析:四个人循环比赛总共比赛4×3÷2=6(场),每场无论分出胜负还是打平,两人的得分和一定是2分,因此最终四个人的得分加起来一定是2×6=12(分).3.解析:方法一:8进4进行了4场,4进2进行2场,最后决赛是1场,因此共进行了4+2+1=7(场)比赛.方法二:每进行一场比赛就淘汰一支球队,最后只剩下冠军了,也就是说淘汰了7只球队,因此进行了7场比赛.4.解析:方法一:小亮投的5个球中,投进的3个球得到3×3=9 (分),而没有投进的2个球被扣掉1×2=2 (分),于是他应得9-2=7 (分).方法二:如果小亮投的5个球都进了,那么他应得3×5=15 (分),但是实际上他只投进了3个球,未投进的2个球中每个球都由得3分变为扣1分,多计3+1=4分,共多计了4×2=8 (分),故小亮应得15-8=7 (分).5. 解析: 八一队赛了4场,说明八一队和其它四队都赛过了.山东队赛了1场,说明只和八一队赛过.北京队赛了3场,说明与八一队、江苏队、广东队赛过.江苏队赛了2场,说明与八一队、北京队赛过.由此可知,广东队只和八一队、北京队赛过,赛了2场.6.解析: 如果小立6个球全部投中,应该得6×5=30(分),实际上少了30-16=14(分),投中一个球得5分,投不进扣2分,投不进一个球就少5+2=7(分),所以一共没投进14÷7=2(个),投中了6-2=4(个)球.⨯-÷=(场),平均每个体育7. 解析:一共有5210⨯=(个)队参加比赛,共赛10(101)245场都要举行4559÷=(场)比赛.8.解析:大明有6个球没有投进,要被扣掉6分,如果不考虑这6个球,大明应该得30+6=36 (分),规定投进一球得3分,36÷3=12 (个),所以,大明投进了12个球,加上未投进的6个球,大明共投了12+6=18个球.9.解析:∵共有6队∴每队最多赛5场∴编号5和所有人赛过∴编号1只和编号5赛过∴编号4和编号2、3、5、6赛过∴编号2只和编号4、5赛过∴编号3和编号4、5、6赛过∴编号6和编号3、4、5赛过3场。
体育比赛中的数学问题
一.知识点总结
1.单循环赛:每两个队之间都要比赛一场,无主客场之分。
(通俗的说就是除了不和自己比赛,其他人都要比)
2.双循环赛:每两个队都要比赛一场,有主客场之分。
(每个队和同一个对手交换场地赛两次)
一共比赛场数=(人数-1)×人数
3.淘汰赛:每两个队用一场比赛定胜负,经过若干轮之后,最后决出冠军。
(每场比赛输者打包回家)
二.做题方法
1.点线图
2.列表法
3.极端性分析------根据个人比赛场数,猜个人最高分
根据得分,猜“战况”
三.例题分析
例题1:三年级四个班进行足球比赛,每两个班之间都要赛一场,每个班赛几场?一共要进行多少场比赛?
解析:除了不和自己赛,和其他班都要赛,所以每个班赛4-1=3场
一共进行的场数:3×4÷2=6场
学案1:每个学校都要赛一场,共赛了28场,那么有几个学校参加比赛?
解析:方法一:“老土方法”:1+2+3+4+……7=28
7+1=8个
方法二:(人数-1)×人数=28×2=56
7×8=56,所以为8人
例题2:20名羽毛球运动员参加单打比赛,淘汰赛,那么冠军一共要比赛多少场?
解析:第一轮:20÷2=10(场),10名胜利者进入下一轮比赛
第二轮:10÷2=5(场),5名胜利者进入下一轮比赛
第三轮:5÷2=2(场)....1人,3名胜利者进入下一轮比赛
第四轮:2÷2=1(场)胜利者和第三轮中剩下的一人进入下一轮比赛
第五轮:2÷2=1(场)
冠军一共参加了5场比赛。
决出冠军一共要比赛的场数:一场比赛淘汰一人,除了冠军不被淘汰
20-1=19场
例题3:规定投中一球得5分,投不进得2分,涛涛共投进6个球,得了16分,涛涛投中几个球?
解析:方法一:(鸡兔同笼)
6个球全投进得5×6=30分
少得了30-16=14分
有1个不进的球就少得5+2=7分,不但没得5分,反而倒扣2分
所以没进的个数14÷7=2个
进的个数6-2=4个
方法二:5×() -2 ×() = 16
根据个位数字特点猜数,5×( 4 ) -2 ×( 2 ) = 16 进了4个
学案2:规定投进一球得3分,投不进倒扣1分,如果大明得30分,且知他有6个球没进,他共进几个球?
解析:方法一:(鸡兔同笼)
假设6个没进的球也进,30+6×(3+1)=54分
共投54÷3=18个
方法二:3×() -1 ×( 6 ) = 30
(30+6)÷3=12个
12+6=18个
例题4:A,B,C,D,E,五位同学一起比赛象棋,单循环比赛,A已经赛了4盘,B已经赛了3盘,C赛了2盘,D赛了1盘,此时E赛了几盘?
解析:利用点线图
所以E赛2盘
例题5:A,B,C,D,E,五位同学一起比赛乒乓球,单循环比赛,胜者得2分,负者不得分,比赛结果如下:
(1)A与E并列第一
(2)B是第三名
(3)C和D并列第四名
求B得分?
解析:根据个人比赛场数猜最高分
每人比赛4场,全胜得8分,有并列第一,就没有全胜,所以不可能得8分;有并列倒数第一,所以没有全败,没有0分;而每个人得分是个偶数,在0和8之间的偶数只有2,4,6,三个分数,三个名次,所以B得4分
学案3:四名同学单循环比赛,胜者得2分,负者得0分,平者各得1分。
已知甲乙丙三人得分分别为3分,4分,4分,且丙无平局,甲有胜局,乙有平局,那么丁同学得分?
解析:共比赛场数3×4÷2=6场
每场比赛两人共得2分,6场比赛共得6×2=12分
所以丁得分12-2-4-4=1分
例题6:A,B,C,D,E,进行单循环比赛,每场比赛胜者得3分,负者得0分,平局各得1分,若A,B,C,D分别得分为1,4,7,8,问E最到得几分?最少得几分?
解析:根据得分猜“战况”
要想E得分最高,希望总分最高,在3,0,1赛制中,出现一场平局,总分少1分,所以希望平局的场数少,也就是B的战况为1胜,1平,2负;根据平的总场数是偶数,ABCD四人平的场数之和为5场,希望平的场数少,所以E为1平;胜的总场数等于负的总场数,所以E是2胜1负1平,得分为7分
要想E得分最低,希望总分最低,平局出现的越多越好,即B的战况是4平,ABCD平的场数之和为8平,此四人胜的场数之和恰好等于负的场数之和,所以E的战况为4平,得分为4分。
学案4:四个球队单循环比赛,有一个队没有输球但是倒数第一,有可能吗?
解析:有可能。
虚线表示平局,箭头表示有胜负,箭头指向胜者
A得3分,B,C,D都得4分,所以A没输球但倒数第一。