高三数学练习题—导数与复数
- 格式:doc
- 大小:331.00 KB
- 文档页数:12
一、复数选择题1.复数()1z i i =⋅+在复平面上对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限2.若复数z 为纯虚数,且()373z i m i -=+,则实数m 的值为( ) A .97-B .7C .97D .7-3.欧拉是瑞士著名数学家,他首先发现:e cos isin i θθθ=+(e 为自然对数的底数,i 为虚数单位),此结论被称为“欧拉公式”,它将指数函数的定义域扩大到复数集,建立了三角函数和指数函数的关系.根据欧拉公式可知,i e π=( ) A .1B .0C .-1D .1+i4.已知复数()123z i i +=- (其中i 是虚数单位),则z 在复平面内对应点在( ) A .第一象限B .第二象限C .第三象限D .第四象限5.已知i 是虚数单位,复数2z i =-,则()12z i ⋅+的模长为( )A .6BC .5D 6.复数z 满足12i z i ⋅=-,z 是z 的共轭复数,则z z ⋅=( )A B C .3D .57.设()2211z i i=+++,则||z =( )A B .1C .2D8.若复数1211iz i+=--,则z 在复平面内的对应点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限9.若复数z 满足()322iz i i -+=+,则复数z 的虚部为( ) A .35B .35i -C .35D .35i10.设2iz i+=,则||z =( )A B C .2 D .511.若复数()41i 34iz +=+,则z =( )A .45B .35C .25D .512.已知复数1z i =+,z 为z 的共轭复数,则()1z z ⋅+=( )A B .2 C .10D13.复数11z =,2z 由向量1OZ 绕原点O 逆时针方向旋转3π而得到.则21arg()2z z -的值为( ) A .6π B .3πC .23π D .43π 14.若()()324z i i =+-,则在复平面内,复数z 所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限15.复数z 对应的向量OZ 与(3,4)a =共线,对应的点在第三象限,且10z =,则z =( ) A .68i +B .68i -C .68i --D .68i -+二、多选题16.已知复数202011i z i+=-(i 为虚数单位),则下列说法错误的是( )A .z 的实部为2B .z 的虚部为1C .z i =D .||z =17.已知复数12z =-,则下列结论正确的有( )A .1z z ⋅=B .2z z =C .31z =-D .2020122z =-+ 18.已知复数(),z x yi x y R =+∈,则( ) A .20zB .z 的虚部是yiC .若12z i =+,则1x =,2y =D .z =19.下面关于复数的四个命题中,结论正确的是( ) A .若复数z R ∈,则z R ∈ B .若复数z 满足2z ∈R ,则z R ∈ C .若复数z 满足1R z∈,则z R ∈ D .若复数1z ,2z 满足12z z R ∈,则12z z =20.已知复数122z =-+(其中i 为虚数单位,,则以下结论正确的是( ). A .20zB .2z z =C .31z =D .1z =21.若复数z 满足()234z i i +=+(i 为虚数单位),则下列结论正确的有( )A .z 的虚部为3B .z =C .z 的共轭复数为23i +D .z 是第三象限的点22.已知复数z 满足2724z i =--,在复平面内,复数z 对应的点可能在( ) A .第一象限B .第二象限C .第三象限D .第四象限23.已知复数1cos 2sin 222z i ππθθθ⎛⎫=++-<< ⎪⎝⎭(其中i 为虚数单位),则( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .2cos z θ=D .1z 的实部为12- 24.已知i 为虚数单位,则下列选项中正确的是( ) A .复数34z i =+的模5z =B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限C .若复数()()2234224m m m m +-+--i 是纯虚数,则1m =或4m =- D .对任意的复数z ,都有20z25.已知复数z 的共轭复数为z ,且1zi i =+,则下列结论正确的是( )A .1z +=B .z 虚部为i -C .202010102z =-D .2z z z +=26.已知复数z 满足(2i)i z -=(i 为虚数单位),复数z 的共轭复数为z ,则( )A .3||5z = B .12i5z +=-C .复数z 的实部为1-D .复数z 对应复平面上的点在第二象限 27.下面四个命题,其中错误的命题是( )A .0比i -大B .两个复数当且仅当其和为实数时互为共轭复数C .1x yi i +=+的充要条件为1x y ==D .任何纯虚数的平方都是负实数28.对任意1z ,2z ,z C ∈,下列结论成立的是( ) A .当m ,*n N ∈时,有m n m n z z z +=B .当1z ,2zC ∈时,若22120z z +=,则10z =且20z = C .互为共轭复数的两个复数的模相等,且22||||z z z z ==⋅ D .12z z =的充要条件是12=z z29.设复数z 满足12z i =--,i 为虚数单位,则下列命题正确的是( )A .|z |=B .复数z 在复平面内对应的点在第四象限C .z 的共轭复数为12i -+D .复数z 在复平面内对应的点在直线2y x =-上30.已知复数i z a b =+(a ,b ∈R ,i 为虚数单位),且1a b +=,下列命题正确的是( ) A .z 不可能为纯虚数 B .若z 的共轭复数为z ,且z z =,则z 是实数C .若||z z =,则z 是实数D .||z 可以等于12【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.B 【分析】先利用复数的乘法化简复数z ,再利用复数的几何意义求解. 【详解】 因为复数,所以在复数z 复平面上对应的点位于第二象限 故选:B 解析:B 【分析】先利用复数的乘法化简复数z ,再利用复数的几何意义求解. 【详解】因为复数()11z i i i =⋅+=-+,所以在复数z 复平面上对应的点位于第二象限 故选:B2.B 【分析】先求出,再解不等式组即得解. 【详解】 依题意,,因为复数为纯虚数, 故,解得. 故选:B 【点睛】易错点睛:复数为纯虚数的充要条件是且,不要只写.本题不能只写出,还要写上.解析:B 【分析】 先求出321795858m m z i -+=+,再解不等式组3210790m m -=⎧⎨+≠⎩即得解.【详解】 依题意,()()()()3373321793737375858m i i m i m m z i i i i +++-+===+--+,因为复数z 为纯虚数, 故3210790m m -=⎧⎨+≠⎩,解得7m =.故选:B 【点睛】易错点睛:复数(,)z a bi a b R =+∈为纯虚数的充要条件是0a =且0b ≠,不要只写0b ≠.本题不能只写出790m +≠,还要写上3210m -=.3.C 【分析】利用复数和三角函数的性质,直接代入运算即可 【详解】 由题意可知=, 故选C解析:C 【分析】利用复数和三角函数的性质,直接代入运算即可 【详解】由题意可知i e π=cos sin 101i ππ+=-+=-, 故选C4.D 【分析】先由复数的运算化简复数z ,再运用复数的几何表示可得选项. 【详解】 由已知得,所以复数z 在复平面上所对应的点为,在第四象限, 故选:D.解析:D 【分析】先由复数的运算化简复数z ,再运用复数的几何表示可得选项. 【详解】 由已知得()()()()312317171+21+212555i i i i z i i i i ----====--, 所以复数z 在复平面上所对应的点为17,55⎛⎫- ⎪⎝⎭,在第四象限, 故选:D.5.C 【分析】利用复数代数形式的乘除运算化简,再由复数模的公式得答案.【详解】,,所以,,故选:C.解析:C【分析】利用复数代数形式的乘除运算化简,再由复数模的公式得答案.【详解】2z i=-,(12)(2)(12)43z i i i i∴⋅+=-+=+,所以,5z=,故选:C.6.D【分析】求出复数,然后由乘法法则计算.【详解】由题意,.故选:D.解析:D【分析】求出复数z,然后由乘法法则计算z z⋅.【详解】由题意12122iz ii i-==-+=--,22(2)(2)(2)5z z i i i⋅=---+=--=.故选:D.7.D【分析】利用复数的乘除法运算法则将化简,然后求解.【详解】因为,所以,则.故选:D.本题考查复数的运算,解答时注意复数的乘法运算符合多项式乘法的运算法则,计算复数的除法时,解析:D 【分析】利用复数的乘除法运算法则将z 化简,然后求解||z . 【详解】因为()()()()2221211*********i z i i i i i i i i i -=++=+++=-++-=+++-,所以1z i =-,则z = 故选:D . 【点睛】本题考查复数的运算,解答时注意复数的乘法运算符合多项式乘法的运算法则,计算复数的除法时,需要给分子分母同乘以分母的共轭复数然后化简.8.B 【分析】利用复数的运算法则和复数的几何意义求解即可 【详解】 ,所以,在复平面内的对应点为,则对应点位于第二象限 故选:B解析:B 【分析】利用复数的运算法则和复数的几何意义求解即可 【详解】()()12i 1i 12i 33i 33i111i 2222z +++-+=-=-==-+-,所以,z 在复平面内的对应点为33,22⎛⎫- ⎪⎝⎭,则对应点位于第二象限 故选:B9.A 【分析】由复数的除法法则和乘法法则计算出,再由复数的定义得结论. 【详解】 由题意,得, 其虚部为,解析:A 【分析】由复数的除法法则和乘法法则计算出z ,再由复数的定义得结论. 【详解】 由题意,得()()()()()23343313343434552i i ii z i i i i i ----====-++-+,其虚部为35, 故选:A.10.B 【分析】利用复数的除法运算先求出,再求出模即可. 【详解】 , .故选:B .解析:B 【分析】利用复数的除法运算先求出z ,再求出模即可. 【详解】()22212i i i z i i i ++===-,∴z ==故选:B .11.A 【分析】首先化简复数,再计算求模. 【详解】 , . 故选:A解析:A 【分析】首先化简复数z ,再计算求模.()()()2242112434343434i i i z i i i i⎡⎤++⎣⎦====-++++ ()()()()43443412163434252525i i i i i --=-=-=-++-,45z ∴==.故选:A12.D 【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案. 【详解】 因为, 所以,, 所以, 故选:D.解析:D 【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案. 【详解】 因为1z i =+,所以1z i =-,12z i +=+,所以()()()1123z z i i i ⋅+=-⋅+=-== 故选:D.13.C 【分析】写出复数的三角形式,绕原点逆时针方向旋转得到复数的三角形式,从而求得的三角形式得解. 【详解】 ,,所以复数在第二象限,设幅角为, 故选:C 【点睛】在复平面内运用复数的三解析:C 【分析】写出复数11z =的三角形式1cos 0sin 0z i =+,绕原点O 逆时针方向旋转3π得到复数2z 的三角形式,从而求得212z z -的三角形式得解. 【详解】11z =,1cos 0sin 0z i ∴=+,121(cossin )332Z i O OZ ππ=+=2111()222z z --∴=+所以复数在第二象限,设幅角为θ,tan θ=23πθ∴=故选:C 【点睛】在复平面内运用复数的三角形式是求得幅角的关键.14.D 【分析】根据复数的运算,先化简复数,再由复数的几何意义确定对应点的坐标,进而可得出结果. 【详解】 ,则复数对应的点的坐标为,位于第四象限. 故选:D .解析:D 【分析】根据复数的运算,先化简复数,再由复数的几何意义确定对应点的坐标,进而可得出结果. 【详解】()()324(2)(4)76z i i i i i =+-=--=-,则复数z 对应的点的坐标为()7,6-,位于第四象限. 故选:D .15.D 【分析】设,根据复数对应的向量与共线,得到,再结合求解.【详解】设,则复数对应的向量,因为向量与共线,所以,又,所以,解得或,因为复数对应的点在第三象限,所以,所以,,解析:D【分析】设(,)z a bi a R b R =+∈∈,根据复数z 对应的向量OZ 与(3,4)a =共线,得到43a b =,再结合10z =求解.【详解】设(,)z a bi a R b R =+∈∈,则复数z 对应的向量(),OZ a b =,因为向量OZ 与(3,4)a =共线,所以43a b =, 又10z =,所以22100+=a b ,解得68a b =-⎧⎨=-⎩或68a b =⎧⎨=⎩, 因为复数z 对应的点在第三象限,所以68a b =-⎧⎨=-⎩, 所以68z i =--,68z i =-+,故选:D二、多选题16.AC【分析】根据复数的运算及复数的概念即可求解.【详解】因为复数,所以z 的虚部为1,,故AC 错误,BD 正确.故选:AC解析:AC【分析】根据复数的运算及复数的概念即可求解.【详解】 因为复数2020450511()22(1)11112i i i z i i i i +++=====+---,所以z 的虚部为1,||z =故AC 错误,BD 正确.故选:AC17.ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为,所以A 正确;因为,,所以,所以B 错误;因为,所以C 正确;因为,所以,所以D 正确解析:ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为11131222244z z i ⎛⎫⎛⎫-+=+= ⎪⎪ ⎪⎪⎝⎭⎭=⎝⋅,所以A 正确;因为221122z ⎛⎫-=-- ⎪ ⎪⎝⎭=,122z =+,所以2z z ≠,所以B 错误;因为3211122z z z ⎛⎫⎛⎫=⋅=-=- ⎪⎪ ⎪⎪⎝⎭⎝⎭,所以C 正确;因为6331z z z =⋅=,所以()2020633644311122zz z z z ⨯+⎛⎫===⋅=-⋅=-+ ⎪ ⎪⎝⎭,所以D 正确,故选:ACD.【点睛】 本题考查复数乘法与乘方的计算,其中还涉及到了共轭复数的计算,难度较易.18.CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取,则,A 选项错误;对于B 选项,复数的虚部为,B 选项错误;解析:CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取z i ,则210z =-<,A 选项错误;对于B 选项,复数z 的虚部为y ,B 选项错误;对于C 选项,若12z i =+,则1x =,2y =,C 选项正确;对于D 选项,z =D 选项正确.故选:CD.【点睛】本题考查复数相关命题真假的判断,涉及复数的计算、复数的概念以及复数的模,属于基础题. 19.AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数,则,因为,所以,因此,即A 正确;B 选项,设复数,则,因为,所,若,则;故B 错;C 选项,设解析:AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数(,)z a bi a b R =+∈,则(i ,)z a b a b =-∈R ,因为z R ∈,所以0b =,因此z a R =∈,即A 正确;B 选项,设复数(,)z a bi a b R =+∈,则()22222z a bi a b abi =+=-+,因为2z ∈R ,所0ab =,若0,0a b =≠,则z R ∉;故B 错;C 选项,设复数(,)z a bi a b R =+∈,则22222211a bi a b i z a bi a b a b a b -===-++++, 因为1R z∈,所以220b a b =+,即0b =,所以z a R =∈;故C 正确; D 选项,设复数1(,)z a bi a b R =+∈,2(,)z c di c d R =+∈,则()()()()12z z a bi c di ac bd ad bc i =++=-++,因为12z z R ∈,所以0ad bc +=,若11a b =⎧⎨=⎩,22c d =⎧⎨=-⎩能满足0ad bc +=,但12z z ≠,故D 错误.故选:AC.【点睛】本题主要考查复数相关命题的判断,熟记复数的运算法则即可,属于常考题型.20.BCD【分析】计算出,即可进行判断.【详解】,,故B 正确,由于复数不能比较大小,故A 错误;,故C 正确;,故D 正确.故选:BCD.【点睛】本题考查复数的相关计算,属于基础题.解析:BCD【分析】 计算出23,,,z z z z ,即可进行判断.【详解】122z =-+,221313i i=22z z ,故B 正确,由于复数不能比较大小,故A 错误; 33131313i i i 1222z ,故C 正确; 2213122z,故D 正确.故选:BCD.【点睛】 本题考查复数的相关计算,属于基础题.21.BC【分析】利用复数的除法求出复数,利用复数的概念与几何意义可判断各选项的正误.【详解】,,所以,复数的虚部为,,共轭复数为,复数在复平面对应的点在第四象限. 故选:BD.【点睛】本题考解析:BC【分析】利用复数的除法求出复数z ,利用复数的概念与几何意义可判断各选项的正误.【详解】()234z i i +=+,34232i z i i+∴=-=-+,所以,复数z 的虚部为3-,z =共轭复数为23i +,复数z 在复平面对应的点在第四象限.故选:BD.【点睛】 本题考查复数的四则运算、虚部、模、共轭复数以及几何意义,考查计算能力,属于基础题.22.BD【分析】先设复数,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出,即可确定对应的点所在的象限.【详解】设复数,则,所以,则,解得或,因此或,所以对应的点为或,因此复解析:BD【分析】先设复数(),z a bi a b R =+∈,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出z ,即可确定对应的点所在的象限.【详解】设复数(),z a bi a b R =+∈,则2222724z a abi b i =+-=--,所以2222724z a abi b i =+-=--,则227224a b ab ⎧-=-⎨=-⎩,解得34a b =⎧⎨=-⎩或34a b =-⎧⎨=⎩, 因此34z i =-或34z i =-+,所以对应的点为()3,4-或()3,4-,因此复数z 对应的点可能在第二或第四象限.故选:BD.【点睛】本题主要考查判定复数对应的点所在的象限,熟记复数的运算法则,以及复数相等的条件即可,属于基础题型.23.BC【分析】由可得,得,可判断A 选项,当虚部,时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得,的实部是,可判断D 选项.【详解】因为,所以,所以,所以,所以A 选解析:BC【分析】 由22ππθ-<<可得2πθπ-<<,得01cos22θ<+≤,可判断A 选项,当虚部sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得11cos 2sin 212cos 2i z θθθ+-=+,1z 的实部是1cos 2122cos 22θθ+=+,可判断D 选项.【详解】 因为22ππθ-<<,所以2πθπ-<<,所以1cos21θ-<≤,所以01cos22θ<+≤,所以A 选项错误;当sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,复数z 是实数,故B 选项正确;2cos z θ===,故C 选项正确:()()111cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 212cos 2i i z i i i θθθθθθθθθθθ+-+-===+++++-+,1z 的实部是1cos 2122cos 22θθ+=+,故D 不正确. 故选:BC【点睛】本题主要考查复数的概念,复数模的计算,复数的运算,以及三角恒等变换的应用,属于中档题.24.AB【分析】求解复数的模判断;由共轭复数的概念判断;由实部为0且虚部不为0求得值判断;举例说明错误.【详解】解:对于,复数的模,故正确;对于,若复数,则,在复平面内对应的点的坐标为,在第四解析:AB【分析】求解复数的模判断A ;由共轭复数的概念判断B ;由实部为0且虚部不为0求得m 值判断C ;举例说明D 错误.【详解】解:对于A ,复数34z i =+的模||5z ==,故A 正确;对于B ,若复数34z i =+,则34z i =-,在复平面内对应的点的坐标为(3,4)-,在第四象限,故B 正确;对于C ,若复数22(34)(224)m m m m i +-+--是纯虚数,则223402240m m m m ⎧+-=⎨--≠⎩,解得1m =,故C 错误; 对于D ,当zi 时,210z =-<,故D 错误.故选:AB .【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,属于基础题. 25.ACD【分析】先利用题目条件可求得,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由可得,,所以,虚部为;因为,所以,.故选:ACD .【解析:ACD【分析】先利用题目条件可求得z ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由1zi i =+可得,11i z i i+==-,所以12z i +=-==,z 虚部为1-;因为2422,2z i z =-=-,所以()5052020410102z z ==-,2211z z i i i z +=-++=-=.故选:ACD .【点睛】本题主要考查复数的有关概念的理解和运用,复数的模的计算公式的应用,复数的四则运算法则的应用,考查学生的数学运算能力,属于基础题. 26.BD【分析】因为复数满足,利用复数的除法运算化简为,再逐项验证判断.【详解】因为复数满足,所以所以,故A 错误;,故B 正确;复数的实部为 ,故C 错误;复数对应复平面上的点在第二象限解析:BD【分析】因为复数z 满足(2i)i z -=,利用复数的除法运算化简为1255z i =-+,再逐项验证判断. 【详解】因为复数z 满足(2i)i z -=, 所以()(2)1222(2)55i i i z i i i i +===-+--+所以z ==,故A 错误; 1255z i =--,故B 正确; 复数z 的实部为15- ,故C 错误; 复数z 对应复平面上的点12,55⎛⎫- ⎪⎝⎭在第二象限,故D 正确. 故选:BD【点睛】本题主要考查复数的概念,代数运算以及几何意义,还考查分析运算求解的能力,属于基础题.27.ABC【分析】根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.【详解】对于A 选项,由于虚数不能比大小,解析:ABC【分析】根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.【详解】对于A 选项,由于虚数不能比大小,A 选项错误;对于B 选项,()()123i i ++-=,但1i +与2i -不互为共轭复数,B 选项错误; 对于C 选项,由于1x yi i +=+,且x 、y 不一定是实数,若取x i =,y i =-,则1x yi i +=+,C 选项错误;对于D 选项,任取纯虚数()0,ai a a R ≠∈,则()220ai a =-<,D 选项正确. 故选:ABC.【点睛】本题考查复数相关命题真假的判断,涉及共轭复数的概念、复数相等以及复数的计算,属于基础题.28.AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取,进行判断;D 中的必要不充分条件是.【详解】解:由复数乘法的运算律知,A 正确;取,;,满足,但且不解析:AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取11z =,2z i =进行判断;D 中12z z =的必要不充分条件是12=z z .【详解】解:由复数乘法的运算律知,A 正确;取11z =,;2z i =,满足22120z z +=,但10z =且20z =不成立,B 错误; 由复数的模及共轭复数的概念知结论成立,C 正确;由12z z =能推出12=z z ,但12||||z z =推不出12z z =,因此12z z =的必要不充分条件是12=z z ,D 错误. 故选:AC【点睛】本题主要考查复数乘法的运算律和复数的基本知识以及共轭复数的概念,属于基础题.29.AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】,A 正确;复数z 在复平面内对应的点的坐标为,在第三象限,B 不正确;z 的共轭复数为,C 正确;复数z 在复平面内对解析:AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】||z ==A 正确;复数z 在复平面内对应的点的坐标为(1,2)--,在第三象限,B 不正确;z 的共轭复数为12i -+,C 正确;复数z 在复平面内对应的点(1,2)--不在直线2y x =-上,D 不正确.故选:AC【点睛】本小题主要考查复数的有关知识,属于基础题.30.BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当时,,此时为纯虚数,A 错误;若z 的共轭复数为,且,则,因此,B 正确;由是实数,且知,z 是实数,C 正确;由解析:BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当0a =时,1b =,此时z i 为纯虚数,A 错误;若z 的共轭复数为z ,且z z =,则a bi a bi +=-,因此0b =,B 正确;由||z 是实数,且||z z =知,z 是实数,C 正确;由1||2z =得2214a b +=,又1a b +=,因此28830a a -+=,64483320∆=-⨯⨯=-<,无解,即||z 不可以等于12,D 错误. 故选:BC【点睛】本小题主要考查复数的有关知识,属于基础题.。
一、选择题(本大题共10小题,每小题5分,共50分)1. 设复数 \( z = a + bi \)(其中 \( a, b \in \mathbb{R} \)),若 \( z \) 在复平面上对应的点与原点的距离为2,则 \( a^2 + b^2 \) 的值为()A. 1B. 2C. 4D. 02. 设 \( z_1 = 1 + i \),\( z_2 = 2 - i \),则 \( |z_1 - z_2|^2 \) 的值为()A. 5B. 4C. 3D. 23. 已知 \( z = 3 + 4i \),则 \( \overline{z} \) 的值为()A. 3 - 4iB. 4 + 3iC. -3 + 4iD. -4 + 3i4. 若复数 \( z \) 满足 \( |z - 1| = |z + 1| \),则 \( z \) 所对应的点在复平面上的轨迹是()A. 实轴B. 虚轴C. 直线D. 圆5. 设 \( z_1 = 1 + 2i \),\( z_2 = 3 - 4i \),则 \( z_1 \cdot z_2 \) 的值为()A. 7 + 10iB. 7 - 10iC. -7 + 10iD. -7 - 10i6. 设 \( z = a + bi \)(其中 \( a, b \in \mathbb{R} \)),若 \( z \) 在复平面上对应的点到点 \( (1, 1) \) 的距离等于到点 \( (-1, 1) \) 的距离,则 \( a \) 的值为()A. 0B. 1C. -1D. 不存在7. 若复数 \( z \) 满足 \( z^2 + 2z + 5 = 0 \),则 \( z \) 的值为()A. \( 1 + i \)B. \( -1 + i \)C. \( 1 - i \)D. \( -1 - i \)8. 设 \( z_1 = 1 + i \),\( z_2 = 2 - i \),则 \( \frac{z_1}{z_2} \) 的值为()A. \( \frac{1}{2} + \frac{3}{2}i \)B. \( \frac{1}{2} - \frac{3}{2}i \)C. \( \frac{3}{2} + \frac{1}{2}i \)D. \( \frac{3}{2} -\frac{1}{2}i \)9. 若复数 \( z \) 满足 \( z^2 = 1 \),则 \( z \) 的值为()A. \( 1 \)B. \( -1 \)C. \( 1 \pm i \)D. \( -1 \pm i \)10. 设 \( z_1 = 1 + i \),\( z_2 = 2 - i \),则 \( \frac{z_1}{z_2} \) 的模为()A. \( \frac{\sqrt{2}}{2} \)B. \( \sqrt{2} \)C. \( \sqrt{3} \)D. \( \sqrt{5} \)二、填空题(本大题共5小题,每小题10分,共50分)11. 设复数 \( z = 2 - 3i \),则 \( \overline{z} \) 的值为__________。
高三理科数学导数与复数第一轮复习训练题数学(二十)(理科 导数与复数)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数y = (1-sinx)2的导数是(A) y=2sin2x-cosx (B) y=sin2x+2cosx (C) y=2sin2x-2cosx (D) y=sin2x-2cosx 2.设()()2'2220y x a y =+=且,则a 等于 A -1 B 1 C 0 D 任意实数 3.A .iB .i - Ci Di4..函数()x f =2008x ,则12007'12008f ⎡⎤⎛⎫⎢⎥ ⎪⎢⎥⎝⎭⎣⎦= A 0 B 1 C2006 D 2007 5.在复平面内,复数1ii+对应的点位于 A 第一象限 B 第二象限 C 第三象限 D 第四象限6.曲线x x y 2212-=在点(1 ,23-)处切线的倾斜角为 A.1- B.︒45 C. ︒-45 D.︒1357.2()f x ax bx c =++的图象开口向上,且顶点在第二象限,则()y f x '=的图象大致是:8.设0x >时,()()0f x xf x '+>,且(1)0f =,则不等式()0xf x >的解集为A .(-1,0)∪(1,+∞)B .(-1,0)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-∞,-1)∪(0,1) 9.关于R 上可导的任意函数f (x ),若满足(x -1)f x '()≥0,则必有 A.f (0)+f (2)<2f (1) B. f (0)+f (2)≤2f (1) C. f (0)+f (2)≥2f (1) D. f (0)+f (2)>2f (1) 10.函数x x x f ln 2)(2-=的单调减区间是 A .]1,0(B .),1[∞+C .]1,(--∞及]1,0(D .]1,0()0,1[及-11.已知11mni i=-+,m n i 其中,是实数,是虚数单位,m ni +=则 B CDA .1+2iB 。
回顾练一 复数、导数1.(2015·福建卷)若(1+i)+(2-3i)=a +b i(a ,b ∈R ,i 是虚数单位),则a ,b 的值分别等于( ).A .3,-2B .3,2C .3,-3D .-1,4解析 (1+i)+(2-3i)=3-2i =a +b i ,∴a =3,b =-2,故选A. 答案 A2.(2015·新课标全国Ⅰ卷)已知复数z 满足(z -1)i =1+i ,则z =( ).A .-2-iB .-2+iC .2-iD .2+i解析 由(z -1)i =1+i ,两边同乘以-i ,则有z -1=1-i ,所以z =2-i. 答案 C3.(2015·山东卷)若复数z 满足z1-i=i ,其中i 为虚数单位,则z = ( ).A .1-iB .1+iC .-1-iD .-1+i解析 ∵z1-i=i ,∴z =i(1-i)=i -i 2=1+i ,∴z =1-i. 答案 A4.已知函数f (x )=ax 2-b ln x 在点P (1,1)处的切线与直线x -y +1=0垂直,则f ′(3)=( ).A .-5B .4C .5D .-4 解析 由f (1)=1得a =1, 所以f (x )=x 2-b ln x , 故f ′(x )=2x -bx,所以函数f (x )在点P 处的切线的斜率k =f ′(1)=2-b ,因为切线与直线x -y +1=0垂直, 所以(2-b )×1=-1,解得b =3, 所以f ′(x )=2x -3x,故f ′(3)=2×3-33=5.答案 C5.设函数f (x )=2x+ln x ,则( ).A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点 解析 ∵f (x )=2x+ln x (x >0),∴f ′(x )=-2x 2+1x,由f ′(x )=0解得x =2.当x ∈(0,2)时,f ′(x )<0,f (x )为减函数; 当x ∈(2,+∞)时,f ′(x )>0,f (x )为增函数.x =2为f (x )的极小值点.答案 D6.设函数f (x )=ax 2+bx +c (a ,b ,c ∈R ).若x =-1为函数f (x )e x的一个极值点,则下列图象不可能为y =f (x )的图象是( ).解析 设h (x )=f (x )e x,则h ′(x )=(2ax +b )e x +(ax 2+bx +c )e x =(ax 2+2ax +bx +b +c )e x. 由x =-1为函数f (x )e x的一个极值点. ∴c -a =0,∴c =a . ∴f (x )=ax 2+bx +a .若方程ax 2+bx +a =0有两根x 1,x 2, 则x 1x 2=a a=1,D 中图象一定不满足条件. 答案 D7.已知函数f (x )=x (ln x -ax )有两个极值点,则实数a 的取值范围是( ).A .(-∞,0) B.⎝ ⎛⎭⎪⎫0,12 C .(0,1)D .(0,+∞)解析 由题知,x >0,f ′(x )=ln x +1-2ax ,由于函数f (x )有两个极值点,则f ′(x )=0有两个不等的正根,即函数y =ln x +1与y =2ax 的图象有两个不同的交点(x >0),则a >0;设函数y =ln x +1上任一点(x 0,1+ln x 0)处的切线为l ,则k l =y ′=1x 0,当l过坐标原点时,1x 0=1+ln x 0x 0⇒x 0=1,令2a =1⇒a =12,结合图象知0<a <12,故选B.答案 B8.定义在R 上的函数f (x )的导函数为f ′(x ),已知f (x +1)是偶函数,且 (x -1)f ′(x )<0.若x 1<x 2,且x 1+x 2>2,则f (x 1)与f (x 2)的大小关系是( ).A .f (x 1)<f (x 2)B .f (x 1)=f (x 2)C .f (x 1)>f (x 2)D .不确定解析 由(x -1)f ′(x )<0可知,当x >1时,f ′(x )<0,函数递减.当x <1时,f ′(x )>0,函数递增;因为函数f (x +1)是偶函数,所以f (x +1)=f (1-x ),f (x )=f (2-x ),即函数的对称轴为x =1.所以若1<x 1<x 2,则f (x 1)>f (x 2).若x 1<1,则x 2>2-x 1>1,此时由f (x 2)<f (2-x 1),即f (x 2)<f (2-x 1)=f (x 1),综上f (x 1)>f (x 2).答案 C9.(2015·北京卷)复数i(1+i)的实部为________.解析 i(1+i)=i +i 2=-1+i ,实部为-1. 答案 -110.曲线y =x (3ln x +1)在点(1,1)处的切线方程为________________.解析 y ′=3ln x +1+x ·3x=3ln x +4,由导数的几何意义,k =y ′|x =1=4, ∴切线方程为y -1=4(x -1), 即y =4x -3. 答案 y =4x -311.函数f (x )=x 3-3ax +b (a >0)的极大值为6,极小值为2,则f (x )的单调递减区间是______.解析 令f ′(x )=3x 2-3a =0,得x =a 或-a .f (x ),f ′(x )随x 的变化情况如下表: x (-∞,-a )- a (-a ,a )a(a ,+∞)f ′(x ) +-0 +f (x )极大值极小值从而⎩⎨⎧-a 3-3a -a +b =6,a 3-3a a +b =2,得⎩⎪⎨⎪⎧a =1,b =4,所以f (x )的单调递减区间是(-1,1). 答案 (-1,1)12.已知函数f (x )=1-xax+ln x ,若函数f (x )在[1,+∞)上为增函数,则正实数a 的取值范围是______.解析 ∵f (x )=1-xax+ln x ,∴f ′(x )=ax -1ax 2(a >0), ∵函数f (x )在[1,+∞)上为增函数, ∴f ′(x )=ax -1ax 2≥0对x ∈[1,+∞)恒成立, ∴ax -1≥0对x ∈[1,+∞)恒成立, 即a ≥1x对x ∈[1,+∞)恒成立,∴a ≥1. 答案 [1,+∞)13.已知i 是虚数单位,a ,b ∈R ,复数z =1+a i 满足z 2+z =1+b i ,求a 2+b 2的值.解 由z =1+a i ,且z 2+z =1+b i ,得 1+2a i -a 2+1+a i =1+b i , 即1-a 2+3a i =b i ,则有⎩⎪⎨⎪⎧1-a 2=0,3a =b ,故⎩⎪⎨⎪⎧a 2=1,b 2=9,所以a 2+b 2=10.14.已知函数f (x )=-a ln x +2a2x+x (a ≠0),(1)若曲线y =f (x )在点(1,f (1))处的切线与直线x -2y =0垂直,求实数a 的值; (2)讨论函数f (x )的单调性.解 由已知得,f (x )的定义域为{x |x >0},f ′(x )=-a x -2a 2x2+1(x >0).(1)根据题意,有f ′(1)=-2, ∴-a -2a 2+1=-2, 即2a 2+a -3=0. 解得a =1,或a =-32.(2)∵f ′(x )=-a x -2a 2x 2+1=x 2-ax -2a 2x 2=x +ax -2ax 2(x >0).①当a >0时,由f ′(x )>0,及x >0得x >2a ; 由f ′(x )<0,及x >0得0<x <2a .∴当a >0时,函数f (x )在(2a ,+∞)上单调递增, 在(0,2a )上单调递减.②当a <0时,由f ′(x )>0,及x >0得x >-a ; 由f ′(x )<0,及x >0得0<x <-a .∴当a <0时,函数f (x )在(0,-a )上单调递减, 在(-a ,+∞)上单调递增. 15.已知函数f (x )=x -a x -2,x ∈(1,+∞).(1)求函数f (x )的单调区间;(2)函数f (x )在区间[2,+∞)上是否存在最小值,若存在,求出最小值,若不存在,请说明理由. 解 (1)f ′(x )=x --x +2a -x -4,x ∈(1,+∞).由f ′(x )=0,得x 1=1,或x 2=2a -1.①当2a -1≤1,即a ≤1时,在(1,+∞)上,f ′(x )<0,f (x )单调递减;②当2a -1>1,即a >1时,在(1,2a -1)上,f ′(x )>0,f (x )单调递增,在(2a -1,+∞)上,f ′(x )<0,f (x )单调递减.综上所述,a ≤1时,f (x )的减区间为(1,+∞);a >1时,f (x )的增区间为(1,2a -1),f (x )的减区间为(2a -1,+∞).(2)①当a ≤1时,由(1)知f (x )在[2,+∞)上单调递减,不存在最小值; ②当a >1时,若2a -1≤2,即a ≤32时,f (x )在[2,+∞)上单调递减,不存在最小值;若2a -1>2,即a >32 时,f (x )在[2,2a -1)上单调递增,在(2a -1,+∞)上单调递减,因为f (2a -1)=a -1a -2>0,且当x >2a -1时,x -a >a -1>0,所以当x ≥2a -1时,f (x )>0.又因为f (2)=2-a ,所以当2-a ≤0,即a ≥2时,f (x )有最小值2-a ;当2-a >0,即32<a <2时,f (x )没有最小值.综上所述:当a ≥2时,f (x )有最小值2-a ;当a <2时,f (x )没有最小值.16.已知函数f (x )=ax ln x 图象在点(e ,f (e))处的切线与直线y =2x 平行,g (x )=x 2-tx -2.(1)求函数f (x )的解析式;(2)求函数f (x )在[n ,n +2](n >0)上的最小值;(3)对一切x ∈(0,e],3f (x )≥g (x )恒成立,求实数t 的取值范围.解 (1)由f (x )在点(e ,f (e))处的切线方程与直线2x -y =0平行,得该切线斜率为2,即f ′(e)=2.又∵f ′(x )=a (ln x +1),∴a (ln e +1)=2,a =1, 所以f (x )=x ln x .(2)由(1)知f ′(x )=ln x +1,显然f ′(x )=0时,x =e -1,当x ∈⎝ ⎛⎭⎪⎫0,1e 时,f ′(x )<0,所以函数f (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时f ′(x )>0,所以函数f (x )在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增,①当1e ∈(n ,n +2]时,f (x )min =f ⎝ ⎛⎭⎪⎫1e =-1e ;②当1e≤n <n +2时,函数f (x )在[n ,n +2]上单调递增,因此f (x )min =f (n )=n ln n ;所以f (x )min=⎩⎪⎨⎪⎧-1e ⎝ ⎛⎭⎪⎫0<n <1e ,n ln n ⎝ ⎛⎭⎪⎫n ≥1e .(3)对一切x ∈(0,e],3f (x )≥g (x )恒成立, 又g (x )=x 2-tx -2, ∴3x ln x ≥x 2-tx -2, 即t ≥x -3ln x -2x.设h (x )=x -3ln x -2x,x ∈(0,e],则h ′(x )=1-3x +2x 2=x 2-3x +2x2=x -x -x2,由h ′(x )=0得x =1或2,∴x ∈(0,1),h ′(x )>0,h (x )单调递增,x ∈(1,2),h ′(x )<0,h (x )单调递减,x ∈(2,e),h ′(x )>0,h (x )单调递增,∴h (x )极大值=h (1)=-1,且h (e)=e -3-2e -1<-1, 所以h (x )max =h (1)=-1.因为对一切x ∈(0,e],3f (x )≥g (x )恒成立,∴t≥h(x)max=-1.故实数t的取值范围是[-1,+∞).。
一、复数选择题1.设复数1iz i=+,则z 的虚部是( )A .12B .12iC .12-D .12i -2.212ii+=-( ) A .1B .−1C .i -D .i3.若复数z 满足()13i z i +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( ) A .z 的实部是1 B .z 的虚部是1C .z =D .复数z 在复平面内对应的点在第四象限4.在复平面内复数Z=i (1﹣2i )对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限5.已知复数21iz i=-,则复数z 在复平面内对应点所在象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限6.若复数1z i =-,则1zz=-( )A B .2C .D .47.若复数z 满足()322iz i i -+=+,则复数z 的虚部为( ) A .35B .35i -C .35D .35i8.若1m ii+-是纯虚数,则实数m 的值为( ).A .1-B .0C .1D9.已知复数z 满足202122z i i i+=+-+,则复数z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限10.已知复数1z i =+,z 为z 的共轭复数,则()1z z ⋅+=( )A B .2C .10D11.复数11z =,2z 由向量1OZ 绕原点O 逆时针方向旋转3π而得到.则21arg()2z z -的值为( )A .6πB .3π C .23πD .43π 12.若复数z 满足213z z i -=+,则z =( ) A .1i + B .1i - C .1i -+D .1i --13.已知复数z 满足()1+243i z i =+,则z 的虚部是( ) A .-1 B .1C .i -D .i14.复数22(1)1i i-+=-( ) A .1+iB .-1+iC .1-iD .-1-i15.若复数()()1i 3i a +-(i 为虚数单位)的实部和虚部互为相反数,则实数a =( ) A .1-B .12-C .13D .1二、多选题16.i 是虚数单位,下列说法中正确的有( ) A .若复数z 满足0z z ⋅=,则0z =B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数()z a ai a R =+∈,则z 可能是纯虚数D .若复数z 满足234z i =+,则z 对应的点在第一象限或第三象限 17.已知复数cos sin 22z i ππθθθ⎛⎫=+-<< ⎪⎝⎭(其中i 为虚数单位)下列说法正确的是( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .1z =D .1z的虚部为sin θ 18.已知复数z 满足220z z +=,则z 可能为( ). A .0B .2-C .2iD .2i+1-19.下面是关于复数21iz =-+的四个命题,其中真命题是( )A .||z =B .22z i =C .z 的共轭复数为1i -+D .z 的虚部为1-20.下列四个命题中,真命题为( ) A .若复数z 满足z R ∈,则z R ∈ B .若复数z 满足1R z∈,则z R ∈ C .若复数z 满足2z ∈R ,则z R ∈ D .若复数1z ,2z 满足12z z R ⋅∈,则12z z =21.设复数z 满足1z i z+=,则下列说法错误的是( )A .z 为纯虚数B .z 的虚部为12i -C .在复平面内,z 对应的点位于第三象限D .2z =22.已知复数1cos 2sin 222z i ππθθθ⎛⎫=++-<< ⎪⎝⎭(其中i 为虚数单位),则( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .2cos z θ=D .1z 的实部为12- 23.复数z 满足233232iz i i+⋅+=-,则下列说法正确的是( )A .z 的实部为3-B .z 的虚部为2C .32z i =-D .||z =24.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )A .复数z 的虚部为iB .z =C .复数z 的共轭复数1z i =-D .复数z 在复平面内对应的点在第一象限25.已知i 为虚数单位,以下四个说法中正确的是( ).A .234i i i i 0+++=B .3i 1i +>+C .若()2z=12i +,则复平面内z 对应的点位于第四象限D .已知复数z 满足11z z -=+,则z 在复平面内对应的点的轨迹为直线 26.已知复数122,2z i z i =-=则( ) A .2z 是纯虚数 B .12z z -对应的点位于第二象限C .123z z +=D .12z z =27.已知复数z 的共轭复数为z ,且1zi i =+,则下列结论正确的是( )A .1z +=B .z 虚部为i -C .202010102z =-D .2z z z +=28.已知复数()(()()211z m m m i m R =-+-∈,则下列说法正确的是( )A.若0m =,则共轭复数1z =- B .若复数2z =,则m C .若复数z 为纯虚数,则1m =± D .若0m =,则2420z z ++=29.以下命题正确的是( )A .0a =是z a bi =+为纯虚数的必要不充分条件B .满足210x +=的x 有且仅有iC .“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件D .已知()f x =()1878f x x '=30.已知复数z ,下列结论正确的是( ) A .“0z z +=”是“z 为纯虚数”的充分不必要条件 B .“0z z +=”是“z 为纯虚数”的必要不充分条件 C .“z z =”是“z 为实数”的充要条件 D .“z z ⋅∈R ”是“z 为实数”的充分不必要条件【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.A 【分析】根据复数除法运算整理得到,根据虚部定义可得到结果. 【详解】 ,的虚部为. 故选:. 解析:A 【分析】根据复数除法运算整理得到z ,根据虚部定义可得到结果. 【详解】()()()1111111222i i i i z i i i i -+====+++-,z ∴的虚部为12.故选:A .2.D 【分析】利用复数的除法运算即可求解. 【详解】 , 故选:D解析:D 【分析】利用复数的除法运算即可求解. 【详解】()()()()2221222255121212145i i i i i ii i i i i +++++====--+-, 故选:D3.C 【分析】利用复数的除法运算求出,即可判断各选项. 【详解】 , ,则的实部为2,故A 错误;的虚部是,故B 错误; ,故C 正;对应的点为在第一象限,故D 错误. 故选:C.解析:C 【分析】利用复数的除法运算求出z ,即可判断各选项. 【详解】()13i z i +=+,()()()()3132111i i i z i i i i +-+∴===-++-, 则z 的实部为2,故A 错误;z 的虚部是1-,故B 错误;z ==,故C 正;2z i =+对应的点为()2,1在第一象限,故D 错误.故选:C.4.A 【解析】试题分析:根据复数乘法的运算法则,我们可以将复数Z 化为a=bi (a ,b ∈R )的形式,分析实部和虚部的符号,即可得到答案. 解:∵复数Z=i (1﹣2i )=2+i ∵复数Z 的实部2>0,虚解析:A 【解析】试题分析:根据复数乘法的运算法则,我们可以将复数Z 化为a=bi (a ,b ∈R )的形式,分析实部和虚部的符号,即可得到答案. 解:∵复数Z=i (1﹣2i )=2+i ∵复数Z 的实部2>0,虚部1>0 ∴复数Z 在复平面内对应的点位于第一象限 故选A点评:本题考查的知识是复数的代数表示法及其几何意义,其中根据复数乘法的运算法则,将复数Z 化为a=bi (a ,b ∈R )的形式,是解答本题的关键.5.B 【分析】对复数进行化简,再得到在复平面内对应点所在的象限. 【详解】,在复平面内对应点为,在第二象限. 故选:B.解析:B 【分析】对复数z 进行化简,再得到z 在复平面内对应点所在的象限. 【详解】21i z i =-()()()2111i i i i +=+-()1+1+i i i ==-,z 在复平面内对应点为()1,1-,在第二象限. 故选:B.6.A 【分析】将代入,利用复数的除法运算化简,再利用复数的求模公式求解. 【详解】 由,得, 则, 故选:A.解析:A 【分析】 将1z i =-代入1zz-,利用复数的除法运算化简,再利用复数的求模公式求解. 【详解】由1z i =-,得2111z i i ii z i i---===---,则11zi z=--==-,故选:A.7.A 【分析】由复数的除法法则和乘法法则计算出,再由复数的定义得结论. 【详解】 由题意,得, 其虚部为,故选:A.解析:A 【分析】由复数的除法法则和乘法法则计算出z ,再由复数的定义得结论. 【详解】 由题意,得()()()()()23343313343434552i i ii z ii i i i ----====-++-+, 其虚部为35, 故选:A.8.C 【分析】对复数进行化简根据实部为零,虚部不为零建立等量关系和不等关系即可得解. 【详解】 由题是纯虚数, 为纯虚数, 所以m=1. 故选:C 【点睛】此题考查复数的运算和概念辨析,关键在于熟解析:C 【分析】对复数进行化简根据实部为零,虚部不为零建立等量关系和不等关系即可得解. 【详解】 由题1m ii+-是纯虚数, ()()()()()()21111111222m i i m m i i m m i m i i i i +++++++-===+--+为纯虚数, 所以m =1. 故选:C 【点睛】此题考查复数的运算和概念辨析,关键在于熟练掌握复数的运算法则.9.C 【分析】由已知得到,然后利用复数的乘法运算法则计算,利用复数的周期性算出的值,最后利用复数的几何意义可得结果. 【详解】由题可得,,所以复数在复平面内对应的点为,在第三象限, 故选:C .解析:C 【分析】由已知得到2021(2)(2)i i iz -++-=,然后利用复数的乘法运算法则计算(2)(2)i i -++,利用复数n i 的周期性算出2021i 的值,最后利用复数的几何意义可得结果. 【详解】由题可得,2021(2)(2)5i z i ii -+=+-=--,所以复数z 在复平面内对应的点为(5,1)--,在第三象限, 故选:C .10.D 【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案. 【详解】 因为, 所以,, 所以, 故选:D.解析:D 【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案. 【详解】 因为1z i =+,所以1z i =-,12z i +=+,所以()()()1123z z i i i ⋅+=-⋅+=-== 故选:D.11.C 【分析】写出复数的三角形式,绕原点逆时针方向旋转得到复数的三角形式,从而求得的三角形式得解. 【详解】 ,,所以复数在第二象限,设幅角为,故选:C 【点睛】在复平面内运用复数的三解析:C 【分析】写出复数11z =的三角形式1cos 0sin 0z i =+,绕原点O 逆时针方向旋转3π得到复数2z 的三角形式,从而求得212z z -的三角形式得解. 【详解】11z =,1cos 0sin 0z i ∴=+,121(cos sin )3322Z i O OZ ππ=+=+2111()222z z --∴=+所以复数在第二象限,设幅角为θ,tan θ=23πθ∴=故选:C 【点睛】在复平面内运用复数的三角形式是求得幅角的关键.12.A 【分析】采用待定系数法,设,由复数运算和复数相等可求得,从而得到结果. 【详解】 设,则, ,,解得:, . 故选:A.解析:A 【分析】采用待定系数法,设(),z a bi a b R =+∈,由复数运算和复数相等可求得,a b ,从而得到结果. 【详解】设(),z a bi a b R =+∈,则z a bi =-,()()22313z z a bi a bi a bi i ∴-=+--=+=+,133a b =⎧∴⎨=⎩,解得:11a b =⎧⎨=⎩,1z i ∴=+. 故选:A. 13.B 【分析】利用复数代数形式的乘除运算化简,再由共轭复数的概念求得,则答案可求. 【详解】 由, 得, ,则的虚部是1. 故选:.解析:B 【分析】利用复数代数形式的乘除运算化简,再由共轭复数的概念求得z ,则答案可求. 【详解】由(12)43i z i +=+, 得43(43)(12)105212(12)(12)5i i i iz i i i i ++--====-++-, ∴2z i =+,则z 的虚部是1. 故选:B .14.C 【分析】直接根据复数代数形式的乘除运算法则计算可得; 【详解】 解: 故选:C解析:C 【分析】直接根据复数代数形式的乘除运算法则计算可得; 【详解】解:22(1)1i i-+- ()()()()2211211i i i i i +=-++-+ 12i i =+-1i =-故选:C15.B【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解.【详解】解:,所以复数的实部为,虚部为,因为实部和虚部互为相反数,所以,解得 故选:B解析:B【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解.【详解】解:()()()()21i 3i 33331a i ai ai a a i +-=-+-=++-,所以复数()()1i 3i a +-的实部为3a +,虚部为31a -,因为实部和虚部互为相反数,所以3310a a ++-=,解得12a =- 故选:B二、多选题16.AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题解析:AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题中条件,求出复数,由几何意义,即可判断出结果.【详解】A 选项,设(),z a bi a b R =+∈,则其共轭复数为(),z a bi a b R =-∈, 则220z z a b ⋅=+=,所以0a b ,即0z =;A 正确;B 选项,若11z =,2z i =,满足1212z z z z +=-,但12z z i =不为0;B 错;C 选项,若复数()z a ai a R =+∈表示纯虚数,需要实部为0,即0a =,但此时复数0z =表示实数,故C 错;D 选项,设(),z a bi a b R =+∈,则()2222234z a bi a abi b i =+=+-=+, 所以22324a b ab ⎧-=⎨=⎩,解得21a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩,则2z i =+或2z i =--, 所以其对应的点分别为()2,1或()2,1--,所以对应点的在第一象限或第三象限;D 正确. 故选:AD.17.BC【分析】分、、三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数,利用复数的概念可判断D 选项的正误.【详解】对于AB 选项,当时,,,此时复数在复平面内的点解析:BC【分析】 分02θπ-<<、0θ=、02πθ<<三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数1z ,利用复数的概念可判断D 选项的正误. 【详解】对于AB 选项,当02θπ-<<时,cos 0θ>,sin 0θ<,此时复数z 在复平面内的点在第四象限;当0θ=时,1z R =-∈; 当02πθ<<时,cos 0θ>,sin 0θ>,此时复数z 在复平面内的点在第一象限.A 选项错误,B 选项正确;对于C 选项,1z ==,C 选项正确;对于D 选项,()()11cos sin cos sin cos sin cos sin cos sin i i z i i i θθθθθθθθθθ-===-++⋅-, 所以,复数1z的虚部为sin θ-,D 选项错误. 故选:BC.18.AC【分析】令,代入原式,解出的值,结合选项得出答案.【详解】令,代入,得,解得,或,或,所以,或,或.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.解析:AC【分析】令()i ,z a b a b R =+∈,代入原式,解出,a b 的值,结合选项得出答案.【详解】令()i ,z a b a b R =+∈,代入220z z +=,得222i 0a b ab -+=,解得00a b =⎧⎨=⎩,或02a b =⎧⎨=⎩,或02a b =⎧⎨=-⎩, 所以0z =,或2i z =,或2i z =-.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.19.ABCD【分析】先根据复数的除法运算计算出,再依次判断各选项.【详解】,,故A 正确;,故B 正确;的共轭复数为,故C 正确;的虚部为,故D 正确; 故选:ABCD.【点睛】本题考查复数的除法解析:ABCD【分析】先根据复数的除法运算计算出z ,再依次判断各选项.【详解】()()()2121111i z i i i i --===---+-+--,z ∴==,故A 正确;()2212z i i =--=,故B 正确;z 的共轭复数为1i -+,故C 正确;z 的虚部为1-,故D 正确;故选:ABCD.【点睛】本题考查复数的除法运算,以及对复数概念的理解,属于基础题.20.AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数满足,设,其中,则,则选项A 正确;对选项B ,若复数满足,设,其中,且,则,则选项B 正确;对选项C ,若复数满足,设解析:AB 【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数z 满足z R ∈,设z a =,其中a R ∈,则z R ∈,则选项A 正确; 对选项B ,若复数z 满足1R z ∈,设1a z =,其中a R ∈,且0a ≠, 则1z R a=∈,则选项B 正确; 对选项C ,若复数z 满足2z ∈R ,设z i ,则21z R =-∈,但z i R =∉,则选项C 错误;对选项D ,若复数1z ,2z 满足12z z R ⋅∈,设1z i =,2z i =,则121z z ⋅=-∈R , 而21z i z =-≠,则选项D 错误;故答案选:AB【点睛】本题主要考查复数的运算,同时考查复数的定义和共轭复数,特值法为解决本题的关键,属于简单题.21.AB【分析】先由复数除法运算可得,再逐一分析选项,即可得答案.【详解】由题意得:,即,所以z 不是纯虚数,故A 错误;复数z 的虚部为,故B 错误;在复平面内,对应的点为,在第三象限,故C 正确解析:AB【分析】 先由复数除法运算可得1122z i =--,再逐一分析选项,即可得答案. 【详解】由题意得:1z zi +=,即111122z i i -==---, 所以z 不是纯虚数,故A 错误;复数z 的虚部为12-,故B 错误; 在复平面内,z 对应的点为11(,)22--,在第三象限,故C 正确;2z ==,故D 正确. 故选:AB【点睛】本题考查复数的除法运算,纯虚数、虚部的概念,复平面内点所在象限、复数求模的运算等知识,考查计算求值的能力,属基础题.22.BC【分析】由可得,得,可判断A 选项,当虚部,时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得,的实部是,可判断D 选项.【详解】因为,所以,所以,所以,所以A 选解析:BC【分析】 由22ππθ-<<可得2πθπ-<<,得01cos22θ<+≤,可判断A 选项,当虚部sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得11cos 2sin 212cos 2i z θθθ+-=+,1z 的实部是1cos 2122cos 22θθ+=+,可判断D 选项.【详解】因为22ππθ-<<,所以2πθπ-<<,所以1cos21θ-<≤,所以01cos22θ<+≤,所以A 选项错误;当sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,复数z 是实数,故B 选项正确;2cos z θ===,故C 选项正确:()()111cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 212cos 2i i z i i i θθθθθθθθθθθ+-+-===+++++-+,1z 的实部是1cos 2122cos 22θθ+=+,故D 不正确. 故选:BC【点睛】本题主要考查复数的概念,复数模的计算,复数的运算,以及三角恒等变换的应用,属于中档题.23.AD【分析】由已知可求出,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】解:由知,,即,所以的实部为,A 正确;的虚部为-2,B 错误;,C 错误;,D 正确;故选:A解析:AD【分析】由已知可求出32z i =--,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】解:由233232i z i i +⋅+=-知,232332i z i i +⋅=--,即()()()2233232232313i i i z i i ---=-=+ 39263213i i --==--,所以z 的实部为3-,A 正确;z 的虚部为-2,B 错误;32z i =-+,C 错误;||z ==D 正确; 故选:AD.【点睛】 本题考查了复数的除法运算,考查了复数的概念,考查了共轭复数的求解,考查了复数模的求解,属于基础题.24.BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数,所以其虚部为,即A 错误;,故B 正确;解析:BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数1z i =+,所以其虚部为1,即A 错误;z ==B 正确;复数z 的共轭复数1z i =-,故C 正确;复数z 在复平面内对应的点为()1,1,显然位于第一象限,故D 正确.故选:BCD.【点睛】本题主要考查复数的概念,复数的模,复数的几何意义,以及共轭复数的概念,属于基础题型.25.AD【分析】根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简,得出,从而判断D.【详解】,则A 正确;虚数不能比较大小,则B 错误;,则,解析:AD【分析】根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简11z z -=+,得出0x =,从而判断D.【详解】234110i i i i i i +++=--+=,则A 正确;虚数不能比较大小,则B 错误;()221424341z i i i i =++=+-+=,则34z i =--,其对应复平面的点的坐标为(3,4)--,位于第三象限,则C 错误; 令,,z x yi x y R =+∈,|1||1z z -=+∣,=,解得0x =则z 在复平面内对应的点的轨迹为直线,D 正确;故选:AD【点睛】本题主要考查了判断复数对应的点所在的象限,与复数模相关的轨迹(图形)问题,属于中档题.26.AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算及,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,对应的解析:AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算12z z +及12z z ,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,1223z z i -=-对应的点位于第四象限,故B 错;对于C 选项,122+=+z z i ,则12z z +==,故C 错;对于D 选项,()122224z z i i i ⋅=-⋅=+,则12z z ==D 正确. 故选:AD【点睛】本题考查复数的相关概念及复数的计算,较简单.27.ACD【分析】先利用题目条件可求得,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由可得,,所以,虚部为;因为,所以,.故选:ACD .【解析:ACD【分析】先利用题目条件可求得z ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由1zi i =+可得,11i z i i+==-,所以12z i +=-==,z 虚部为1-;因为2422,2z i z =-=-,所以()5052020410102z z ==-,2211z z i i i z +=-++=-=.故选:ACD .【点睛】本题主要考查复数的有关概念的理解和运用,复数的模的计算公式的应用,复数的四则运算法则的应用,考查学生的数学运算能力,属于基础题. 28.BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,时,,则,故A 错误;对于B ,若复数,则满足,解得,故B 正确;对于C ,若复数z 为纯虚数,则满足,解得,解析:BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,0m=时,1z =-,则1z =-,故A 错误;对于B ,若复数2z=,则满足(()21210m m m ⎧-=⎪⎨-=⎪⎩,解得m ,故B 正确; 对于C ,若复数z 为纯虚数,则满足(()21010m m m ⎧-=⎪⎨--≠⎪⎩,解得1m =-,故C 错误; 对于D ,若0m =,则1z =-+,()()221420412z z ++=+--+=+,故D 正确.故选:BD.【点睛】本题主要考查对复数相关概念的理解,注意不同情形下的取值要求,是一道基础题.29.AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式解析:AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程210x +=可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式可判断D 选项的正误.综合可得出结论.【详解】对于A 选项,若复数z a bi =+为纯虚数,则0a =且0b ≠,所以,0a =是z a bi =+为纯虚数的必要不充分条件,A 选项正确;对于B 选项,解方程210x +=得x i =±,B 选项错误;对于C 选项,当(),x a b ∈时,若()0f x '>,则函数()f x 在区间(),a b 内单调递增, 即“在区间(),a b 内()0f x '>”⇒“()f x 在区间(),a b 内单调递增”.反之,取()3f x x =,()23f x x '=,当()1,1x ∈-时,()0f x '≥,此时,函数()y f x =在区间()1,1-上单调递增,即“在区间(),a b 内()0f x '>”⇐/“()f x 在区间(),a b 内单调递增”.所以,“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件.C 选项正确;对于D 选项,()11172488f x x x ++===,()1878f x x -'∴=,D 选项错误. 故选:AC.【点睛】本题考查命题真假的判断,涉及充分条件与必要条件的判断、实系数方程的根以及导数的计算,考查推理能力与计算能力,属于中等题. 30.BC【分析】设,可得出,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设,则,则,若,则,,若,则不为纯虚数,所以,“”是“为纯虚数”必要不充分解析:BC【分析】设(),z a bi a b R =+∈,可得出z a bi =-,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设(),z a bi a b R =+∈,则z a bi =-, 则2z z a +=,若0z z +=,则0a =,b R ∈,若0b =,则z 不为纯虚数, 所以,“0z z +=”是“z 为纯虚数”必要不充分条件; 若z z =,即a bi a bi +=-,可得0b =,则z 为实数,“z z =”是“z 为实数”的充要条件;22z z a b ⋅=+∈R ,z ∴为虚数或实数,“z z ⋅∈R ”是“z 为实数”的必要不充分条件.故选:BC.【点睛】本题考查充分条件、必要条件的判断,同时也考查了共轭复数、复数的基本概念的应用,考查推理能力,属于基础题.。
高三数学练习题—导数与复数一、选择题(本大题共12小题,每小题5分,共60分,在四个选项中,只有一项是符合题目要求) 1.若复数iia 213++(a ∈R ,i 为虚数单位)是纯虚数,则实数a 的值为( )A .-2B .4C .-6D .6 2.设曲线2x y =在点P 处的切线斜率为3,则点P 的坐标为( )A .(3,9)B .(-3,9)C .(49,23) D .(49,23-) 3.已知)32(33i z i -=-,那么复数z 在复平面内对应的点位于 ( )A .第一象限B .第二象限C .第三象限D .第四象限 4.函数0)(x x x f =在处连续是0)(x x x f =在处可导的( )A .充分不必要条件B .必要不充分条件C .充要条件D .不充分不必要条件5.若(m +i )3为实数,则正实数m 的值为( )A .1+23B .33 C .3D .23 6.已知二函数344,3x y a x y =+=,若它们的图象有公共点,且在公共点处的切线重合,则切斜线率为( )A .0B .12C .0或12D .4或17.设复数,|sin ||cos |i z θθ+=,则函数z z f ⋅=)(θ的性质适合( )A .最小正周期为1,2π值域为]2,1[B .最小正周期为π,值域为]2,1[C .最小正周期为1,2π值域为2,0[]D .最小正周期为π,值域为]2,0[8.一点沿直线运动,如果由始点起经过t 秒后的距离为t t t t s 873741234-+-=,那么速度为零的时刻是 ( )A .1秒末B .2秒末C .2,4秒末D .1,2,4秒末 9.复数.111-++-=ii z 在复平面内,z 所对应的点在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限10.设,)(,02c bx ax x f a ++=>曲线)(x f y =在点))(,(00x f x P 处切线的倾斜角的取值范围为]4,0[π,则P 到曲线)(x f y =对称轴距离的取值范围为 ( )A .[a1,0] B .]21,0[aC .|]2|,0[a b D .|]21|,0[ab - 11.若二次函数12)2(24)(22+----=p p x p x x f 在区间[-1,1]内至少存在一点C (c ,0),使0)(>c f ,则实数p 的取值范围是 ( )A .233<<-pB .3-≤pC 121<<-p .D .213-<<-p 或231<<p12.已知函数1)6()(23++++=x a ax x x f 有极大值和极小值,则a 的取值范围是( )A .21<<-aB .63<<-aC .21>-<a a 或D .63>-<a a 或二、填空题:(本大题共4小题,每小题4分,共16分.).13.(05年全国卷3)已知复数00032,3,z i z z z z z =++=+复数满足z =则复数 .14.如果曲线03223x x x y x y =-=+=在与处的切线互相垂直,则x 0的值为 . 15.集合N M C z i z i z Z N C z x z M 则},|,||||{},1|1||{∈-=+=∈=-=是 .16.已知函数⎩⎨⎧≥+<+=)0(2sin )0(1)(x xb x e x f ax 在R 上可导,则a = ,b= .三、解答题:(本大题共6小题,共74分..)17.(本题满分12分) 已知复数z 1=cos θ-i ,z 2=sin θ+i ,求| z 1·z 2|的最大值和最小值.18.(本小题满分12分)设132<<a ,函数)11(23)(23≤≤-+-=x b ax x x f 的最大值为1,最小值为26-,求常数a 、b 的值.19.(本题满分12分)设z 为复数,在复平面上已知曲线C 1、C 2、C 3且C 1满足32|1||1|=++-z z ,C 2满足,2||=z C 3满足|,23||21|-=+z z C 1与C 3的两个公共点为A 、B ,分别过A 、B 作x 轴的平行线交C 2于M 、N 两点,OM 、ON 的倾角分别为α、β,(O 为原点),求cos(α+β)的值.20.(本小题满分12分)已知函数2)(23-=+++=x c bx ax x x f 在处取得极值,并且它的图象与直线33+-=x y 在点(1,0)处相切,求a 、b 、c 的值.21.(本小题满分12分)已知c bx ax x x f +++=23)(有极大值)(αf 和极小值)(βf .(1)求)(αf +)(βf 的值;(2)设曲线)(x f y =的极值点为A 、B ,求证:线段AB 的中点在)(x f y =上.22.已知函数].1,0[,274)(2∈--=x xx x f (Ⅰ)求)(x f 的单调区间和值域;(Ⅱ)设1≥a ,函数],1,0[],1,0[].1,0[,23)(0123∈∈∈--=x x x a x a x x g 总存在若对于任意使得)()(10x f x g =成立,求a 的取值范围.答案13.i 231-; 14.6363; 15.{0,2}; 16.a =2,b=2.三、解答题 17.解:.2sin 412cos sin 2)sin (cos )cos sin 1(|)sin (cos cos sin 1|||2222221θθθθθθθθθθθ+=+=-++=-++=⋅i z z故||21z z ⋅的最大值为,23最小值为2. …………12分18.解:)(333)(2a x x ax x x f -=-='当xf (1)的大小. …………6分…………9分∵0123)1()0(>-=--a f f ,∴f (x )的最大值为f (0)=b=1, 0)2()1(21)23(21)()1(23<-+=--=--a a a a a f f , ∴f (x )的最小值为f (-1).即2623123-=-=+--a b a ,∴36=a ,b=1. …………12分19.解:C 1为椭圆:.023:;2,;123322222=-+=+=+y x C y x C y x 为直线为圆设)sin 2,cos 3(),sin 2,cos 3(ββααB A 把A 、B 两点的坐标代入直线C 3的方程中,得 02sin 23cos 3=-⋅+αα① .02s i n 23c o s 3=-⋅+ββ② …………6分①—②得02sin 2cos 262sin 2sin 320)sin (sin 23)cos (cos 3=-++-+-=-+-βαβαβαβαβαβα即221tan 1652tancos().21671tan 2αβαβαβαβ+-+-∴=+===-+++故有 …………12分20.解:由曲线)(x f y =过(1,0)得01=+++c b a ①又ax x x f 23)(2+='+b 则0412)2(=+-=-'b a f ②323)1(-=++='b a f ③ ……9分.解①②③得6,8,1=-==c b a . ……12分.21.解:(1)b ax x x f ++='23)(2,由于)(x f 有极大值和极小值,α∴、0232=++b ax x 为β的两根,则=+++++++=+∴=-=+)()()()(,3,322323c b a c b a f f ba βββαααβααββα+-+++-+=++++++]2)[()](3)[(2)()()(232233αββαβααββαβαβαβαa c b ac ab a c a b b a a a b a c b 2322742)32()]3(2)32[()]32(33)32[(2)(323+-=+-+⋅--+-⋅⋅--=++βα…7分 (2)设=++⋅++⋅++=+c b a f f B f A 2)2()2()2(),(,()),(,(33βαβαβαβαββαα由)]()([2131272)3()3()3(323βαf f c ab a c a b a a a +=+-=+-⋅+-⋅+- 知AB 的中点在)(x f y =上 …………12分22.解:(I )对函数)(x f 求导,得222)2()72)(12()2(7164)(x x x x x x x f ----=--+-=' 令0)(='x f 解得.71==x x 或当x 变化时,)(),(x f x f '的变化情况如下表:所以,当)2,0(∈x 时,)(x f 是减函数;当)1,2(∈x 时,)(x f 是增函数.当]1,0[∈x 时,)(x f 的值域为[-4,-3].(II )对函数)(x g 求导,得).(3)(22a x x g -='因为1≥a ,当)1,0(∈x 时,.0)1(3)(2≤-<'a x g因此当)1,0(∈x 时,)(x g 为减函数,从而当]1,0[∈x 时有)].0(),1([)(g g x g ∈ 又,2)0(,321)1(2a g a a g -=--=即]1,0[∈x 时有].2,321[)(2a a a x g ---∈ 任给]1,0[1∈x ,]3,4[)(1--∈x f ,存在]1,0[0∈x 使得)()(10x f x g =,则].3,4[]2,321[2--⊃---a a 即⎩⎨⎧-≥--≤--.32,43212a a a解①式得 351-≤≥a a 或;解②式得.23≤a又1≥a ,故a 的取值范围为.231≤≤a①②。
专题能力训练17 复数与导数1.若复数z满足|z|=5,且(3+4i)z在复平面上对应的点在第二、四象限的角平分线上,|z-m|=5(m∈R),求z和m的值.2.已知复数z=,若z2+az+b=1+i(a,b∈R),求a+b的值.3.已知z,ω为复数,(1+3i)·z为纯虚数,ω=,且|ω|=5,求复数ω.4.设f'(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,若x>0时,xf'(x)-f(x)<0,求使得f(x)>0成立的x的取值X围.5.已知f(x)=x2-a ln x(a∈R).(1)求函数f(x)的单调区间;(2)设g(x)=f(x)+2x,若函数g(x)在区间[1,e]上不单调且仅在x=e处取得最大值,求a的取值X围.6.已知f(x)=ln x+.(1)当a<0时,求函数f(x)的单调区间;(2)若函数f(x)在区间[1,e]上的最小值是,求a的值.7.已知复数z=b i,是实数,其中i是虚数单位,b∈R.(1)求复数z;(2)若复数(m+z)2所表示的点在第一象限,某某数m的取值X围.8.已知函数f(x)=-2(x+a)ln x+x2-2ax-2a2+a,其中a>0.设g(x)是f(x)的导函数,讨论g(x)的单调性.9.设函数f(x)=ln(x+1)+a(x2-x),其中a∈R.讨论函数f(x)极值点的个数,并说明理由.参考答案专题能力训练17复数与导数1.解:设z=x+y i(x,y∈R),∵|z|=5,∴x2+y2=25.①∵(3+4i)z=(3+4i)(x+y i)=(3x-4y)+(4x+3y)i,它在复平面上对应的点在第二、四象限的角平分线上.∴它的实部与虚部互为相反数.∴3x-4y+4x+3y=0,即y=7x.代入①,得x=,y=或x=-,y=-.∴z=i或z=-i.当z=i时,z=1+7i,依题意|1+7i-m|=5,即(1-m)2+72=50,解得m=0或m=2.当z=-i时,z=-1-7i,同理可解得m=0或m=-2.故z=i,m=0或m=2;或z=-i,m=0或m=-2.2.解:z==1-i,由z2+az+b=1+i,得(1-i)2+a(1-i)+b=1+i,由复数相等得故a+b=1.3.解:设z=x+y i(x,y∈R),则(1+3i)·z=(x-3y)+(3x+y)i为纯虚数,所以x=3y≠0.因为|ω|==5,所以|z|==5.又x=3y,解得x=15,y=5;x=-15,y=-5.所以ω=±=±(7-i).4.解:当x>0时,令F(x)=,则F'(x)=<0,∴当x>0时,F(x)=为减函数.∵f(x)为奇函数,且由f(-1)=0,得f(1)=0,∴F(1)=0.在区间(0,1)上,F(x)>0;在(1,+∞)上,F(x)<0,即当0<x<1时,f(x)>0;当x>1时,f(x)<0.又f(x)为奇函数,∴当x∈(-∞,-1)时,f(x)>0;当x∈(-1,0)时,f(x)<0.综上可知,f(x)>0的解集为(-∞,-1)∪(0,1).故所求x的取值X围是(-∞,-1)∪(0,1).5.解:(1)∵f(x)=x2-a ln x,∴f'(x)=x-(x>0).∴若a≤0,则函数f(x)在(0,+∞)上单调递增;若a>0,则函数f(x)在(0,)上单调递减,在(,+∞)上单调递增.(2)∵g(x)=f(x)+2x,∴g'(x)=x-+2=(x>0).设h(x)=x2+2x-a(x>0),∵函数g(x)在区间[1,e]上不单调,∴g(x)在区间(1,e)上存在零点.∴⇒3<a<e2+2e.又∵g(x)在x=e处取得最大值,∴只需g(e)≥g(1),即a≤+2e-.综上所述,实数a的取值X围是.6.解:(1)函数f(x)的定义域为(0,+∞),f'(x)=,因为a<0,所以f'(x)>0.故函数f(x)在其定义域上是单调递增的.(2)①当a≤1时,f'(x)>0,函数f(x)在区间[1,e]上单调递增,其最小值为f(1)=a≤1,这与函数f(x)在区间[1,e]上的最小值是相矛盾.②当1<a<e时,在区间[1,a)上有f'(x)<0,函数f(x)单调递减,在区间(a,e]上有f'(x)>0,函数f(x)单调递增,所以函数f(x)的最小值为f(a)=ln a+1.由ln a+1=,得a=,符合条件.③当a≥e时,在区间[1,e)上有f'(x)<0,函数f(x)单调递减,其最小值为f(e)=2,这与最小值是相矛盾.综上所述,a的值为.7.解:(1)∵z=b i(b∈R),∴i.又是实数,∴=0,得b=-2.∴复数z=-2i.(2)由(1)得z=-2i,m∈R,则(m+z)2=(m-2i)2=(m2-4)-4m i,∵复数(m+z)2所表示的点在第一象限,∴得m<-2.∴实数m的取值X围是(-∞,-2).8.解:由已知,函数f(x)的定义域为(0,+∞),g(x)=f'(x)=2(x-a)-2ln x-2,所以g'(x)=2-=.当0<a<时,g(x)在区间上单调递增,在区间上单调递减;当a≥时,g(x)在区间(0,+∞)上单调递增.9.解:由题意知函数f(x)的定义域为(-1,+∞),f'(x)=+a(2x-1)=.令g(x)=2ax2+ax-a+1,x∈(-1,+∞).当a=0时,g(x)=1,此时f'(x)>0,函数f(x)在(-1,+∞)单调递增,无极值点;当a>0时,Δ=a2-8a(1-a)=a(9a-8).①当0<a≤时,Δ≤0,g(x)≥0,f'(x)≥0,函数f(x)在(-1,+∞)单调递增,无极值点;②当a>时,Δ>0,设方程2ax2+ax-a+1=0的两根为x1,x2(x1<x2),因为x1+x2=-,所以x1<-,x2>-.由g(-1)=1>0,可得-1<x1<-.所以当x∈(-1,x1)时,g(x)>0,f'(x)>0,函数f(x)单调递增,当x∈(x1,x2)时,g(x)<0,f'(x)<0,函数f(x)单调递减,当x∈(x2,+∞)时,g(x)>0,f'(x)>0,函数f(x)单调递增.因此函数有两个极值点.当a<0时,Δ>0,由g(-1)=1>0,可得x1<-1.当x∈(-1,x2)时,g(x)>0,f'(x)>0,函数f(x)单调递增;当x∈(x2,+∞)时,g(x)<0,f'(x)<0,函数f(x)单调递减;所以函数有一个极值点.综上所述,当a<0时,函数f(x)有一个极值点;当0≤a≤时,函数f(x)无极值点;当a>时,函数f(x)有两个极值点.。
高考数学《复数》真题练习含答案一、选择题1.[2024·新课标Ⅰ卷]若z z -1=1+i ,则z =( ) A .-1-i B .-1+iC .1-iD .1+i答案:C解析:由z z -1 =1+i ,可得z -1+1z -1 =1+i ,即1+1z -1 =1+i ,所以1z -1=i ,所以z -1=1i=-i ,所以z =1-i ,故选C. 2.[2024·新课标Ⅱ卷]已知z =-1-i ,则|z |=( )A .0B .1C .2D .2答案:C解析:由z =-1-i ,得|z |=(-1)2+(-1)2 =2 .故选C.3.[2023·新课标Ⅱ卷]在复平面内,(1+3i)(3-i)对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案:A解析:因为(1+3i)(3-i)=3-i +9i -3i 2=6+8i ,所以该复数在复平面内对应的点为(6,8),位于第一象限,故选A.4.[2023·新课标Ⅰ卷]已知z =1-i 2+2i,则z -z - =( ) A .-i B .iC .0D .1答案:A解析:因为z =1-i 2+2i =(1-i )22(1+i )(1-i ) =-12 i ,所以z - =12 i ,所以z -z - =-12 i -12i =-i.故选A. 5.|2+i 2+2i 3|=( )A .1B .2C .5D .5答案:C解析:|2+i 2+2i 3|=|2-1-2i|=|1-2i|=5 .故选C.6.设z =2+i 1+i 2+i5 ,则z - =( ) A .1-2i B .1+2iC .2-iD .2+i答案:B解析:z =2+i 1+i 2+i 5 =2+i 1-1+i =-i ()2+i -i 2 =1-2i ,所以z - =1+2i.故选B.7.[2022·全国甲卷(理),1]若z =-1+3 i ,则z z z --1=( ) A .-1+3 i B .-1-3 iC .-13 +33 iD .-13 -33i 答案:C解析:因为z =-1+3 i ,所以z z z --1=-1+3i (-1+3i )(-1-3i )-1 =-1+3i 1+3-1 =-13 +33i.故选C. 8.[2023·全国甲卷(文)]5(1+i 3)(2+i )(2-i )=( ) A .-1 B .1C .1-iD .1+i答案:C解析:由题意知,5(1+i 3)(2+i )(2-i ) =5(1-i )22-i2 =5(1-i )5 =1-i ,故选C. 9.(多选)[2024·山东菏泽期中]已知复数z =cos θ+isin θ⎝⎛⎭⎫-π2<θ<π2 (其中i 为虚数单位),下列说法正确的是( )A .复数z 在复平面上对应的点可能落在第二象限B .|z |=cos θC .z ·z - =1D .z +1z为实数 答案:CD解析:复数z =cos θ+isin θ⎝⎛⎭⎫-π2<θ<π2 (其中i 为虚数单位), 复数z 在复平面上对应的点(cos θ,sin θ)不可能落在第二象限,所以A 不正确; |z |=cos 2θ+sin 2θ =1,所以B 不正确;z ·z - =(cos θ+isin θ)(cos θ-isin θ)=cos 2θ+sin 2θ=1,所以C 正确;z +1z =cos θ+isin θ+1cos θ+isin θ=cos θ+isin θ+cos θ-isin θ=2cos θ为实数,所以D 正确.二、填空题10.若a +b i i(a ,b ∈R )与(2-i)2互为共轭复数,则a -b =________. 答案:-7解析:a +b i i =i (a +b i )i 2 =b -a i ,(2-i)2=3-4i ,因为这两个复数互为共轭复数,所以b =3,a =-4,所以a -b =-4-3=-7.11.i 是虚数单位,复数6+7i 1+2i=________. 答案:4-i解析:6+7i 1+2i =(6+7i )(1-2i )(1+2i )(1-2i )=6-12i +7i +145 =20-5i 5=4-i. 12.设复数z 1,z 2 满足|z 1|=|z 2|=2,z 1+z 2=3 +i ,则|z 1-z 2|=________. 答案:23解析:设复数z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则a 2+b 2=4,c 2+d 2=4,又z 1+z 2=(a +c )+(b +d )i =3 +i ,∴a +c =3 ,b +d =1,则(a +c )2+(b +d )2=a 2+c 2+b 2+d 2+2ac +2bd =4,∴8+2ac +2bd =4,即2ac +2bd =-4,∴|z 1-z 2|=(a -c )2+(b -d )2 =a 2+b 2+c 2+d 2-(2ac +2bd ) =8-(-4) =23 .[能力提升] 13.(多选)[2024·九省联考]已知复数z ,w 均不为0,则( )A .z 2=|z |2B .z z - =z 2|z |2C .z -w =z - -w -D .⎪⎪⎪⎪z w =||z ||w 答案:BCD解析:设z =a +b i(a ,b ∈R ),w =c +d i(c ,d ∈R );对A :z 2=(a +b i)2=a 2+2ab i -b 2=a 2-b 2+2ab i ,|z |2=(a 2+b 2 )2=a 2+b 2,故A 错误;对B: z z - =z 2z -·z ,又z - ·z =||z 2,即有z z - =z 2|z |2 ,故B 正确; 对C :z -w =a +b i -c -d i =a -c +(b -d )i ,则z -w =a -c -(b -d )i ,z - =a -b i ,w -=c -d i ,则z - -w - =a -b i -c +d i =a -c -(b -d )i ,即有z -w =z - -w - ,故C 正确; 对D :⎪⎪⎪⎪z w =⎪⎪⎪⎪⎪⎪a +b i c +d i =⎪⎪⎪⎪⎪⎪(a +b i )(c -d i )(c +d i )(c -d i ) =⎪⎪⎪⎪⎪⎪ac +bd -(ad -bc )i c 2+d 2 =(ac +bd c 2+d 2)2+(ad -bc c 2+d 2)2 =a 2c 2+2abcd +b 2d 2+a 2d 2-2abcd +b 2c 2(c 2+d 2)2 =a 2c 2+b 2d 2+a 2d 2+b 2c 2(c 2+d 2)2 =a 2c 2+b 2d 2+a 2d 2+b 2c 2c 2+d 2 ,||z ||w =a 2+b 2c 2+d2 =a 2+b 2×c 2+d 2c 2+d 2 =(a 2+b 2)(c 2+d 2)c 2+d 2 =a 2c 2+b 2c 2+a 2d 2+b 2d 2c 2+d 2 ,故⎪⎪⎪⎪z w =||z ||w ,故D 正确.故选BCD. 14.[2022·全国乙卷(理),2]已知z =1-2i ,且z +a z +b =0,其中a ,b 为实数,则( )A .a =1,b =-2B .a =-1,b =2C .a =1,b =2D .a =-1,b =-2答案:A解析:由z =1-2i 可知z - =1+2i.由z +a z - +b =0,得1-2i +a (1+2i)+b =1+a +b+(2a -2)i =0.根据复数相等,得⎩⎪⎨⎪⎧1+a +b =0,2a -2=0, 解得⎩⎪⎨⎪⎧a =1,b =-2.故选A. 15.[2023·全国甲卷(理)]设a ∈R ,(a +i)(1-a i)=2,则a =( )A .-2B .-1C .1D .2答案:C解析:∵(a +i)(1-a i)=a +i -a 2i -a i 2=2a +(1-a 2)i =2,∴2a =2且1-a 2=0,解得a =1,故选C.16.已知z (1+i)=1+a i ,i 为虚数单位,若z 为纯虚数,则实数a =________. 答案:-1解析:方法一 因为z (1+i)=1+a i ,所以z =1+a i 1+i =(1+a i )(1-i )(1+i )(1-i )=(1+a )+(a -1)i 2,因为z 为纯虚数, 所以1+a 2 =0且a -12≠0,解得a =-1. 方法二 因为z 为纯虚数,所以可设z =b i(b ∈R ,且b ≠0),则z (1+i)=1+a i ,即b i(1+i)=1+a i ,所以-b +b i=1+a i ,所以⎩⎪⎨⎪⎧-b =1b =a ,解得a =b =-1.。
高考数学第一轮复习 导数与复数训练题一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 曲线x y e =在点2(2)e ,处的切线与坐标轴所围三角形的面积为A.294eB.22eC.2eD.22e2. 复数21(1i)+等于A .1i 2B .1i 2-C .12D .12-3. .若复数iia 213++(a R ∈,i 为虚数单位)是纯虚数,则实数a 的值为A .-6B .13C .32D .134. 已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x >时,()0()0f x g x ''>>,,则0x <时 A .()0()0f x g x ''>>, B .()0()0f x g x ''><, C .()0()0f x g x ''<>, D .()0()0f x g x ''<<,5. 设复数121212z i z bi z =+=+⋅,,若z 为实数,则b=A .2B .1C .-1D .-26.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为 A .3 B .52 C .2 D .327.2()f x ax bx c =++的图象开口向上,且顶点在第二象限,则()y f x '=的图象大概是:B C D8. 若函数1()ax f x e b=-的图象在x=0处的切线l 与圆C : 221x y 相离,则P(a ,b)与圆C 的位置关系是A .在圆内B .在圆外C .在圆上D .不能确定9.对于R 上可导的任意函数f (x ),若满足(x -1)f x '≥()0,则必有A.f (0)+f (2)<2 f (1)B. f (0)+f (2)≤2 f (1)C. f (0)+f (2)≥2 f (1)D. f (0)+f (2)>2 f (1) 10.函数x x x f ln 2)(2-=的单调减区间是 A .]1,0(B .),1[∞+C .]1,(--∞及]1,0(D .]1,0()0,1[及-11. 设2:()e ln 21xp f x x x mx =++++在(0)+∞,内单调递增,:5q m -≥,则p 是q 的A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件12. 设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能准确的是二、填空题:本大题共4小题;每小题4分,共16分,把答案填在题中的横线上。
一、复数选择题1.已知复数1z i =+,则21z+=( ) A .2BC .4D .52.若()211z i =-,21z i =+,则12z z 等于( ) A .1i +B .1i -+C .1i -D .1i --3.i是虚数单位,复数1i+=-( ) A.i - B.i Ci - Di 4.若复数1z i i ⋅=-+,则复数z 的虚部为( )A .-1B .1C .-iD .i5.已知i 为虚数单位,则复数23ii -+的虚部是( ) A .35B .35i -C .15-D .15i -6.复数312iz i=-的虚部是( ) A .65i - B .35iC .35D .65-7.))5511--+=( )A .1B .-1C .2D .-2 8.复数z 满足12i z i ⋅=-,z 是z 的共轭复数,则z z ⋅=( )ABC .3D .59.若复数1211iz i+=--,则z 在复平面内的对应点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限10.已知复数z 的共轭复数212iz i-=+,i 是虚数单位,则复数z 的虚部是( ) A .1B .-1C .iD .i -11.复数z 对应的向量OZ 与(3,4)a =共线,对应的点在第三象限,且10z =,则z =( ) A .68i +B .68i -C .68i --D .68i -+12.设a +∈R ,复数()()()242121i i z ai ++=-,若1z =,则a =( )A .10B .9C .8D .713.已知i 为虚数单位,则43ii =-( ) A .2655i + B .2655i - C .2655i -+ D .2655i -- 14.复数22(1)1i i-+=-( ) A .1+iB .-1+iC .1-iD .-1-i15.设复数满足(12)i z i +=,则||z =( )A .15B C D .5二、多选题16.已知复数202011i z i+=-(i 为虚数单位),则下列说法错误的是( )A .z 的实部为2B .z 的虚部为1C .z i =D .||z =17.已知复数122z =-,则下列结论正确的有( )A .1z z ⋅=B .2z z =C .31z =-D .202012z =-+ 18.下列四个命题中,真命题为( ) A .若复数z 满足z R ∈,则z R ∈ B .若复数z 满足1R z∈,则z R ∈ C .若复数z 满足2z ∈R ,则z R ∈D .若复数1z ,2z 满足12z z R ⋅∈,则12z z =19.若复数z 满足()234z i i +=+(i 为虚数单位),则下列结论正确的有( )A .z 的虚部为3B .z =C .z 的共轭复数为23i +D .z 是第三象限的点20.已知复数z 满足2724z i =--,在复平面内,复数z 对应的点可能在( )A .第一象限B .第二象限C .第三象限D .第四象限21.下列说法正确的是( ) A .若2z =,则4z z ⋅=B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数z 的平方是纯虚数,则复数z 的实部和虛部相等D .“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件22.若复数z 满足()1z i i +=,则( )A .1z i =-+B .z 的实部为1C .1z i =+D .22z i =23.已知复数1z =-+(i 为虚数单位),z 为z 的共轭复数,若复数zw z=,则下列结论正确的有( )A .w 在复平面内对应的点位于第二象限B .1w =C .w 的实部为12-D .w 的虚部为2i 24.若复数z 满足(1i)3i z +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( )A .|z |=B .z 的实部是2C .z 的虚部是1D .复数z 在复平面内对应的点在第一象限25.已知复数12ω=-(i 是虚数单位),ω是ω的共轭复数,则下列的结论正确的是( ) A .2ωω=B .31ω=-C .210ωω++=D .ωω>26.设i 为虚数单位,复数()(12)z a i i =++,则下列命题正确的是( ) A .若z 为纯虚数,则实数a 的值为2B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是(,)122-C .实数12a =-是z z =(z 为z 的共轭复数)的充要条件 D .若||5()z z x i x R +=+∈,则实数a 的值为227.已知复数12z =-+(其中i 为虚数单位),则以下结论正确的是( )A .20zB .2z z =C .31z =D .1z =28.已知复数z 满足(2i)i z -=(i 为虚数单位),复数z 的共轭复数为z ,则( )A .3||5z = B .12i5z +=-C .复数z 的实部为1-D .复数z 对应复平面上的点在第二象限29.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是( )A .z 的虚部为1-B .||z =C .2z 为纯虚数D .z 的共轭复数为1i --30.以下命题正确的是( )A .0a =是z a bi =+为纯虚数的必要不充分条件B .满足210x +=的x 有且仅有iC .“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件D .已知()f x =()1878f x x '=【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.B 【分析】先求出,再计算出模. 【详解】 , , . 故选:B. 解析:B 【分析】先求出21z +,再计算出模. 【详解】1z i =+,()()()21221112111i i z i i i -∴+=+=+=-++-,21z∴+==. 故选:B.2.D 【分析】由复数的运算法则计算即可. 【详解】 解:, . 故选:D.解析:D 【分析】由复数的运算法则计算即可. 【详解】 解:()2211122z i i i i =-=-+=-,()()212222(1)2222111112z i i i i i i i z i i i i --⨯--+--∴=====--++--. 故选:D.3.B 【分析】由复数除法运算直接计算即可. 【详解】 . 故选:B.解析:B 【分析】由复数除法运算直接计算即可. 【详解】()21ii i +==-. 故选:B.4.B 【分析】 ,然后算出即可. 【详解】由题意,则复数的虚部为1 故选:B解析:B 【分析】1iz i -+=,然后算出即可. 【详解】 由题意()11111i i i i z i i i i -+-+--====+⋅-,则复数z 的虚部为1 故选:B5.A 【分析】先由复数的除法运算化简复数,再由复数的概念,即可得出其虚部. 【详解】因为,所以其虚部是. 故选:A.解析:A【分析】先由复数的除法运算化简复数23ii-+,再由复数的概念,即可得出其虚部.【详解】因为22(3)26133(3)(3)1055i i i iii i i-----===--++-,所以其虚部是35.故选:A.6.C【分析】由复数除法法则计算出后可得其虚部.【详解】因为,所以复数z的虚部是.故选:C.解析:C【分析】由复数除法法则计算出z后可得其虚部.【详解】因为33(12)366312(12)(12)555i i i iii i i+-===-+--+,所以复数z的虚部是35.故选:C.7.D【分析】先求和的平方,再求4次方,最后求5次方,即可得结果. 【详解】∵,,∴,,∴,,∴,故选:D.解析:D【分析】先求)1-和)1+的平方,再求4次方,最后求5次方,即可得结果.【详解】∵)211-=--,)2+1=-,∴)()42117-=--=-+,)()42+17=-=--,∴)()51711-=-+-=--, )()51711+=--+=-,∴))55121-+=--,故选:D.8.D 【分析】求出复数,然后由乘法法则计算. 【详解】 由题意, . 故选:D .解析:D 【分析】求出复数z ,然后由乘法法则计算z z ⋅. 【详解】 由题意12122i z i i i-==-+=--, 22(2)(2)(2)5z z i i i ⋅=---+=--=.故选:D .9.B 【分析】利用复数的运算法则和复数的几何意义求解即可 【详解】 ,所以,在复平面内的对应点为,则对应点位于第二象限 故选:B解析:B 【分析】利用复数的运算法则和复数的几何意义求解即可 【详解】()()12i 1i 12i 33i 33i111i 2222z +++-+=-=-==-+-,所以,z 在复平面内的对应点为33,22⎛⎫- ⎪⎝⎭,则对应点位于第二象限 故选:B10.A 【分析】先化简,由此求得,进而求得的虚部. 【详解】 ,所以,则的虚部为. 故选:A解析:A 【分析】先化简z ,由此求得z ,进而求得z 的虚部. 【详解】()()()()212251212125i i i iz i i i i ----====-++-, 所以zi ,则z 的虚部为1.故选:A11.D 【分析】设,根据复数对应的向量与共线,得到,再结合求解. 【详解】 设,则复数对应的向量, 因为向量与共线, 所以, 又, 所以, 解得或,因为复数对应的点在第三象限, 所以, 所以,,【分析】设(,)z a bi a R b R =+∈∈,根据复数z 对应的向量OZ 与(3,4)a =共线,得到43a b =,再结合10z =求解.【详解】设(,)z a bi a R b R =+∈∈, 则复数z 对应的向量(),OZ a b =, 因为向量OZ 与(3,4)a =共线, 所以43a b =, 又10z =, 所以22100+=a b , 解得68a b =-⎧⎨=-⎩或68a b =⎧⎨=⎩, 因为复数z 对应的点在第三象限,所以68a b =-⎧⎨=-⎩,所以68z i =--,68z i =-+, 故选:D12.D 【分析】根据复数的模的性质求模,然后可解得. 【详解】 解:,解得. 故选:D . 【点睛】本题考查复数的模,掌握模的性质是解题关键.设复数,则, 模的性质:,,.解析:D 【分析】根据复数的模的性质求模,然后可解得a . 【详解】解:()()()()24242422221212501111i i i i aai ai++++====+--,解得7a =. 故选:D .本题考查复数的模,掌握模的性质是解题关键.设复数(,)z a bi a b R =+∈,则z =模的性质:1212z z z z =,(*)nnz z n N =∈,1122z z z z =. 13.C 【分析】对的分子分母同乘以,再化简整理即可求解. 【详解】 , 故选:C解析:C 【分析】对43ii -的分子分母同乘以3i +,再化简整理即可求解. 【详解】()()()434412263331055i i i i i i i i +-+===-+--+, 故选:C14.C 【分析】直接根据复数代数形式的乘除运算法则计算可得; 【详解】 解: 故选:C解析:C 【分析】直接根据复数代数形式的乘除运算法则计算可得; 【详解】 解:22(1)1i i-+- ()()()()2211211i i i i i +=-++-+12i i=+-1i=-故选:C15.B【分析】利用复数除法运算求得,再求得. 【详解】依题意,所以.故选:B解析:B【分析】利用复数除法运算求得z,再求得z.【详解】依题意()()()12221 121212555i ii iz ii i i-+====+ ++-,所以z==故选:B二、多选题16.AC【分析】根据复数的运算及复数的概念即可求解. 【详解】因为复数,所以z的虚部为1,,故AC错误,BD正确.故选:AC解析:AC【分析】根据复数的运算及复数的概念即可求解.【详解】因为复数2020450511()22(1)1 1112i i iz ii i i+++=====+ ---,所以z的虚部为1,||z=故AC 错误,BD 正确.故选:AC17.ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为,所以A 正确;因为,,所以,所以B 错误;因为,所以C 正确;因为,所以,所以D 正确解析:ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为11131222244z z i ⎛⎫⎛⎫-+=+= ⎪⎪ ⎪⎪⎝⎭⎭=⎝⋅,所以A 正确;因为22112222z ⎛⎫-=-- ⎪ ⎪⎝⎭=,122z =+,所以2z z ≠,所以B 错误;因为321112222z z z i ⎛⎫⎛⎫=⋅=---=- ⎪⎪ ⎪⎪⎝⎭⎝⎭,所以C 正确;因为6331z z z =⋅=,所以()2020633644311122z z z z z ⨯+⎛⎫===⋅=-⋅=-+ ⎪ ⎪⎝⎭,所以D 正确,故选:ACD.【点睛】本题考查复数乘法与乘方的计算,其中还涉及到了共轭复数的计算,难度较易.18.AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数满足,设,其中,则,则选项A 正确;对选项B ,若复数满足,设,其中,且,则,则选项B 正确;对选项C ,若复数满足,设解析:AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数z 满足z R ∈,设z a =,其中a R ∈,则z R ∈,则选项A 正确; 对选项B ,若复数z 满足1R z ∈,设1a z =,其中a R ∈,且0a ≠, 则1z R a=∈,则选项B 正确; 对选项C ,若复数z 满足2z ∈R ,设z i ,则21z R =-∈,但z i R =∉,则选项C 错误;对选项D ,若复数1z ,2z 满足12z z R ⋅∈,设1z i =,2z i =,则121z z ⋅=-∈R , 而21z i z =-≠,则选项D 错误;故答案选:AB【点睛】本题主要考查复数的运算,同时考查复数的定义和共轭复数,特值法为解决本题的关键,属于简单题.19.BC【分析】利用复数的除法求出复数,利用复数的概念与几何意义可判断各选项的正误.【详解】,,所以,复数的虚部为,,共轭复数为,复数在复平面对应的点在第四象限. 故选:BD.【点睛】本题考解析:BC【分析】利用复数的除法求出复数z ,利用复数的概念与几何意义可判断各选项的正误.【详解】()234z i i +=+,34232i z i i+∴=-=-+,所以,复数z 的虚部为3-,z =共轭复数为23i +,复数z 在复平面对应的点在第四象限.故选:BD.【点睛】 本题考查复数的四则运算、虚部、模、共轭复数以及几何意义,考查计算能力,属于基础题.20.BD【分析】先设复数,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出,即可确定对应的点所在的象限.【详解】设复数,则,所以,则,解得或,因此或,所以对应的点为或,因此复解析:BD【分析】先设复数(),z a bi a b R =+∈,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出z ,即可确定对应的点所在的象限.【详解】设复数(),z a bi a b R =+∈,则2222724z a abi b i =+-=--,所以2222724z a abi b i =+-=--,则227224a b ab ⎧-=-⎨=-⎩,解得34a b =⎧⎨=-⎩或34a b =-⎧⎨=⎩, 因此34z i =-或34z i =-+,所以对应的点为()3,4-或()3,4-,因此复数z 对应的点可能在第二或第四象限.故选:BD.【点睛】本题主要考查判定复数对应的点所在的象限,熟记复数的运算法则,以及复数相等的条件即可,属于基础题型.21.AD【分析】由求得判断A ;设出,,证明在满足时,不一定有判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】若,则,故A 正确;设,由,可得则,而不一定为0,故B 错误;当时解析:AD由z 求得z z ⋅判断A ;设出1z ,2z ,证明在满足1212z z z z +=-时,不一定有120z z =判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】 若2z =,则24z z z ⋅==,故A 正确;设()11111,z a bi a b R =+∈,()22222,z a b i a b R =+∈ 由1212z z z z +=-,可得()()()()222222121212121212z z a a b b z z a a b b +=+++=-=-+-则12120a a b b +=,而()()121122121212121212122z z a bi a b i a a bb a b i b a i a a a b i b a i =++=-++=++不一定为0,故B 错误;当1z i =-时22z i =-为纯虚数,其实部和虚部不相等,故C 错误;若复数()()()211z a a i a R =-+-∈是虚数,则210a -≠,即1a ≠± 所以“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件,故D 正确; 故选:AD【点睛】本题考查的是复数的相关知识,考查了学生对基础知识的掌握情况,属于中档题.22.BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由,得,所以z 的实部为1,,,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭 解析:BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由()1z i i +=,得2(1)2(1)1(1)(1)2i i z i i i --====-+-, 所以z 的实部为1,1z i =+,22z i =-,故选:BC此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭复数,属于基础题23.ABC【分析】对选项求出,再判断得解;对选项,求出再判断得解;对选项复数的实部为,判断得解;对选项,的虚部为,判断得解.【详解】对选项由题得.所以复数对应的点为,在第二象限,所以选项正确解析:ABC【分析】对选项,A 求出1=2w -+,再判断得解;对选项B ,求出1w =再判断得解;对选项,C 复数w 的实部为12-,判断得解;对选项D ,w 判断得解. 【详解】对选项,A 由题得1,z =-221=422w -+∴===-+.所以复数w 对应的点为1(2-,在第二象限,所以选项A 正确;对选项B ,因为1w ==,所以选项B 正确; 对选项,C 复数w 的实部为12-,所以选项C 正确;对选项D ,w 的虚部为2,所以选项D 错误. 故选:ABC【点睛】 本题主要考查复数的运算和共轭复数,考查复数的模的计算,考查复数的几何意义,考查复数的实部和虚部的概念,意在考查学生对这些知识的理解掌握水平.24.ABD【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数,根据共轭复数概念得到,即可判断.,,,故选项正确,的实部是,故选项正确,的虚部是,故选项错误,复解析:ABD【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数z ,根据共轭复数概念得到z ,即可判断.【详解】(1i)3i z +=+,()()()()3134221112i i i i z i i i i +-+-∴====-++-,z ∴==,故选项A 正确,z 的实部是2,故选项B 正确,z 的虚部是1-,故选项C 错误, 复数2z i =+在复平面内对应的点为()2,1,在第一象限,故选项D 正确.故选:ABD .【点睛】本题主要考查的是复数代数形式的乘除运算,考查了复数的代数表示及几何意义,是基础题.25.AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵所以,∴,故A 正确,,故B 错误,,故C 正确,虚数不能比较大小,故D 错误,故选:AC.【点睛】本题主要考查复数的有关概念解析:AC根据复数的运算进行化简判断即可.【详解】解:∵12ω=-所以12ω=--,∴213142422ωω=--=--=,故A 正确,32111312244ωωω⎛⎫⎛⎫⎛⎫==---=--= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,故B 错误,2111102222ωω++=---++=,故C 正确, 虚数不能比较大小,故D 错误,故选:AC .【点睛】本题主要考查复数的有关概念和运算,结合复数的运算法则进行判断是解决本题的关键.属于中档题.26.ACD【分析】首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】∴选项A :为纯虚数,有可得,故正确选项B解析:ACD【分析】首先应用复数的乘法得2(12)z a a i =-++,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】()(12)2(12)z a i i a a i =++=-++∴选项A :z 为纯虚数,有20120a a -=⎧⎨+≠⎩可得2a =,故正确 选项B :z 在复平面内对应的点在第三象限,有20120a a -<⎧⎨+<⎩解得12a <-,故错误 选项C :12a =-时,52z z ==-;z z =时,120a +=即12a =-,它们互为充要条选项D :||5()z z x i x R +=+∈时,有125a +=,即2a =,故正确故选:ACD【点睛】本题考查了复数的运算及分类和概念,应用复数乘法运算求得复数,再根据复数的概念及性质、相等关系等确定参数的值或范围27.BCD【分析】利用复数的运算法则直接求解.【详解】解:复数(其中为虚数单位),,故错误;,故正确;,故正确;.故正确.故选:.【点睛】本题考查命题真假的判断,考查复数的运算法则解析:BCD【分析】利用复数的运算法则直接求解.【详解】解:复数12z =-(其中i 为虚数单位),2131442z ∴=-=--,故A 错误; 2z z ∴=,故B 正确;31113()()12244z =--+=+=,故C 正确;||1z ==.故D 正确. 故选:BCD .【点睛】本题考查命题真假的判断,考查复数的运算法则等基础知识,考查运算求解能力,属于基础题.28.BD【分析】因为复数满足,利用复数的除法运算化简为,再逐项验证判断.【详解】因为复数满足,所以所以,故A 错误;,故B 正确;复数的实部为 ,故C 错误;复数对应复平面上的点在第二象限解析:BD【分析】因为复数z 满足(2i)i z -=,利用复数的除法运算化简为1255z i =-+,再逐项验证判断. 【详解】因为复数z 满足(2i)i z -=, 所以()(2)1222(2)55i i i z i i i i +===-+--+所以5z ==,故A 错误; 1255z i =--,故B 正确; 复数z 的实部为15- ,故C 错误; 复数z 对应复平面上的点12,55⎛⎫- ⎪⎝⎭在第二象限,故D 正确. 故选:BD【点睛】本题主要考查复数的概念,代数运算以及几何意义,还考查分析运算求解的能力,属于基础题. 29.ABC【分析】首先利用复数代数形式的乘除运算化简后得:,然后分别按照四个选项的要求逐一求解判断即可.【详解】因为,对于A :的虚部为,正确;对于B :模长,正确;对于C :因为,故为纯虚数,解析:ABC【分析】首先利用复数代数形式的乘除运算化简z 后得:1z i =-,然后分别按照四个选项的要求逐一求解判断即可.【详解】 因为()()()2122211i 1i 12i i z i i --====-++-, 对于A :z 的虚部为1-,正确;对于B :模长z =对于C :因为22(1)2z i i =-=-,故2z 为纯虚数,正确;对于D :z 的共轭复数为1i +,错误.故选:ABC .【点睛】本题考查复数代数形式的乘除运算,考查复数的有关概念,考查逻辑思维能力和运算能力,侧重考查对基础知识的理解和掌握,属于常考题.30.AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式解析:AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程210x +=可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式可判断D 选项的正误.综合可得出结论.【详解】对于A 选项,若复数z a bi =+为纯虚数,则0a =且0b ≠,所以,0a =是z a bi =+为纯虚数的必要不充分条件,A 选项正确;对于B 选项,解方程210x +=得x i =±,B 选项错误;对于C 选项,当(),x a b ∈时,若()0f x '>,则函数()f x 在区间(),a b 内单调递增, 即“在区间(),a b 内()0f x '>”⇒“()f x 在区间(),a b 内单调递增”.反之,取()3f x x =,()23f x x '=,当()1,1x ∈-时,()0f x '≥, 此时,函数()y f x =在区间()1,1-上单调递增,即“在区间(),a b 内()0f x '>”⇐/“()f x 在区间(),a b 内单调递增”.所以,“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件.C 选项正确;对于D 选项,()11172488f x x x ++===,()1878f x x -'∴=,D 选项错误. 故选:AC.【点睛】本题考查命题真假的判断,涉及充分条件与必要条件的判断、实系数方程的根以及导数的计算,考查推理能力与计算能力,属于中等题.。
高三数学练习题—导数与复数一、选择题(本大题共12小题,每小题5分,共60分,在四个选项中,只有一项是符合题目要求) 1.若复数iia 213++(a ∈R ,i 为虚数单位)是纯虚数,则实数a 的值为( )A .-2B .4C .-6D .6 2.设曲线2x y =在点P 处的切线斜率为3,则点P 的坐标为( )A .(3,9)B .(-3,9)C .(49,23) D .(49,23-) 3.已知)32(33i z i -=-,那么复数z 在复平面内对应的点位于 ( )A .第一象限B .第二象限C .第三象限D .第四象限 4.函数0)(x x x f =在处连续是0)(x x x f =在处可导的( )A .充分不必要条件B .必要不充分条件C .充要条件D .不充分不必要条件5.若(m +i )3为实数,则正实数m 的值为( )A .1+23B .33 C .3D .23 6.已知二函数344,3x y a x y =+=,若它们的图象有公共点,且在公共点处的切线重合,则切斜线率为( )A .0B .12C .0或12D .4或17.设复数,|sin ||cos |i z θθ+=,则函数z z f ⋅=)(θ的性质适合 ( )A .最小正周期为1,2π值域为]2,1[B .最小正周期为π,值域为]2,1[C .最小正周期为1,2π值域为2,0[]D .最小正周期为π,值域为]2,0[8.一点沿直线运动,如果由始点起经过t 秒后的距离为t t t t s 873741234-+-=,那么速度为零的时刻是 ( )A .1秒末B .2秒末C .2,4秒末D .1,2,4秒末9.复数.111-++-=ii z 在复平面内,z 所对应的点在 ( )A .第一象限B .第二象限C .第三象限D .第四象限10.设,)(,02c bx ax x f a ++=>曲线)(x f y =在点))(,(00x f x P 处切线的倾斜角的取值范围为]4,0[π,则P 到曲线)(x f y =对称轴距离的取值范围为( )A .[a1,0] B .]21,0[aC .|]2|,0[ab D .|]21|,0[ab - 11.若二次函数12)2(24)(22+----=p p x p x x f 在区间[-1,1]内至少存在一点C (c ,0),使0)(>c f ,则实数p 的取值范围是 ( )A .233<<-pB .3-≤pC 121<<-p .D .213-<<-p 或231<<p12.已知函数1)6()(23++++=x a ax x x f 有极大值和极小值,则a 的取值范围是( )A .21<<-aB .63<<-aC .21>-<a a 或D .63>-<a a 或二、填空题:(本大题共4小题,每小题4分,共16分.). 13.(05年全国卷3)已知复数00032,3,z i z z z z z =++=+复数满足z =则复数 .14.如果曲线03223x x x y x y =-=+=在与处的切线互相垂直,则x 0的值为 . 15.集合N M C z i z i z Z N C z x z M 则},|,||||{},1|1||{∈-=+=∈=-=是 .16.已知函数⎩⎨⎧≥+<+=)0(2sin )0(1)(x xb x e x f ax 在R 上可导,则a = ,b= .三、解答题:(本大题共6小题,共74分..)17.(本题满分12分) 已知复数z 1=cos θ-i ,z 2=sin θ+i ,求| z 1·z 2|的最大值和最小值.18.(本小题满分12分)设132<<a ,函数)11(23)(23≤≤-+-=x b ax x x f 的最大值为1,最小值为26-,求常数a 、b 的值.19.(本题满分12分)设z 为复数,在复平面上已知曲线C 1、C 2、C 3且C 1满足32|1||1|=++-z z ,C 2满足,2||=z C 3满足|,23||21|-=+z z C 1与C 3的两个公共点为A 、B ,分别过A 、B 作x 轴的平行线交C 2于M 、N 两点,OM 、ON 的倾角分别为α、β,(O 为原点),求cos(α+β)的值.20.(本小题满分12分)已知函数2)(23-=+++=x c bx ax x x f 在处取得极值,并且它的图象与直线33+-=x y 在点(1,0)处相切,求a 、b 、c 的值.21.(本小题满分12分)已知c bx ax x x f +++=23)(有极大值)(αf 和极小值)(βf . (1)求)(αf +)(βf 的值;(2)设曲线)(x f y =的极值点为A 、B ,求证:线段AB 的中点在)(x f y =上.22.已知函数].1,0[,274)(2∈--=x xx x f (Ⅰ)求)(x f 的单调区间和值域;(Ⅱ)设1≥a ,函数],1,0[],1,0[].1,0[,23)(0123∈∈∈--=x x x a x a x x g 总存在若对于任意使得)()(10x f x g =成立,求a 的取值范围.答案13.i 231 ; 14.6363; 15.{0,2}; 16.a =2,b=2.三、解答题.2sin 412cos sin 2)sin (cos )cos sin 1(|)sin (cos cos sin 1|||2222221θθθθθθθθθθθ+=+=-++=-++=⋅i z z故||21z z ⋅的最大值为,23最小值为2. …………12分18.解:)(333)(2a x x ax x x f -=-='当x由上表可f (0)与f (1)的大小. …………6分∵0123)1()0(>-=--a f f ,∴f (x )的最大值为f (0)=b=1,0)2()1(21)23(21)()1(23<-+=--=--a a a a a f f , ∴f (x )的最小值为f (-1).即2623123-=-=+--a b a ,∴36=a ,b=1. …………12分19.解:C 1为椭圆:.023:;2,;123322222=-+=+=+y x C y x C y x 为直线为圆设)sin 2,cos 3(),sin 2,cos 3(ββααB A 把A 、B 两点的坐标代入直线C 3的方程中,得 02sin 23cos 3=-⋅+αα①.02s i n 23c o s 3=-⋅+ββ② …………6分①—②得02sin2cos262sin2sin320)sin (sin 23)cos (cos 3=-++-+-=-+-βαβαβαβαβαβα即221tan 1652tancos().21671tan 2αβαβαβαβ+-+-∴=+===-+++故有 …………12分 20.解:由曲线)(x f y =过(1,0)得01=+++c b a ①又ax x x f 23)(2+='+b 则0412)2(=+-=-'b a f ②323)1(-=++='b a f ③ ……9分.解①②③得6,8,1=-==c b a . ……12分.2…………9分α∴、0232=++b ax x 为β的两根, 则=+++++++=+∴=-=+)()()()(,3,322323c b a c b a f f b a βββαααβααββα +-+++-+=++++++]2)[()](3)[(2)()()(232233αββαβααββαβαβαβαa c b a c ab a c a b b a a a b a c b 2322742)32()]3(2)32[()]32(33)32[(2)(323+-=+-+⋅--+-⋅⋅--=++βα…7分 (2)设=++⋅++⋅++=+c b a f f B f A 2)2()2()2(),(,()),(,(33βαβαβαβαββαα由)]()([2131272)3()3()3(323βαf f c ab a c a b a a a +=+-=+-⋅+-⋅+- 知AB 的中点在)(x f y =上 …………12分22.解:(I )对函数)(x f 求导,得222)2()72)(12()2(7164)(x x x x x x x f ----=--+-=' 令0)(='x f 解得.71==x x 或 当x 变化时,)(),(x f x f '的变化情况如下表:所以,当)2,0(∈x 时,)(x f 是减函数;当)1,2(∈x 时,)(x f 是增函数. 当]1,0[∈x 时,)(x f 的值域为[-4,-3].(II )对函数)(x g 求导,得).(3)(22a x x g -='因为1≥a ,当)1,0(∈x 时,.0)1(3)(2≤-<'a x g因此当)1,0(∈x 时,)(x g 为减函数,从而当]1,0[∈x 时有)].0(),1([)(g g x g ∈ 又,2)0(,321)1(2a g a a g -=--=即]1,0[∈x 时有].2,321[)(2a a a x g ---∈ 任给]1,0[1∈x ,]3,4[)(1--∈x f ,存在]1,0[0∈x 使得)()(10x f x g =, 则].3,4[]2,321[2--⊃---a a 即⎩⎨⎧-≥--≤--.32,43212a a a 解①式得 351-≤≥a a 或;解②式得.23≤a 又1≥a ,故a 的取值范围为.231≤≤a① ②。