金属学与热处理名词解释复习
- 格式:doc
- 大小:236.50 KB
- 文档页数:11
7、弹性模量与刚度:金属在弹性范围内,应力与应变的比值σ/ε称为弹性模量E,也称为杨氏模量。
E标志材料抵抗弹性变形的能力,用以表示材料的刚度。
14、断裂韧性:金属材料阻止裂纹失稳扩散的属性或材料的韧性。
1、金属特性:金属在固态下具有以下特征:①具有良好的导电性和导热性;②具有正的电阻温度系数;③具有良好的反射能力、不透明性和金属光泽;④具有良好的塑性变形能力。
4、晶体与晶体特性:原子(或分子)在三维空间呈有规则的周期性排列的一类物质称为晶体。
晶体特性:①晶体中的原子(或分子)在三维空间呈有规则的周期性排列;②具有确定的熔点;③具有各向异性;④具有规则的几何外形。
5、空间点阵:将刚球模型中的刚球抽象为纯粹的几何点,得到一个由无数几何点在三维空间规则排列而成的列阵,称之为空间点阵。
6、晶格与晶胞:描述原子(离子、分子)或原子团在晶体中排列方式的几何空间格架称为结晶格子,简称晶格。
从晶格选取一个能够完全反映晶体特征的最小几何单元。
这个有代表性的最小几何单元称为晶胞。
7、晶面与晶向:在晶体中,有一系列原子所组成的平面称为晶面;任意两个原子之间的连线称为原子列,其所指方向称为晶向。
8、晶面指数与晶向指数:为确定晶面和原子列在晶体中的空间位向所采用的统一符号,分别称为晶面指数与晶向指数。
9、晶面族(或晶向族):某些晶面(或晶向)上的原子排列相同但空间位向不同,它们在晶体学上属等同晶面(或晶向),可归并为一个晶向族称为晶面族(或晶向族)。
10、配位数与致密度:晶格中任一原子周围与其最近邻且等距离的原子数目称为配位数;一个晶胞内原子所占体积与晶胞体积之比称为致密度。
12、多晶型转变或同素异构转变:具有多晶型的金属在温度或压力变化时,由一种晶体结构变为另一种晶体结构的过程叫多晶型转变或同素异构转变。
14、点缺陷:在三维尺度上都很小的晶体缺陷,一般不超过几个原子间距。
点缺陷主要有空位、间隙原子和置换原子等。
15、线缺陷:在二维尺度上很小,而在三维尺度上很大的晶体缺陷,包括刃型位错、螺型位错、混合位错。
金属学与热处理名词解释汇总热处理:在生产中,通过加热、保温和冷却,使钢发生固态相变,借此改变其内部组织结构,从而达到改善力学性能的目的的操作被称为热处理。
正火:将工件加热至Ac3(Ac是指加热时自由铁素体全部转变为奥氏体的终了温度,一般是从727℃到912℃之间)或Acm(Acm是实际加热中过共析钢完全奥氏体化的临界温度线)以上30~50℃,保温一段时间后,从炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。
淬火:将钢加热到Ac3或Ac1以上的某一温度,保温一定时间,然后取出进行水冷或油冷获得马氏体的热处理工艺。
等温淬火:将奥氏体化的工件淬入温度稍高于Ms的熔盐中,等温保持足够时间,使过冷奥氏体恒温发生贝氏体转变,待转变结束后取出在空气中冷却的处理方法称为等温淬火。
分级淬火:将奥氏体化的工件淬入温度稍高于或稍低于Ms的熔盐中,待工件内外温度均匀后,从熔盐中取出置于空气中冷却至室温,以获得马氏体组织,这种处理方法称为分级淬火。
单液淬火:将奥氏体化的工件投入一种淬火介质中,直至转变结束。
双液淬火:将奥氏体化的工件先放入一种冷却能力强的冷却介质冷却一定时间,当冷却至稍高于Ms后立即将工件取出并放入另外一种冷却能力缓一些的冷却介质冷却,使之转变为马氏体的热处理工艺。
回火:将淬火钢加热到低于临界点A1某一温度,保温一定时间,然后冷却到室温的一种热处理工艺。
回火索氏体:淬火碳钢500~650℃回火时,得到粗粒状渗碳体和多边形铁素体所构成的复相组织。
回火屈氏体:淬火碳钢350~500℃回火时,得到细粒状渗碳体和针状铁素体所构成的复相组织。
回火马氏体:淬火碳钢在250℃以下回火时,得到的过饱和的α固溶体和弥散分布的碳化物组成的复相组织。
退火:是将钢加热到临界点以上或以下的某一温度,保温一定时间后,随炉冷却的一种热处理工艺。
它是热处理工艺中应用最广、种类最多的一种工艺,不同种类的退火目的也各不相同。
等温退火:将亚共析钢工件加热到A3以上20〜30°C,保温一定时间,然后在Arl以下珠光体转变区间的某一温度进行等温,使之转变为珠光体后出炉空冷的一种热处理工艺。
一、名词解释(每小题2分,共14分)1. 结构起伏:短程有序的原子集团就是这样处于瞬间出现,瞬间消失,此起彼伏,变化不定的状态之中仿佛在液态金属中不断涌现出一些极微小的固态结构一样,这种不断变化着的短程有序的原子集团称为结构起伏。
2. 非自发形核:在液态金属中总是存在一些微小的固相杂质质点,并且液态金属在凝固时还要和型壁相接触,于是晶核就可以优先依附于这些现成的固体表面上形成,这种形核方式就是非自发形核。
3. 相:相是指合金中结构相同、成份和性能均一并以界面相互分开的组成部分。
4. 柯氏气团:金属内部存在的大量位错线,在刃型位错线附近偏聚的溶质原子好像形成一个溶质原子“气团”,成为“柯氏气团”5. 选择结晶:固溶体合金结晶时所结晶出的固相成分与液相的成分不同,这种结晶出的晶体与母相的化学成分不同的结晶称为选择结晶。
6. 形变强化:在塑形变形过程中,随着金属内部组织的变化,金属的力学性能也将产生明显的变化,随着变形过程的增加,金属的强度、硬度增加,而塑形、韧性下降,这一现象称为形变强化。
7. 晶胞:晶格中能够完全反应晶格特征的最小几何单元。
二、选择题1.下列元素中能够扩大奥氏体相区的是( d )。
A WB MoC CrD Ni2.属于强碳化物形成元素的是( c )。
A W,Mo, CrB Mn, Fe, NiC Zr, Ti, NbD Si, Be, Co3.不能提高钢的淬透性的合金元素是( a )。
A CoB CrC MoD Mn4.调质钢中通常加入( c )元素来抑制第二类回火脆性。
A CrB NiC MoD V5. 下列钢种属于高合金钢的是( d )A 40CrB 20CrMnTiC GCr15D W18Cr4V6. 选出全是促进石墨化的元素的一组( b )A V、Cr、SB Al、Ni、SiC W、Mn、PD Mg、B、Cu7. 选出适合制作热作模具的材质( d )A 20CrMnTiB Cr12C 2Cr13D 5CrNiMo三、填空1. 铸锭组织的三个典型区域是(表层细晶粒区)、(内部柱状晶区)和(中心等轴晶区)。
金属学与热处理复习资料一、名词解释1、晶体:原子在三维空间做有规则的周期性重复排列的物质。
2、非晶体:指原子呈不规则排列的固态物质。
3、晶格:一个能反映原子排列规律的空间格架。
4、晶胞:构成晶格的最基本单元。
5、晶界:晶粒和晶粒之间的界面。
6、单晶体:只有一个晶粒组成的晶体。
7、合金:是以一种金属为基础,加入其他金属或非金属,经过熔合而获得的具有金属特性的材料。
8、组元:组成合金最基本的、独立的物质称为组元。
9、相:金属中具有同一化学成分、同一晶格形式并以界面分开的各个均匀组成部分称为相。
10、固熔体:合金组元通过溶解形成成分和性能均匀的、结构上与组元之一相同的固相。
11、结晶:纯金属或合金由液体转变为固态的过程。
12、重结晶:金属从一种固体晶态改变了晶体结构转变为另一种固体晶态的过程。
13、过冷度:理论结晶温度(T0)和实际结晶温度(T1)之间存在的温度差。
14、铁素体:碳溶解于α-Fe中形成的间隙固溶体。
15、渗碳体:是铁与碳形成的质量分数为6.69%的金属化合物。
16、奥氏体:碳溶解于γ-Fe中形成的间隙固溶体。
17、珠光体:是由铁素体与渗碳体组成的机械化合物。
18、莱氏体:奥氏体与渗碳体的混合物为莱氏体。
19、同素异构转变:一些金属,在固态下随温度或压力的改变,还会发生晶体结构变化,即由一种晶格转变为另一种晶格的变化,称为同素异构转变。
20、实际晶粒度:某一具体热处理或热加工条件下的奥氏体的晶粒度叫实际晶粒度,它决定钢冷却后的组织和性能。
21、马氏体:碳在α-Fe 中的过饱和间隙固溶体,具有很大的晶格畸变,强度很高。
22、贝氏体:渗碳体分布在含碳过饱和的铁素体基体上或的两相混合物。
根据形貌不同又可分为上贝氏体和下贝氏体。
23、淬透性:淬透性是指在规定条件下,钢在淬火冷却时获得马氏体组织的能力。
24、淬硬性:淬硬性是指钢在理想的淬火条件下,获得马氏体所能达到的最高硬度。
25、调质处理:淬火后高温回火的热处理工艺组合。
金属:具有正的电阻温度特性的物质。
晶体:物质的质点(原子、分子或离子)在三维空间作有规则的周期性重复排列的物质叫晶体。
原子排列规律不同,性能也不同。
点阵或晶格:从理想晶体的原子堆垛模型可看出,是有规律的,为清楚空间排列规律性,人们将实际质点(原子、分子或离子)忽略,抽象成纯粹几何点,称为阵点或节点。
为便于观察,用许多平行线将阵点连接起来,构成三维空间格架。
这种用以描述晶体中原子(分子或离子)排列规律的空间格架称为空间点阵,简称点阵或晶格。
晶胞:由于排列的周期性,简便起见,可从晶格中取出一个能够完全反映晶格特征的最小几何单元来分析原子排列的规律性。
这个用以完全反映晶格特征最小的几何单元称为晶胞。
多晶型转变或同素异构转变:当外部条件(如温度和压强)改变时,金属内部由一种晶体结构向另一种晶体结构的转变称为多晶型转变或同素异构转变。
空位:某一温度下某一瞬间,总有一些原子具有足够能量克服周围原子约束,脱离原平能位置迁移到别处,在原位置上出现空节点,形成空位。
到晶体表面,称为肖脱基空位;到点阵间隙中,称弗兰克尔空位;位错:它是晶体中某处有一列或若干列原子发生了有规律的错排现象,使长达几百至几万个原子间距、宽约几个原子间距范围内原子离开平衡位置,发生有规律的错动,所以叫做位错。
基本类型有两种:即刃型位错和螺型位错。
晶界:晶体结构相同但位相不同的晶粒之间的界面称为晶粒间界,简称晶界。
小角度晶界位相差小于10°,基本上由位错组成。
大角度晶界相邻晶粒位相差大于10°,晶界很薄。
亚晶界和亚结构:分别泛指尺寸比晶粒更小的所有细微组织及分界面。
柯氏气团:刃型位错的应力场会与间隙及置换原子发生弹性交互作用,吸引这些原子向位错区偏聚。
小的间隙原子如C、N 等,往往钻入位错管道;而大置换原子,原来处的应力场是受压的,正位错下部受拉,由相互吸引作用,富集在受拉区域;小的置换原子原来受拉,易于聚集在受压区域,即位错的上部。
空间点阵:由阵点有规则地周期性重复排列形成的三位空间阵列伪共晶:成分在共晶点附近的亚共晶或者过共晶合金,在不平衡结晶条件下得到的共晶组织。
孪生:在切应力作用下,晶体的一部分沿一定的晶面和一定的晶向做均匀切变粒状珠光体:指分布在铁素体基体上的粒状渗碳体的组织回火脆性:钢在某些温度区间回火,反常出现的冲击韧性显著降低的现象淬透性:钢在淬火时获得马氏体的能力回复:是冷塑性变形的金属,在随后的加热时冷变形基体尚未发生变化时的退火过程。
在回复过程中,金属的组织发生了在光学显微镜下观察不到的变化,力学性能只有少许的变化,然而物理和化学性能却有明显的改变。
成分偏析:结晶时发生的化学成分不均匀现象均匀化退火:将钢锭或铸件加热到略低于固相线温度下,长时间保温然后缓慢冷却以消除化学成分不均匀现象的工艺晶粒反常长大:少数晶粒具有特别大的长大能力,逐步吞噬掉周围大量小晶粒,其尺寸比原始晶粒大上许多倍的过程多边化:冷变形后,金属加热时,原来处在滑移面上的位错,通过滑移和攀移,形成与滑移面垂直的亚晶界的过程加工硬化:在塑性变形的过程中,随着变形程度的增加,金属的强度和硬度增加,而韧性接塑性有所下降的现象,也叫形变强化。
形变织构:由于金属的塑性变形使晶粒具有择优取向的组织离异共晶:在先共晶相较多,而共晶相组织甚少的情况下,有时共晶组织中与先共晶相相同的那一相会依附于先共晶相上生长,生下的另一相则单独存在于晶界处,从而使共晶组织的特征消失固溶强化:通过形成固溶体使金属强化的现象称为固溶强化。
时效强化:合金元素经固溶处理后,获得过饱和固溶体。
在随后的室温放置或低温加热保温时,第二相从过饱和固溶体中析出,引起强度,硬度以及物理和化学性能的显著变化,这一过程被称为时效强化。
点阵匹配原理:作为非均匀形核基底的夹杂物必须具有与晶核相同的晶体结构,相近的点阵常数,以减小界面张力。
调质处理:淬火后高温回火的热处理方法称为调质处理。
一、名词解释:1热强性:在室温下,钢的力学性能与加载时间无关,但在高温下钢的强度及变形量不但与时间有关,而且与温度有关,这就是耐热钢所谓的热强性;2形变热处理:是将塑性变形同热处理有机结合在一起,获得形变强化和相变强化综合效果的工艺方法;3热硬性:热硬性是指钢在较高温度下,仍能保持较高硬度的性能;4固溶处理:指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却,以得到的热处理工艺;5回火脆性:是指回火后出现韧性下降的;6二次硬化:某些铁碳合金如高速钢须经多次回火后,才进一步提高其硬度;7回火稳定性:在时,抵抗强度、硬度下降的能力称为回火稳定性;8淬硬性:指钢在淬火时硬化能力,用淬成马氏体可能得到的最高硬度表示;9水韧处理:将钢加热至奥氏体区温度1050-1100℃,视钢中碳化物的细小或粗大而定并保温一段时间每25mm壁厚保温1h,使铸态组织中的碳化物基本上都固溶到奥氏体中,然后在水中进行淬火,从而得到单一的奥氏体组织;10分级淬火:将奥氏体状态的工件首先淬入温度略高于钢的Ms点的盐浴或碱浴炉中保温,当工件内外温度均匀后,再从浴炉中取出空冷至室温,完成马氏体转变;11临界淬火冷却速度:是过冷奥氏体不发生分解直接得到全部马氏体含残留奥氏体的最低冷却速度;12季裂:它指的是经冷变形后的金属内有拉伸应力存在又处于特定环境中所发生的断裂; 13奥氏体化:将钢加热至临界点以上使形成奥氏体的金属热处理过程;14本质晶粒度:本质晶粒度用于表征钢加热时晶粒长大的倾向;二、简答:1 何为奥氏体化简述共析钢的奥氏体化过程;答:1、将钢加热至临界点以上使形成奥氏体的金属热处理过程;2、它是一种扩散性相变,转变过程分为四个阶段;1形核;将珠光体加热到Ac1以上,在铁素体和渗碳体的相界面上奥氏体优先形核;珠光体群边界也可形核;在快速加热时,由于过热度大,铁素体亚边界也能形核;2长大;奥氏体晶粒长大是通过渗碳体的溶解、碳在奥氏体和铁素体中的扩散和铁素体向奥氏体转变;为了相平衡,奥氏体的两个相界面自然地向铁素体和渗碳体两个方向推移,奥氏体便不断长大;3残余渗碳体的溶解;铁素体消失后,随着保温时间的延长,通过碳原子扩散,残余渗碳体逐渐溶入奥氏体;4奥氏体的均匀化;残余渗碳体完全溶解后,奥氏体中碳浓度仍是不均匀的;只有经长时间的保温或继续加热,让碳原子进行充分地扩散才能得到成分均匀的奥氏体;2 奥氏体晶粒大小对冷却转变后钢的组织和性能有何影响简述影响奥氏体晶粒大小的因素;答:1、奥氏体晶粒度大小对钢冷却后的组织和性能有很大影响;奥氏体晶粒度越细小,冷却后的组织转变产物也越细小,其强度也越高,此外塑性,韧性也较好;但奥氏体化温度过高或在高温下保持时间过长会显着降低钢的冲击韧度、减少裂纹扩展功和提高脆性转变温度;2、奥氏体晶粒大小是影响使用性能的重要指标,主要有下列因素影响奥氏体晶粒大小;1加热温度和保温时间的影响加热温度越高,保温时间越长,奥氏体晶粒越粗大;2加热速度的影响加热速度越快,奥氏体的实际形成温度越高,形核率和长大速度越大,则奥氏体的起始晶粒越细小,但快速加热时,保温时间不能过长,否则晶粒反而更加粗大;3钢的化学成分的影响在一定含碳量范围内,随着奥氏体中含碳量的增加,碳在奥氏体中的扩散速度及铁的自扩散速度增大,晶粒长大倾向增加,但当含碳量超过一定限度后,碳能以未溶碳化物的形式存在,阻碍奥氏体晶粒长大,使奥氏体晶粒长大倾向减小;4钢的原始组织的影响钢的原始组织越细,碳化物弥散速度越大,奥氏体的起始晶粒越细小,相同的加热条件下奥氏体晶粒越细小;3 简述影响过冷奥氏体等温转变的因素;答:奥氏体成分含碳量、合金元素、奥氏体状态钢的原始组织、奥氏体化的温度和保温时间及应力和塑性变形;1、含碳量的影响亚共析钢随奥氏体含碳量增加,使C曲线右移,Ms和Mf点降低;过共析钢随含碳量的增加,使C曲线向左移,Ms和Mf点降低;2、合金元素的影响除Co、AlWAl>%外,所有合金元素的溶解到奥氏体中后,都增大过冷奥氏体的稳定性,使C曲线右移,Ms和Mf点降低;3、奥氏体状态的影响奥氏体化温度越低,保温时间越短,奥氏体晶粒越细小,C曲线左移;4、应力和塑性变形的影响在奥氏体状态下承受拉应力会加速奥氏体的等温转变,承受压应力则会阻碍这种转变;对奥氏体进行塑性变形有加速奥氏体转变的作用,C曲线左移;4简述片状珠光体和粒状珠光体的组织和性能;答:1、片状珠光体组织:WC=%的奥氏体在近于平衡的缓慢冷却条件下形成的珠光体是由铁素体和渗碳体组成的片层相间的组织;性能:主要决定于片间距;片间距越小,钢的断裂强度和硬度均随片间距的缩小而增大;随片间距减小,钢的塑性显着增加;片间距减小,塑性变形抗力增大,故强度;硬度提高;2、粒状珠光体组织:渗碳体呈颗粒状分布在连续的铁素体基体中的组织性能:主要取决于渗碳体颗粒的大小,形态与分布;钢的成分一定时,渗碳体颗粒越细,相界面越多,则刚的硬度和强度越高;碳化物越接近等轴状、分布越均匀,则钢的韧性越好;粒状珠光体的硬度和强度较低,塑性和韧性较好,冷变形性能,可加工性能以及淬火工艺性能都比珠光体好;5何为马氏体简述马氏体的晶体结构、组织形态、性能及转变特点;答:是碳在α-Fe中过饱和的间隙固溶体;2、马氏体的晶体结构在钢中有两种:体心正方结构WC<%,c/a=1;体心正方结构WC>%,c/a>1;组织形态:板条马氏体、片状马氏体200℃以上,WC<%,完全形成板条马氏体,因其体内含有大量位错又称位错马氏体;特点强而韧%<WC<1%,为板条马氏体和片状马氏体的混合物;200℃以下,WC>%,完全形成片状马氏体,因其亚结构主要为孪晶又称孪晶马氏体;特点硬而脆4、1马氏体的显着特点是高硬度和高强度,原因包括固溶强化、相变强化、时效强化、原始奥氏体晶粒大小及板条马氏体束大小;马氏体的硬度主要取决于马氏体的含碳量;合金元素对马氏体的硬度影响不大,但可以提高其强度;2马氏体的塑性和韧性主要取决于马氏体的亚结构;5、1无扩散性;奥氏体成分保留在马氏体中2马氏体转变的切变共格性3马氏体转变具有特定的惯习面和位向关系4马氏体转变是在一定温度范围内进行的6 简述淬火钢的回火转变、组织及淬火钢在回火时的性能变化;答:1、钢的回火转变包括五个方面180℃-100℃以下温度回火,马氏体中碳的偏聚,组织是马氏体马氏体:碳溶于α-Fe的过饱和的固溶体280℃-100℃回火,马氏体开始分解,组织是回火马氏体回火马氏体:低碳马氏体和ε碳化物组成的混合物,称为回火马氏体;3200℃-300℃回火,残余奥氏体开始转变,组织是回火马氏体4200℃-400℃回火,碳化物的转变为Fe3C,组织是回火托氏体回火托氏体:由针状α相和无共格联系的细粒状渗碳体组成的机械混合物;5500℃-650℃渗碳体的聚集长大和α相回复或再结晶,组织是回火索氏体回火索氏体:回复或再结晶的铁素体和粗粒状渗碳体的机械混合物;2、回火时力学性能变化总的趋势是随回火温度提高,钢的抗拉强度、屈服强度和硬度下降,塑性、韧性提高;7 简述回火脆性的分类、特点及如何消除;答:1分类:第一类回火脆性低温回火脆性250℃-400℃和第二类回火脆性高温回火脆性450℃-650℃2特点第一类回火脆性:1具有不可逆性第二类回火脆性:1具有可逆性;2与后的有关3与组织状态无关,但以M的脆化倾向3如何消除第一类回火脆性:无法消除,合金元素会提高脆化温度;第二类回火脆性:1选择含杂质元素极少的优质钢材以及采用形变热处理;2加入适量的Mo、W等合金元素阻碍杂质元素在晶界上便聚;3对亚共析钢在A1~A3临界区可采用4采用高温回火后快冷的方法可抑制回火脆性,但不适用于对回火脆性敏感的较大工件;8 叙述淬透性和淬硬性及淬透性和实际条件下淬透层深度的区别;答:1、淬透性:是指奥氏体化后的钢在淬火时获得马氏体的能力,它反映过冷奥氏体的稳定性,与钢的临界冷却速度有关;临界冷却速度越慢,淬透性越大;其大小以钢在一定条件下淬火获得的淬透层深度和硬度分布来表示;2、淬硬性:是指奥氏体化后的钢在淬火时硬化的能力,主要取决于马氏体中的含碳量,含碳量越高,淬硬性越大;用淬火马氏体可能达到的最高硬度来表示;3、实际条件下的淬透层深度:是指具体条件下测定的半马氏体区至表面的深度;4、区别:1同一材料的淬透层深度与工件尺寸、冷却介质有关.工件尺寸小、介质冷却能力强,淬透层深;2淬透性与工件尺寸、冷却介质无关,它是钢的一种属性;相同奥氏体化温度下的同一钢种,其淬透性是确定不不变的;9 何谓淬火热应力、组织应力影响因素都是什么简述热应力和组织应力造成的变形规律;答:1、淬火热应力:工件在加热或冷却时由于内外的温度差异导致热涨或冷缩的不一致所引起的内应力;2、组织应力:工件在冷却过程中,由于内外温差造成组织转变不同时,引起内外比体积的不同变化而引起的内应力;3、影响因素:1含碳量的影响:随着含碳量的增加热应力作用逐渐减弱组织应力逐渐增强;2合金元素的影响:加入合金元素热应力和组织应力增加;3工件尺寸的影响:a.在完全淬透的情况下随着工件直径的增大淬火后残余应力将由组织应力性逐渐变成热应力性;b.在未完全淬透的情况下所产生的应力特性是与热应力相似的,工件直径越大淬硬层越薄,热应力特性越明显;4淬火介质和冷却方法的影响:如果在高于Ms点以上的温度区域冷却速度快而在温度低于Ms点区域冷却速度慢则为热应力性,反之则为组织应力型;4、变形规律:1热应力引起的变形①沿最大尺寸方向收缩,沿最小尺寸方向伸长;②平面凸起,直角变钝,趋于球形;③外径胀大,内径缩小;2组织应力引起变形与热应力相反;10 何谓回火叙述回火工艺的分类,得到的组织,性能特点及应用;答:1、回火:回火是指将淬火钢加热到A1以下的某温度保温后冷却的工艺;2、分类: 低温回火:1得到回火马氏体;2在保留高硬度、高强度及良好的耐磨性的同时又适当提高了韧性,降低内应力;3适用于刀具、量具、滚动轴承、渗碳件及高频表面淬火件;中温回火:1得到回火托氏体;2基本消除了淬火应力,具有高的弹性极限,较高的强度和硬度,良好的塑性和韧性;3适用于弹簧热处理及热锻模具;高温回火:1得到回火索氏体;2获得良好的综合力学性能,即在保持较高的强度同时,具有良好的塑性和韧性;3广泛用于各种结构件如轴、齿轮等热处理;也可作为要求较高精密件、量具等预备热处理;11 简述化学热处理的一般过程;渗碳的工艺、渗层深度、渗碳后表层含碳量、用钢、热处理、组织和应用;答:1、过程:1介质渗剂的分解2工件表面的吸收3原子向内部扩散;2、渗碳工艺:气体渗碳法,固体渗碳,离子渗碳3、渗碳层厚度由表面到过度层一半处的厚度:一般为-2mm;4、渗碳层表面含碳量:以%%为最好;5、用刚:为含的低碳钢和低碳合金钢;碳高则心部韧性降低;6、热处理:常用方法是渗碳缓冷后,重新加热到Ac1+30-50℃淬火分三类:遇冷直接淬火、一次淬火、二次淬火+低温回火;7、组织:表层:高碳M回+颗粒状碳化物+A少量心部:低碳M回+铁素体淬透时、铁素体+索氏体8、应用:拖拉机履带板,坦克履带板。
金属学与热处理重要名词解释绪论1、材料:是人类用来制造各种有用物件的物质。
2、工程材料:是指具有一定性能,在特定条件下能够承担某种功能、被用来制取零件和元件的材料。
3、金属材料:是指具有正的电阻温度系数及金属特性的一类物质。
包含金属和合金。
4、金属:是指由单一元素构成的、具有正的电阻温度系数及金属特性的一类物质。
5、合金:是指有两种或两种以上的金属或金属与非金属构成的、具有正的电阻温度系数及金属特性的一类物质。
6、无机非金属材料:又称硅酸盐材料、陶瓷材料,所谓无机非金属材料是指用天然硅酸盐(粘土、长石、石英等)或人工合成化合物(氮化物、氧化物、碳化物、硅化物、硼化物、氟化物)为原料,经粉碎、配置、成形和高温烧结而成的硅酸盐材料。
7、高分子材料:是指以高分子化合物为主要组分的材料,又被称为高聚物。
8、复合材料:是指由两种或两种以上不同性质的材料,通过不同的工艺方法人工合成的、各组分间有明显界面、且性能优于各组成材料的多相材料。
9、结构材料:是以强度、刚度、塑性、韧性、硬度、疲劳强度、耐磨性等力学性能为性能指标,用来制造承受载荷、传递动力的零件和构件的材料。
10、功能材料:是以声、光、电、磁、热等物理性能为指标,用来制造具有特殊性能的元件材料。
第一章金属的性能1、金属的使用性能:是指金属材料制成零件或构件后为保证正常工作及一定使用寿命应具备的性能,包括金属的力学性能、物理和化学性能。
2、金属的工艺性能:是指金属在加工成零件或构件的过程中金属应具备的适应加工的性能,包括冶炼性能、铸造性能、压力加工性能、切削加工性能、焊接性能及热处理工艺性能。
3、金属的力学性能:是指金属在外加载荷作用时所表现出来的性能,包括强度、硬度、塑性、韧性及疲劳强度等。
4、弹性变形:外力去除后立即可以恢复的变形。
其实质是在外力作用下晶格发生的歪扭与伸长。
5、塑性变形:外力去除后不能恢复的变形6、弹性极限:在弹性变形的范围内,金属材料所能承受的最大应力。
25.晶面:在品体中,山一系列原子所组成的平面称为晶面。
2. 3. 4. 5.6. 7. 8. 9. 10. 1L 金属学与热处理名词解释汇总 金属:具有正的电阻温度系数的物质,具有良好的导电性、导热性、延展性和金属光 泽。
金属键:金属原子贡献出价电子,形成正离子,沉浸在电子云中,他们依黑运动于其中 的公有化的自山电子的静电作用而结合起来,这种结合方式称之为金属键品体:原子在三维空间作有规则的周期性重复排列的物质。
晶体结构:晶体中原子在三维空间有规律的周期性的具体排列方式。
空间点阵:将构成晶体的原子或原子团抽象成纯粹的儿何点,山这些儿何点有规则地 周期性重复排列形成的三维空间阵列。
晶格:用一系列平行直线将阵点连接起来所形成的三维空间格架。
品胞:从品格中选取的能够反映晶格特征的最小儿何单元。
配位数:晶体结构中与任一原子最近邻、等距离的原子数U 。
致密度:晶胞中原子所占体积与晶胞体积的比值,用来表示原子排列的紧密程度。
晶向:在晶体中,任意两原子之间的连线所指的方向称为晶向。
晶向族:原子排列相同但空间位向不同的所有晶向。
12. 13. 晶面族:原子排列情况完全相同的所有晶面。
14. 各向异性:不同方向上晶体的各性能(导电性、导热性、強度等)不相同的特性。
15. 多晶型性:某些金属在不同条件下具有不同晶体结构的特性。
16. 多晶型转变(同素异构转变人当外部条件(温度或圧强)改变时,金属内部由一种晶体结构向另一种品体结构的转变。
17. 强度:指金属材料抵抗塑性变形和断裂的能力。
1& 硬度:金属材料抵抗其它更硬物体压入表面的能力。
19. 塑形:指材料在载荷作用下发生不可逆永久变形的能力。
20. 冲击韧性:材料在外加冲击载荷作用下断裂时消耗能量大小的特性。
2L 晶体缺陷:在实际的金属材料中存在的一些原子偏离规则排列的不完整性区域。
22. 点缺陷:在三个方向上尺度都很小,相当于原子尺寸,如空位、间隙原子、置换原子。
第一章金属及合金的晶体结构复习题一、名词解释1.晶体:原子(分子、离子或原子集团)在三维空间做有规则的周期性重复排列的物质。
2.非晶体:指原子呈不规则排列的固态物质。
3.空间点阵:描述晶体中原子(离子、分子或原子集团)规律排列的空间格架称为空间点阵。
4.晶格:一个能反映原子排列规律的空间格架。
5.晶胞:构成晶格的最基本单元。
6.晶界:晶粒和晶粒之间的界面。
7.单晶体:只有一个晶粒组成的晶体。
8.多晶体:由许多取向不同,形状和大小甚至成分不同的单晶体(晶粒)通过晶界结合在一起的聚合体。
9.晶粒:组成多晶体的各个小单晶体的外形一般为不规则的颗粒状,故通常称之为晶粒。
10.合金:是以一种金属为基础,加入其他金属或非金属,经过熔合而获得的具有金属特性的材料。
11.组元:组成合金最基本的、独立的物质称为组元。
12.相:金属中具有同一化学成分、同一晶格形式并以界面分开的各个均匀组成部分称为相。
13.组织:用肉眼观察到或借助于放大镜、显微镜观察到的相的形态及分布的图象统称为组织。
14.固熔体:合金组元通过溶解形成成分和性能均匀的、结构上与组元之一相同的固相。
二、填空题1.晶体与非晶体的根本区别在于原子的排列是否规则。
2.常见金属的晶体结构有体心立方晶格、面心立方晶格、密排六方晶格三种。
3.实际金属的晶体缺陷有点缺陷、线缺陷、面缺陷、体缺陷。
4.根据溶质原子在溶剂晶格中占据的位置不同,固溶体可分为置换固溶体和间隙固溶体两种。
5.置换固溶体按照溶解度不同,又分为无限固溶体和有限固溶体。
6.合金相的种类繁多,根据相的晶体结构特点可将其分为固溶体和金属化合物两种。
7.同非金属相比,金属的主要特征是良好的导电性、导热性,良好的塑性,不透明,有光泽,正的电阻温度系数。
8.晶体与非晶体最根本的区别是原子(分子、离子或原子集团)在三维空间做有规则的周期性重复排列的物质,而非晶体则不是。
9.金属晶体中最主要的面缺陷是晶界和亚晶界。
金属学与热处理名词解释复习回复:即在加热温度较低时,仅因金属中的一些点缺陷和位错迁移而所引起的某些晶内的变化。
晶粒大小和形状无明显变化。
回复的目的是消除大部分甚至全部第一类内应力和一部分第二类和第三类内应力。
多边形化:冷变形金属加热时,原来处于滑移面上的位错,通过滑移和攀移,形成与滑移面垂直的亚晶界的过程。
多边形化的驱动力来自弹性应变能的降低。
多边形化降低了系统的应变能。
再结晶:冷变形后的金属加热到一定温度或保温足够时间后,在原来的变形组织中产生了无畸变的新晶粒,位错密度显著降低,性能也发生显著变化,并恢复到冷变形前的水平,这个过程称为再结晶。
再结晶不是相变。
再结晶的目的是释放储存能,使新的无畸变的等轴晶粒形成并长大,使之在热力学上变得更为稳定。
动态回复与再结晶:在再结晶温度以上进行热加工时,在塑性变形过程中发生的,而不是在变形停止后发生的回复与再结晶。
回复和再结晶的驱动力:金属处于热力学不稳定状态,有发生变化以降低能量的趋势,预先冷变形所产生的储存能的降低是回复和再结晶的驱动力。
再结晶形核机制:亚晶长大形核机制、晶界凸出形核机制。
再结晶温度:经过严重冷变形(变形度在70%以上)的金属,在约1h的保温时间内能够完成再结晶(>95%转变量)的温度。
影响奥氏体晶粒大小的因素:加热温度和保温时间、加热速度、钢的化学成分、钢的原始组织。
钢在冷却时的转变:钢在奥氏体化后的两种冷却方式:等温冷却方式、连续冷却方式珠光体转变及其组织在温度A1以下至550℃左右的温度范围内,过冷奥氏体转变产物是珠光体,即形成铁素体与渗碳体两相组成的相间排列的层片状的机械混和物组织。
在珠光体转变中,由A1以下温度依次降到鼻尖的550℃左右,层片状组织的片间距离依次减小。
根据片层的厚薄不同,这类组织又可细分为三种。
第一种是珠光体,其形成温度为A1~650℃,片层较厚,一般在500倍的光学显微镜下即可分辨。
用符号“P”表示。
第二种是索氏体,其形成温度为650℃~600℃,片层较薄,一般在800~1000倍光学显微镜下才可分辨。
用符号“S”表示。
第三种是屈氏体,其形成温度为600℃~550℃,片层极薄,只有在电子显微镜下才能分辨。
用符号“T”表示。
实际上,这三种组织都是珠光体,其差别只是珠光体组织的“片间距”大小,形成温度越低,片间距越小。
这个“片间距”越小,组织的硬度越高,屈氏体的硬度高于索氏体,远高于粗珠光体。
珠光体转变过程奥氏体转变为珠光体的过程也是形核和长大的过程。
当奥氏体过冷到A1以下时,首先在奥氏体晶界上产生渗碳体晶核,通过原子扩散,渗碳体依靠其周围奥氏体不断地供应碳原子而长大。
同时,由于渗碳体周围奥氏体含碳量不断降低,从而为铁素体形核创造了条件,使这部分奥氏体转变为铁素体。
由于铁素体溶碳能力低(<0.0218%C),所以又将过剩的碳排挤到相邻的奥氏体中,使相邻奥氏体含碳量增高,这又为产生新的渗碳体创造了条件。
如此反复进行,奥氏体最终全部转变为铁素体和渗碳体片层相间的珠光体组织。
珠光体转变是一种扩散型转变,即铁原子和碳原子均进行扩散。
贝氏体转变及其组织过冷奥氏体在550℃~Ms(马氏体转变开始温度)的转变称为中温转变,其转变产物为贝氏体型,所以也叫贝氏体转变。
贝氏体用符号“B”表示,它仍是由铁素体与渗碳体组成的机械混和物,但其形貌与渗碳体的分布与珠光体型不同,硬度也比珠光体型的高。
根据贝氏体的组织形态和形成温度区间。
不同又可将其划分为上贝氏体(B上)与下贝氏体(B下)。
上贝氏体的形成温度为550℃~350℃,它的硬度比同样成份的下贝氏体低,韧性也比下贝氏体差,所以上贝氏体的机械性能很差,脆性很大,强度很低,基本上没有实用价值。
下贝氏体的形成温度为350℃~Ms,它有较高的强度和硬度,还有良好的塑性和韧性,具有较优良的综合机械性能,是生产上常用的组织。
获得下贝氏体组织是强化钢材的途径之一。
贝氏体的转变过程在中温区发生奥氏体转变时,由于温度较低,铁原子扩散困难,只能以共格切变的方式来完成原子的迁移,而碳原子则有一定的扩散能力,可以通过短程扩散来完成原子迁移,所以贝氏体转变属于半扩散型相变。
在贝氏体转变中,存在着两个过程,一是铁原子的共格切变,二是碳原子的短程扩散。
当温度较高(550℃~350℃)时,条状或片状铁素体从奥氏体晶界开始向晶内以同样方向平行生长。
随着铁素体的伸长和变宽,其中的碳原子向条间的奥氏体中富集,最后在铁素体条之间析出渗碳体短棒,奥氏体消失,形成上贝氏体。
当温度较低(350℃~Ms)时,碳原子扩散能力低,铁素体在奥氏体的晶界或晶内的某些晶面上长成针状。
尽管最初形成的铁素体固溶碳原子较多,但碳原子不能长程迁移,因而不能逾越铁素体片的范围,只能在铁素体内一定的晶面上以断续碳化物小片的形式析出,从而形成下贝氏体。
马氏体组织及其性能特点过冷奥氏体在马氏体开始形成温度Ms以下转变为马氏体,这个转变持续至马氏体形成终了温度Mf。
在Mf以下,过冷奥氏体停止转变。
除Al、Co元素外,溶解到奥氏体中的元素均使Ms、Mf下降。
碳含量增多,Ms、Mf点降低。
经冷却后未转变的奥氏体保留在钢中,称为残余奥氏体。
在Ms与Mf温度之间过冷奥氏体与马氏体共存。
在Ms温度以下,转变温度越低,残余奥氏体量越少。
随奥氏体中含碳量的增加Ms和Mf均会降低,可见在同样的冷却速度下(或冷却介质中),奥氏体中含碳量越高,马氏体中的残余奥氏体就越多。
马氏体形成的温度也是碳原子难以扩散的温度,它是由过冷奥氏体按无扩散型转变机制的转变产物,马氏体与过冷奥氏体含碳量相等,晶格同于铁素体体心立方。
体心立方晶格的铁素体在室温含约0.008%C,对共析钢马氏体的晶格内含约0.77%C,为此导致体心立方晶格畸变为体心正方晶格,因此马氏体是含过饱和碳的固溶体,是单一的相,同高温、中温转变产物有本质区别。
马氏体的形貌常有针状及板条状两种,前一种一般出现在高碳钢中,后一种一般出现在低碳钢中。
“针”或“条”的粗细主要取决于奥氏体晶粒的尺寸大小,奥氏体晶粒越大,“针”或“条”越粗。
马氏体的硬度主要取决于其中含碳量,含碳量越高,马氏体硬度越高。
实际淬火钢硬度取决于马氏体,残余奥氏体,以及其它不转变物(铁素体或二次渗碳体)的含量。
马氏体转变的特点马氏体转变同样是一个形核和长大的过程。
它的主要特点是:(1)无扩散性;(2)有共格位向关系;(3)在不断降温的过程中形成;(4)高速长大;(5)马氏体转变的不完全性。
钢的回火回火一般是紧接淬火以后的热处理工艺,回火是淬火后再将工件加热到Ac1温度以下某一温度,保温后再冷却到室温的一种热处理工艺。
淬火后的钢铁工件处于高的内应力状态,不能直接使用,必须即时回火,否则会有工件断裂的危险。
淬火后回火目的在于降低或消除内应力,以防止工件开裂和变形;减少或消除残余奥氏体,以稳定工件尺寸;调整工件的内部组织和性能,以满足工件的使用要求。
钢在回火时的转变共析钢在淬火后得到的马氏体和残余奥氏体组织是不稳定的,存在着向稳定组织转变的自发倾向。
回火加热可加速这种自发转变过程。
根据转变发生的过程和形成的组织,回火可分为四个阶段:第一阶段(200℃以下):马氏体分解。
第二阶段(200℃~300℃):残余奥氏体分解。
第三阶段(250℃~400℃):碳化物的转变。
第四阶段(400℃以上):渗碳体的聚集长大与α相的再结晶。
回火脆性随着回火温度的升高,钢的冲击韧性发生变化。
在250℃~350℃和500℃~650℃钢的冲击韧性明显下降,这种脆化现象称为回火脆性(1)低温回火脆性淬火钢在250℃~3500℃范围内回火时出现的脆性叫做低温回火脆性,也叫第一类回火脆性。
几乎所有的钢都存在这类脆性。
这是一种不可逆回火脆性,目前尚无有效办法完全消除这类回火脆性。
所以一般都不在250℃~350℃这个温度范围内回火。
(2)高温回火脆性淬火钢在500℃~650℃范围内回火时出现的脆性称为高温回火脆性,也称为第二类回火脆性。
这种脆性主要发生在含Cr、Ni、Si、Mn等合金元素的结构钢中。
这种脆性与加热、冷却条件有关。
加热至600℃以上后,以缓慢的冷却速度通过脆化温度区时,出现脆性;快速通过脆化区时,则不出现脆性。
此类回火脆性是可逆的,在出现第二类回火脆性后,重新加热至600℃以上快冷,可消除脆性。
钢的淬火将亚共析钢加热到Ac3以上,共析钢与过共析钢加热到Ac1以上(低于Accm)的温度,保温后以大于Vk的速度快速冷却,使奥氏体转变为马氏体的热处理工艺叫淬火。
马氏体强化是钢的主要强化手段,因此淬火的目的就是为了获得马氏体,提高钢的机械性能。
淬火是钢的最重要的热处理工艺,也是热处理中应用最广的工艺之一。
淬火温度的确定淬火温度即钢的奥氏体化温度,是淬火的主要工艺参数之一。
选择淬火温度的原则是获得均匀细小的奥氏体组织。
亚共析钢的淬火温度一般为Ac3以上30℃~50℃,淬火后获得均匀细小的马氏体组织。
如果温度过高,会因为奥氏体晶粒粗大而得到粗大的马氏体组织,使钢的机械性能恶化,特别是使塑性和韧性降低;如果淬火温度低于Ac3,淬火组织中会保留未溶铁素体,使钢的强度硬度下降。
加热时间的确定加热时间由升温时间和保温时间组成。
由零件入炉温度升至淬火温度所需的时间为升温时间,并以此作为保温时间的开始。
保温时间是指零件烧透及完成奥氏体化过程所需要的时间。
加热时间通常根据经验公式估算或通过实验确定。
生产中往往要通过实验确定合理的加热及保温时间,以保证工件质量。
淬火冷却介质的确定淬火过程是冷却非常快的过程。
为了得到马氏体组织,淬火冷却速度必须大于临界冷却速度Vk。
但是,冷却速度快必然产生很大的淬火内应力,这往往会引起工件变形。
淬火的目的是得到马氏体组织,同时又要避免产生变形和开裂。
对于理想的淬火冷却曲线,只要在“鼻尖”温度附近快冷,使冷却曲线躲过“鼻尖”,不碰上C曲线,就能得到马氏体。
也就是说,在“鼻尖”温度以上,在保证不出现珠光体类型组织的前提下,可以尽量缓冷;在“鼻尖”温度附近则必须快冷,以躲开“鼻尖”,保证不产生非马氏体相变;而在Ms点附近又可以缓冷,以减轻马氏体转变时的相变应力。
但是到目前为止,还找不到完全理想的淬火冷却介质。
常用的淬火冷却介质是水、盐或碱的水溶液和各种矿物油、植物油。
淬火方法选择适当的淬火方法同选用淬火介质一样,可以保证在获得所要求的淬火组织和性能条件下,尽量减小淬火应力,减少工件变形和开裂倾向。
(1)单液淬火它是将奥氏体状态的工件放入一种淬火介质中一直冷却到室温的淬火方法。
这种方法操作简单,容易实现机械化,适用于形状简单的碳钢和合金钢工件。
(2)双液淬火它是先将奥氏体状态的工件在冷却能力强的淬火介质中冷却至接近Ms点温度时,再立即转入冷却能力较弱的淬火介质中冷却,直至完成马氏体转变。