化学药品活化法生产活性炭
- 格式:ppt
- 大小:1.43 MB
- 文档页数:180
活性炭制备技术及应用研究综述摘要:从活性炭的制备技术和活性炭的应用两方面综述了国内外活性发近20年的研究进展。
总结了活性炭的化学活化法和物理活化法的发展状况,对制备技术中的最新突破—物理法-化学法活性炭一体化生产工艺进行了介绍,并且简述了活性炭工业生产中无公害化、低消耗、预处理的生产技术,以及吸附达饱和活性炭的再生生产技术,同时总结了活性炭在气相吸附、液相吸附和作为催化剂载体等方面的应用进展。
提出了目前活性炭生产应用技木存在的问题,明确了活性炭产业发展的出路与对策,指明了活性炭未来的研究方向。
关键词:活性炭:制备:应用;发展趋势活性炭是由木质、煤质和石油焦等含碳的原料经热解、活化加工制备而成,具有发达的孔隙结构、较大的比表面积和丰富的表面化学基团,特异性吸附能力较强的炭材料的统称。
活性炭在石油化工、食品、医药乃至航空航天等领域均有广泛应用,已成为国民经济发展和国防建设的重要功能材料。
近年来,随着环保、新能源等行业的快速发展,功能型活性炭的市场需求激增,我国活性炭的生产量和出口量均已达到世界第一。
同时,生物质热解固炭技术也是公认的解决气候变化问题的有效措施之一。
因此,针对活性炭科学研究与产业化开发存在的问题,本论文综述了活性炭制备与应用技术研究现状及发展1.国内外活性炭制备技术进展1.1化学活化法化学活化法就是通过将各种含碳原料与化学药品均匀地混合后,一定温度下,经历炭化、活化、回收化学药品、漂洗、烘干等过程制备活性炭。
磷酸、氯化锌氢氧化钾、氢氧化钠?、硫酸、碳酸钾、多聚磷酸和磷酸酯等都可作为活化试剂,尽管发生的化学反应不同,有些对原料有侵蚀、水解或脱水作用,有些起氧化作用,但这些化学药品都可对原料的活化有一定的促进作用,其中最常用的活化剂为磷酸、氯化锌和氢氧化钾。
化学活化法的活化原理目前还不十分清楚,一般认为化學活化剂具有侵蚀溶解纤维素的作用,并且能够使原料中的碳氢化合物所含有的氢和氧分解脱离,以H2O、CH4等小分子形式逸出,从而产生大量孔隙。
活性炭制造的主要工艺过程-活化法制造活性炭的关键工艺是活化。
由于所用活化剂的不同,可分为两类方法:(1)用氯化锌或磷酸等化学品为活化剂的化学品活化法;(2)用水蒸气或二氧化碳等为活化剂的气体活化法。
前者称为化学活化法,后者称为物理活化法。
其实两类活化过程都各自发生质的变化,都是化学变化的过程。
1、化学品活化法(一)氯化锌活化法以化学品氯化锌为活化剂。
将0.4~5.0份氯化锌浓溶液和1份泥炭或锯屑混合,在转炉中下燥,加热到600~700℃,成品以酸洗和水洗回收锌盐。
有时化学品活化后继续进行水蒸气活化,藉以增加活性炭的细孔。
氯化锌活化的活性炭具较多大孔。
虽然这是有效和简单的方法,但因锌化合物的环境污染而渐衰。
(二)磷酸活化法以化学品磷酸为活化剂。
炭化的或未炭化的含碳物作起始原料。
例如将研细的锯屑和磷酸混成浆状,在转炉中干燥,加热到400~600℃。
萃取回收磷酸,有时中和后回收磷酸盐。
于燥得活性炭,一般较氯化锌法的活性炭具有更细的细孔。
也可采用磷酸和水蒸气联合活化法。
近年磷酸活化法趋向广泛应用,磷酸回收等革新未见发表。
(三)氢氧化钾活化法以化学品氢氧化钾为活化剂。
将含碳原料以熔融的无水氢氧化钾处理,激烈的反应产生非常高的多孔性,比表而积可高达3000m2/g。
(四)其他化学品活化法硫酸、硫化钾、氯化铝、氯化钱、硼酸盐、硼酸、氯化钙、氢氧化钙、氯气、氯化氢、铁盐、镍盐、硝酸、亚硝气、五氧化二磷、金属钾、高锰酸钾、金属钠、氧化钠和二氧化硫均可用于活化。
2、气体活化法以水蒸气、二氧化碳或两者的混合气体为活化剂,将含碳物料和气体在转炉或者沸腾炉内,在800~1000℃高温下进行碳的氧化反应,制成细孔结构发达的活性炭。
水蒸气、二氧化碳和碳的反应是吸热反应,而氧和碳的反应是很强的放热反应,因此炉内反应温度难以控制,尤其要避免局部过热,防止不均匀活化更难,故氧或空气不宜作为活化剂。
有时使用空气和水蒸气的混合气体,用碳的燃烧作为热源。
活性炭工艺流程
《活性炭工艺流程》
活性炭是一种可以吸附有机物质和杂质的多孔炭材料,广泛应用于水处理、空气净化、医药和化工等领域。
其工艺流程是通过碳质原料的炭化、活化和筛选等步骤来制备活性炭的过程。
首先是碳质原料的选择和炭化。
通常选择木质材料、果壳、煤炭等作为原料,经过干燥和碎粉后进行高温炭化,将原料中的挥发性物质和杂质热解出来,得到初步的炭素材料。
接下来是活化的过程。
活化是指在一定条件下,将初步炭素材料中的残余杂质和碳骨架中的孔道进一步发育,增大比表面积,提高活性炭的吸附能力。
活化通常采用物理活化和化学活化两种方式进行。
物理活化是利用高温和气体流动来使炭素材料孔道扩展,而化学活化则是通过与碱性或酸性物质的作用来改变炭素材料的结构,增加孔道数量和大小。
最后是筛选和包装。
经过活化的炭素材料会经过筛选和处理,去除颗粒不均匀的部分,然后便于包装和存储。
以上就是活性炭工艺流程的基本步骤,通过这一系列的操作可以生产出不同种类和规格的活性炭产品,满足不同领域的需求。
活性炭的应用范围广泛,随着环保意识的提高,其市场需求也将持续增长。
活性炭的制备及应用1.活性炭的制备1.1化学活化法1.1.1氯化锌法氯化锌法制造工艺为在原料中加人重量是原料0.5~4倍、比重为1.8左右的浓氯化锌溶液并进行混合,让氯化锌浸渍,然后在回转炉中隔绝空气加热~600-700℃,由于氯化锌的脱水作用,原料里的氢和氧主要以水蒸气的形式放出,形成多孔性结构发达的炭。
1.1.2 磷酸法磷酸活化原则上是将精细粉碎的原料与磷酸溶液混合,接着混合物被烘干,并在转炉内加热到400~600℃,众所熟知的工艺过程是在较高的温度下(1 100℃)进行的。
1.2 气体活化法微波加热法制活性炭含碳原料在600℃以上的温度下进行预热处理,与水蒸气、二氧化碳、含氧气体或活化产生的气体接触,以微波直接加热,即可完成活化.但由通常活化方法能制得活性炭的煤类、石油类、木质类等原料,想用微波加热到完全活化温度是不可能的.例如煤、沥青、木材等原料,若照射微波,最初因水分发热,温度可达100℃左右,然后当水分蒸发完,发热极小,要升温到100℃以上,或不可能或需很长的时间。
1.3 药品活化和气体活化的配合使用气体活化和药品活化有时还配合起来使用.对受过药品活化处理的炭,进一步进行水蒸气活化,有时能制造出特殊细孔分布的产品,并使幅度很广的细孔数增加.用活性炭处理含有会堵塞炭的细孔的那样物质的气体时,例如,用粒状活性炭从城市煤气中吸附除去苯时,活性炭的细孔被城市煤气中的二烯烃堵塞而迅速老化.为制造这种情况下能使用的活性炭,曾应用过这种配合使用的活化方法.勒吉公司的苯佐尔邦牌活性炭就是有代表性的这类活性炭。
1.4 连续炭化活化法用比较简单的流动加热炉连续进行炭化和限制氧化活化的活性炭生产方法,并且操作省工、产品质量较好.该方法特点是:把含水率调整到l5%~30%的活性炭原料,连续地送入流动加热炉,同时由炉底鼓入适量的空气,使炉内进行炭化和限制氧化活化,在原料入炉前到载入炉时,仅向炉内送入少量火种,加上从炉的下部鼓入适量空气,促使原料部分燃烧,以便加热原料本身.炉内温度和炭化速度靠鼓入空气量和投料量进行调整.鼓风除用于原料部分燃烧和加热外,还用于使炭化过程中的粒子流态化和连续不断进行的活化反应中。
官网地址:活性炭生产之活化赋予炭颗粒活性,使炭形成多孔的微晶结构,具有发达的表面积的过程称为活化过程。
活化方法通常有三种,即化学药品活化法、物理化学联合活化法和物理活化法。
(1)化学药品活化法即将含碳原料与化学药品活化剂混捏,然后炭化、活化制取活性炭。
药品有ZnCl2,H3PO4,K2SO4及K2S等。
(2)物理化学联合活化法一般先进行化学药品活化,然后进行物理活化。
由物理活化法特别是用水蒸气活化制成的产品,微孔发达,对气相物质有很好的吸附力,当然也可以通过控制炭的活化程度而用于液相吸附;由化学药品活化法制得的活性炭次微孔发达,多用于液相吸附。
(3)物理活化法(气体活化法)在活化过程中通入气体活化剂如二氧化碳,水蒸气,空气等。
活化反应通过以下三个阶段最终达到活化造孔的目的:官网地址: 第一阶段:开放原来的闭塞孔。
即高温下,活化气体首先与无序碳原子及杂原子发生反应,将炭化时已经形成但却被无序的碳原子及杂原子所堵塞的孔隙打开,将基本微晶表面暴露出来。
第二阶段:扩大原有孔隙。
在此阶段暴露出来的基本微晶表面上的碳原子与活化气体发生氧化反应被烧失,使得打开的孔隙不断扩大、贯通及向纵深发展。
第三阶段:形成新的孔隙。
微晶表面上的碳原子的烧失是不均匀的,同炭层平行方向的烧失速率高于垂直方向,微晶边角和缺陷位置的碳原子即活性位更易与活化气体反应。
同时,随着活化反应的不断进行,新的活性位暴露于微晶表面,于是这些新的活性点又能同活化气体进行反应。
微晶表面的这种不均匀的燃烧不断地导致新孔隙的形成。
随着活化反应的进行,孔隙不断扩大,相邻微孔之间的孔壁被完全烧失而形成较大孔隙,导致中孔和大孔孔容的增加,从而形成了活性炭大孔、中孔和微孔相连接的孔隙结构,具有发达的比表面积。
气体活化的基本反应式如下:。
制备活性炭的方法
活性炭是一种多孔性炭材料,具有很强的吸附能力和化学稳定性,广泛应用于水处理、空气净化、催化剂载体等领域。
以下介绍两种常见的活性炭制备方法。
1. 化学活化法:
将含碳的原料(如木材、椰壳、煤炭等)进行预处理,如碎磨、干燥等。
然后在高温下,与化学活化剂(如磷酸、氢氟酸、氯化锌等)进行反应,生成孔洞结构较多的活性炭。
反应通常在600到900的高温下进行,并且需要加入气流来帮助焦化反应。
最后,用水或酸等物质将残留的活化剂洗去,得到活性炭。
2. 物理活化法:
这种方法主要通过高温脱挥发分和二氧化碳气化,形成活性炭的孔洞结构。
具体步骤如下:首先将含碳的原料炭材料进行预处理,如碎磨、干燥等。
然后,在高温下(通常为800到1000)进行气化反应,可以使用水蒸气或二氧化碳作为气化剂,并通过气流加速反应。
反应使材料中的非碳组分脱挥发,从而形成孔隙结构的活性炭。
最后,用水或酸洗去残留的气化剂和其他杂质。
以上是两种常见的活性炭制备方法,不同的方法在活性炭的孔洞结构和吸附性能上可能略有不同,根据具体应用需求选择合适的制备方法。