生物质能发电技术介绍
- 格式:doc
- 大小:646.87 KB
- 文档页数:30
生物质能发电原理生物质能发电是一种利用生物质作为燃料来发电的技术。
生物质包括植物、动物等有机物质,如木材、农作物废弃物、食品废料等。
利用这些生物质作为燃料来发电,不仅可以有效回收利用有机废弃物,还可以减少对传统化石燃料的依赖,降低温室气体排放,具有重要的环境和经济效益。
一、生物质能燃烧发电原理生物质能燃烧发电是目前最常用的生物质能发电技术。
其基本原理是通过燃烧生物质燃料释放的热能来获得蒸汽,进而驱动涡轮发电机发电。
其具体过程如下:1. 原料处理:生物质燃料经过破碎、干燥等处理工序,得到适合燃烧的小颗粒物。
2. 燃烧过程:将处理后的生物质颗粒物送入锅炉,进行燃烧。
在燃烧过程中,生物质燃料中的可燃物质在氧气的存在下发生反应,产生高温和燃烧产物,其中最主要的产物是二氧化碳和水蒸气。
3. 热能转化:锅炉中的燃料燃烧释放的热能被传递给水,使水转化为高温高压的蒸汽。
4. 涡轮发电机组:高温高压的蒸汽推动涡轮发电机组转动,通过转动的涡轮产生电能。
5. 发电输送:发电机组产生的电能通过输电网输送到用户端,为人们的生活和生产提供电力支持。
生物质能燃烧发电技术具有成熟的产业化应用,其中关键的环节是燃烧过程和热能转化。
优化燃烧过程和提高热能转化效率是提高生物质能发电效率的重要手段。
二、生物质气化发电原理除了燃烧发电,生物质气化发电是另一种常见的生物质能发电技术。
该技术通过将生物质颗粒物在高温和缺氧条件下转化为可燃气体,再利用气体发电。
其具体过程如下:1. 生物质气化:生物质燃料经过粉碎、干燥等处理工序后,进入气化炉。
在气化炉中,生物质在高温和缺氧条件下发生热解和干馏反应,生成可燃的合成气体,主要成分为一氧化碳、氢气和甲烷等。
2. 合成气净化:气化产生的合成气中含有较多的杂质,需要进行除尘、脱硫、脱氮等处理,以便保护后续设备的正常运行。
3. 合成气发电:经过净化后的合成气进入内燃机或燃气轮机,产生动力,驱动发电机发电。
生物质斯特林发电
生物质斯特林发电是一种利用生物质能进行发电的技术,它通过斯特林发动机将生物质燃烧产生的热能转化为机械能,进一步转化为电能。
这种发电方式具有许多优点,包括可利用各种生物质作为燃料,能源利用效率高,环境污染小等。
生物质斯特林发电系统主要由生物质燃烧装置、斯特林发动机和发电机等组成。
生物质燃烧装置负责将生物质燃料燃烧产生热能,斯特林发动机则将热能转化为机械能,发电机则将机械能转化为电能。
与传统的火力发电相比,生物质斯特林发电的燃料成本较低,同时其运行成本也较低。
此外,由于生物质燃烧后产生的二氧化碳可以与植物的光合作用抵消,因此生物质发电具有较低的碳排放,有助于减缓全球气候变化。
然而,生物质斯特林发电也存在一些挑战和限制。
首先,生物质能源的生产和使用可能受到地区和气候的限制。
其次,生物质能源的生产需要大量的土地和资源,可能会对环境造成一定的影响。
此外,生物质燃料的生产和使用过程中也需要注意安全问题,防止火灾等事故的发生。
总的来说,生物质斯特林发电是一种具有潜力的可再生能源技术,具有广阔的应用前景。
随着技术的不断进步和成本的降低,相信这种发电方式将会在未来得到更广泛的应用和推广。
生物质能发电再生能源的利用生物质能作为一种重要的再生能源,具有广泛的应用前景。
在当前全球温室气体排放和能源安全问题的背景下,生物质能发电被广泛看好,被认为是未来能源发展的重要方向之一。
本文将探讨生物质能发电的原理与技术,以及其在可持续能源发展中的作用。
一、生物质能发电的原理与技术1.1 生物质能发电原理生物质能发电是通过将有机物质(如木材、农作物秸秆等)转化为可燃气体或液体燃料,通过燃烧释放热能,再驱动发电机组产生电能的过程。
这一过程可以被概括为生物质能转化为热能,再转化为电能的能量链。
1.2 生物质能发电技术生物质能发电技术主要包括气化发电、液化发电和生物质燃烧发电三种方式。
气化发电是将生物质通过气化设备将其转化为合成气体,再通过燃烧产生热能,最后利用蒸汽发电机组将热能转化为电能。
液化发电则是将生物质转化为液体燃料,再利用内燃机或燃气轮机发电。
生物质燃烧发电是将生物质直接燃烧产生热能,再利用蒸汽发电机组转化为电能。
二、生物质能发电的优势与挑战2.1 优势生物质能作为一种再生能源,具有诸多优势。
首先,生物质资源广泛,可再生性强,不会像化石能源那样枯竭。
其次,生物质能的燃烧过程中排放的二氧化碳几乎等于其生长过程中吸收的二氧化碳量,具有循环利用的特点,可有效降低温室气体排放。
此外,生物质能发电技术相对成熟,应用范围广泛,能够满足不同规模和需求的能源供应。
2.2 挑战然而,生物质能发电也面临一些挑战。
首先,生物质资源的获取和利用需谨慎考虑,过度采伐和不合理利用生物质可能导致生态环境破坏。
其次,生物质能发电技术对燃料的质量要求较高,如水分含量、灰分含量等,需要进行适当的处理和调节。
此外,生物质能发电的经济性也需要进一步提高,降低成本,以使其更具竞争力。
三、生物质能发电在可持续能源发展中的作用生物质能发电在可持续能源发展中发挥着重要的作用。
3.1 减少温室气体排放生物质能发电的燃烧过程中,排放的二氧化碳几乎等于生长期间吸收的二氧化碳量,实现了碳排放的循环利用,对减少温室气体排放起到了积极作用。
生物质能发电
生物质能发电是利用生物质资源进行发电的一种可再生能
源技术。
生物质指的是植物的有机物质,包括农作物秸秆、木材、木屑、麦秸、稻壳等。
生物质能发电的过程一般包
括生物质燃烧、气化或发酵等方法,将生物质转化为热能
或燃气,然后通过燃气发动机、蒸汽涡轮机、燃气轮机等
设备产生电力。
生物质能发电的优点包括:1. 可再生性:生物质资源广泛
存在,具有大量的再生潜力,可避免对传统能源的过度依赖。
2. 减少温室气体排放:生物质能发电通过燃烧生物质
释放的二氧化碳,与生物质在生长过程中吸收的二氧化碳
相平衡,使其对全球气候变化的影响较小。
3. 垃圾和农作
物废弃物的综合利用:生物质能发电可以有效利用废弃农
作物和农业生物质废弃物,减少了垃圾的处理负担。
然而,生物质能发电也存在一些挑战和限制。
首先,生物
质资源的供给不稳定,受季节、气候和地理因素的影响较大。
其次,生物质料理过程中产生的废弃物需要妥善处理,以避免对环境造成负面影响。
此外,生物质能发电技术的
成本相对较高,需要进一步的技术进步和规模化生产来降低成本。
总的来说,生物质能发电是一种可持续发展的能源解决方案,对于引导能源结构的转型和减少对化石燃料的依赖具有重要意义。
随着技术的不断进步和经济的发展,相信生物质能发电将在未来发挥更大的作用。
能源工程中的生物质能发电技术资料在能源工程领域中,生物质能发电技术具有重要的地位和作用。
生物质能发电技术,即利用生物质作为燃料,通过燃烧或气化等方式转化为能量,进而驱动发电机组发电。
本文将详细介绍生物质能发电技术的相关资料,以及其在能源工程中的应用。
一、生物质能发电技术资料1. 生物质能介绍生物质是指来源于植物和动物的有机物质,包括木材、秸秆、农作物废弃物、食品加工废弃物等。
生物质资源广泛,易获取,是可再生能源的重要组成部分。
2. 生物质能发电技术分类生物质能发电技术主要包括直接燃烧发电、气化发电和生物质废弃物发电。
直接燃烧发电是将生物质直接燃烧,产生热能,再通过蒸汽发电机组转化为电能。
气化发电是将生物质气化为合成气,再通过燃气发电机组进行发电。
生物质废弃物发电是利用农作物秸秆、木屑等废弃物通过发酵和厌氧消化等方式产生沼气,再通过沼气发电机组发电。
3. 生物质能发电技术优势生物质能发电技术具有以下优势:(1)可再生性:生物质是一种可再生资源,可以不断获取和利用,有效缓解能源短缺问题。
(2)环保性:生物质能发电过程中的排放物相对较少,不会对环境造成明显的污染,符合可持续发展理念。
(3)废弃物综合利用:生物质废弃物可通过发电技术转化为电能,实现资源的综合利用,减少废弃物对环境的负荷。
二、生物质能发电技术在能源工程中的应用1. 农村电力供应生物质能发电技术在农村电力供应中起到重要作用。
农村地区常常存在着电力供应不足的问题,而农作物秸秆、柴草等生物质资源丰富。
利用这些资源进行生物质能发电,可以满足农村地区的电力需求,促进农村经济发展。
2. 工业生产用能生物质能发电技术可用于工业生产过程中的能源供应。
许多工业生产过程需要大量的能源,而利用生物质作为燃料,既能满足能源需求,又减少对化石能源的依赖,降低能源成本和环境影响。
3. 城市垃圾处理城市垃圾中含有大量的有机物质,是理想的生物质能发电原料。
通过垃圾气化或沼气发电技术,将城市垃圾转化为电能,可以实现垃圾资源化利用和减少垃圾对环境的污染。
生物质能发电分类生物质发电是利用生物质具有的生物质能进行发电的一种技术。
大致分为农林生物质发电、垃圾焚烧发电和沼气发电,而农林生物质发电从发电技术上又可分为直接燃烧发电和混合燃烧发电。
生物质发电技术是目前生物质能应用方式中最普遍、最有效的方法之一。
我国生物质发电主要有:蔗渣燃烧发电,垃圾燃烧发电,稻壳秸秆燃烧发电生物质发电是利用生物质所具有的生物质能进行的发电,是可再生能源发电的一种,包括农林废弃物直接燃烧发电、农林废弃物气化发电、垃圾焚烧发电、垃圾填埋气发电、沼气发电。
生物质气化是在一定的热力学条件下,借助空气(或氧气),水蒸气的作用,使生物质的高聚物发生热解,氧化,还原重整反应,最终转化为一氧化碳,氢气和低分子烃类等可燃气体。
生物质发电是利用生物质所具有的生物质能进行的发电,是可再生能源发电的一种。
形式如下:1.直接燃烧发电(放在锅炉中直接燃烧,采用流化床燃烧,要求将生物质粉碎至一定的粒度)2.混合燃料发电(与煤混合后燃烧,设备要求高;)3.气化发电(分为内燃机发电,燃气轮机发电,燃气-蒸汽联合循环发电,燃料电池发电)4.沼气发电。
5.生物质垃圾焚烧发电。
生物质发电技术分类(按发电方式划分)直接燃烧发电:将生物质放入锅炉中直接燃烧,产生的蒸汽带动蒸汽轮机及发电机发电。
混合燃烧发电:将生物质和煤混合进行燃烧发电,可分为两种方式:一种是直接将生物质与煤混合后投放燃烧,另一种是将生物质气化产生的燃气与煤混合燃烧。
垃圾发电:以焚烧发电的形式为主,垃圾焚烧发电是利用锅炉燃烧技术产生的热量将水加热后获得蒸汽推动汽轮机带动发电机发电。
沼气发电:利用工农业或城镇生活中产生的大量有机废弃物经厌氧发酵处理产生的沼气驱动发电机组发电。
气化发电:生物质在气化炉中转化为气体燃料,经一系列的净化冷却后直接进入燃气机中燃烧发电或者直接进入燃料电池发电。
生物质发电简介演示汇报人:文小库2023-11-16•生物质发电概述•生物质发电技术•生物质发电的应用•生物质发电的环保意义•生物质发电的未来发展生物质发电概述01什么是生物质发电生物质发电是一种利用生物质能转化为电能的发电技术。
生物质能是指来源于植物、动物和微生物的可再生能源。
生物质发电技术可将废弃物、农作物残渣、木材等生物质资源转化为清洁能源。
010302火焰将热能传递给锅炉中的水,使其汽化成为高温高压的蒸汽。
生物质发电的原理是将生物质燃料放入燃烧室中,与空气混合并点燃,产生高温高压的火焰。
04发电机将机械能转化为电能,并通过输电线路输送到电网。
高温高压蒸汽通过涡轮机驱动涡轮叶片转动,从而带动发电机发电。
生物质发电的原理和过程生物质发电的优势和局限优势可再生能源:生物质能来源于可再生的农作物残渣、废弃物等,资源丰富,可持续利用。
减少污染:生物质发电可替代部分化石燃料的使用,减少二氧化碳等温室气体排放,降低环境污染。
•能源多样化:生物质发电可与其他可再生能源技术结合使用,提高能源系统的多样性。
生物质发电的优势和局限1342局限资源限制:生物质资源的收集、运输和储存需要一定的成本和人力投入。
技术成本:生物质发电技术设备投资较大,运行维护成本相对较高。
季节性影响:生物质燃料受季节性因素影响较大,存在供应不稳定的情况。
生物质发电的优势和局限$item1_title9字生物质发电技术02直接燃烧技术直接将生物质燃料(如木材、农作物废弃物等)送入燃烧室进行燃烧,产生的热能可转化为电能。
该技术的燃烧效率较高,可达35%~40%的热效率。
适用于小型发电厂和农村地区,也可作为城市垃圾处理的一种方式。
直接燃烧技术燃烧效率适用范围将生物质燃料转化为气体,如氢气、甲烷等,然后通过燃气轮机或内燃机进行发电。
气化技术气化剂适用范围一般使用空气、氧气或水蒸气作为气化剂。
适用于各种规模的发电厂,尤其适用于生物质资源丰富的地区。
生物质能发电技术介绍2007年3月我国生物质能发电技术方向探讨来源:中国电力报我国地域辽阔,在地理、气候、作物种类、农村经济、文化、生活习惯等方面,各个地区的差异很大,所以单一技术不可能支撑一个产业。
技术的多元化是支持秸秆发电产业的基础,特别是需要国有技术的支持。
据发改委能源研究所有关专家介绍,秸秆气化发电、秸秆直燃发电、煤与秸秆混燃发电都是可以采用的技术路线。
秸秆直燃发电是采用锅炉-蒸汽-蒸汽轮机-发电机的工艺路线,可以借鉴的相关技术比较多,而且可以采用热电联供的方式提高系统效率,其特点是规模效益明显,如发电装机容量小于1万千瓦,系统效率将明显下降。
煤-秸秆混燃技术的特点是可以对现有的小型热电厂进行改造,与新建电厂相比,投资很少。
但是首先需要解决好电厂掺烧秸秆量的计量和监督的问题。
由于每种技术都有各自的特点,所以,不应该完全肯定或完全否定某一项技术。
关键是在选择技术路线时,必须充分考虑项目所在地的实际情况,采用最适宜的技术。
生物质发电最大的问题是资源的收集,这在我国尤其困难。
我国大部分地区都是以农户为农业生产单位,户均耕地占有面积很小,根据对我国粮食产量最大的五个省的统计,每年每户的秸秆可获得量仅为4~5吨。
以2.5万千瓦的秸秆发电厂每年消耗秸秆20万吨计,需要从近5万户农户收购,这些秸秆还是分夏秋两季提供,意味每年需要完成近10万笔秸秆收购交易,无论对收购的组织还是收集成本控制都是极大的考验。
能源转换产业的规模效益非常明显,国外秸秆发电也有向大规模发展的趋势,但是其农业生产以农场为主,每个收购合同或收购交易可以提供的秸秆数量远远超过我国。
因此,根据我国的国情,除了黑龙江、新疆等地,其他省份的秸秆发电项目规模不宜太大。
有关专家曾对收集秸秆的运输成本进行过详细的调查和测算,发现收集半径在15千米以内,其运输成本增加很少。
半径15千米可以提供的秸秆为10千米的一倍以上,所以,可在此范围内有选择性地收购,以有效地防范秸秆收购价格被恶意抬升的风险。
生物质发电不是小火电生物质发电并非传统意义上的小火电。
作为生物质能产业的重要领域,生物质发电其实是一项为国家增加能源供给、保护生态环境、服务“三农”的重要措施。
我国目前已实现并网发电的4个生物质直燃发电项目中,均采用的是2.5万千瓦级的发电机组。
从世界上一些生物质直燃发电比较发达的国家来看,目前也均采用的是2.5万千瓦级或1.2万千瓦级,甚至更小容量的发电机组。
而当今世界上运行的最大的生物质直燃发电机组是英国的ELY电厂,装机也仅为3.8万千瓦。
仅从单机容量来看,各界人士会轻易地误将其视为常规小火电。
面对这样的困惑,社会各界需要正确认识和理解生物质发电项目自身的一些特点。
首先,使用燃料的不同,从根本上区分了生物发电与常规小火电的性质。
常规小火电一般都是燃烧不可再生的化石能源,而且大部分小火电设备落后,生产效率很低,造成大量的能源浪费。
生物质发电利用可再生的植物秸秆做燃料,加之我国生物质资源非常丰富,所以未来生物质发电将会在替代能源中扮演重要角色。
其次,从环保的角度看,常规小火电属于重污染项目,燃烧煤炭所产生的大量二氧化碳和二氧化碳对环境的破坏非常严重。
而生物质发电使用的是清洁的生物质能源,绿色无污染。
而且,收集农林废弃物来发电,还避免了农民大量焚烧秸秆带来的环境污染。
以国能单县生物发电项目为例,2.5万千瓦的发电机组一天就能处理农林废弃物约600吨。
最后,从服务“三农”的角度看,我国的生物质资源主要集中在农村,开发利用农村丰富的生物质资源,可以缓解农村及边远地区的用能问题,显著改进农村的用能方式,改善农村的村容村貌和居民生活条件。
对农林废弃物的采集、加工、运输、储存,会提高农民收入,增加农民就业机会,开辟农业经济和县域经济新的产业。
而常规小火电就不具备这些优势。
所以,生物质能发电和一般意义上的小火电有很大区别。
有观点把大力发展生物质能产业比喻成一件“一石四矢”的好事:能源替代,环境保护,农民增收,新经济增长点。
信息来源:中国工业报秸秆创造惊奇?2007年02月13日来源:《中国投资》作者:陈蕾不管是用来发电还是制酒精,一旦突破核心技术,形成产业化,对新农村建设都是一个巨大的支持对绝大多数中国农民来说,都没有听说过去年发生的两件小事,但对他们来说,这可以称得上是特大喜讯。
2006年08月28日,全球第二条千吨级纤维乙醇生产线在河南天冠集团开工建设,投产后每年可消化玉米和小麦秸秆18000吨,以6∶1的全球同行业最高转化率生产3000吨燃料酒精。
同年12月,由中节能生物质能投资有限公司(以下简称中节能生物质能公司)投资建设的我国第一个拥有自主知识产权的国产化秸秆直燃发电示范项目点火运行,标志着国产化秸秆直燃发电进入了一个新的发展时期。
不管是制酒精,还是发电,对农民来说都意味着一件事:增收。
在替代能源发展备受重视的大背景下,普通的农作物秸秆也被赋予了重大的商业意义,如今它们被冠以一个新的名字:生物质能。
早在去年8月,在北京召开全国生物质能开发利用工作会议上,国家发改委副主任陈德铭强调指出了三点:开发利用生物质能是调整能源结构、保障能源安全的重要措施;是保护环境、要实现可持续发展的重要途径;是促进农村经济发展、建设社会主义新农村的重要举措。
国外样板中节能生物质能投资有限公司副总经理吴效华博士告诉《中国投资》:作为一种重要可再生能源,生物质能的发展前景非常广阔,国外很早就涉足秸秆发电的研究。
生物质直燃发电是利用生物质燃烧发电的技术,主要原料是农林废弃物、城市固体废弃物等,目前我国主要集中开发以农林废弃物为原料的农林生物质发电。
国能生物发电有限公司有关负责人对《中国投资》表示,生物质能直燃发电作为生物质综合开发应用的重要内容,就是通过高效率的锅炉技术燃烧农作物秸秆、林木废弃物等可燃生物质进行发电。
自1970年代石油危机以来,生物质能的开发利用受到了各国关注。
以芬兰为例,芬兰本国没有化石燃料资源,因而生物质发电量占本国发电量的11%,居世界第一位。
1988年在丹麦诞生了世界上第一座秸秆生物燃烧发电厂,如今已有130家秸秆发电厂。
靠新兴替代能源,丹麦由石油进口国一跃成为石油出口国。
目前在丹麦、荷兰、瑞典、芬兰等欧洲国家,利用植物秸秆作为燃料发电机组已有300多台,社会和经济效益都很好。
尤其是北欧等发达国家已拥有较为成熟的生物质能发电技术,生物质能发电量在发达国家的电力总量中所占比重逐年上升,其中瑞典的生物质能源利用率已占其能源消费总量的16%左右。
有消息称,到2020年,西方工业国家15%的电力将来自生物质发电,而目前生物质发电只占整个电力生产的1%。
届时,西方将有1亿个家庭使用的电力来自生物质发电,生物质发电产业还将为社会提供40万个就业机会。
发展农作物秸秆直燃发电,不仅节能和环保效益显著,而且能够成为我国最大的支农产业。
有专家指出,可供直燃发电的2亿吨秸秆折合标准煤1亿吨。
以秸秆代替煤炭作为发电新能源,是我国生物质能发电领域的重要突破,是利用可再生资源、大力发展循环经济的重要尝试,有利于经济增长方式的转变和农村经济的发展。
有待检验尽管与风电、光电等相比,生物质发电克服了波动性和间歇性的缺点,但还有一个不容忽视的问题就是秸秆资源和运输环节问题。
国家发改委能源研究所副所长李俊峰对《中国投资》表示,目前我国的秸秆产量大约是6亿吨,还田大约需要秸秆2亿吨左右,畜牧业养牛大约1亿吨,烧柴取暖和农民盖房子大约1亿多吨,可供直燃发电的秸秆资源量不足2亿吨。
建立秸秆收集网络、保证秸秆资源供应是项目实施过程的一个关键环节。
与国外农场式的农作物种植模式完全不同,中国大部分家庭的种植面积很小,土地大都复耕,种植种类变化大。
这意味着,收集秸秆的难度较大,而且收集运输过程本身需要消耗大量能量,经济性有待经验。
吴效华介绍说,中节能生物质能公司的试运行项目起到了很好的示范作用。
宿迁秸秆直燃发电示范项目已在当地形成了农民—贩草户—草场—秸秆电厂一条完整的产业链,即农民将秸秆销售给贩草户,贩草户将收购的草出售给草厂,草厂经过加工打包,然后运输到电厂销售。
《中国投资》在采访中了解到,前期通过政府和项目公司大力宣传,很多农民坚持低茬收割,自觉收储秸秆,集中堆放择机销售。
许多农民经纪人主动与项目公司联系,积极建立草场和收储基地,并与中节能生物质能公司签订了合作协议。
此外,国能生物发电有限公司经过一年多的实践,在燃料收、储、运方面也初步探索出一条符合中国国情的、适合公司发展的运作模式。
李俊峰对记者说,目前在我们国家生物质能秸秆发电的技术不是问题,很早就有专家涉足研究这一领域,并且政策也非常支持,目前主要困难就是秸秆的收集和储存。
“对秸秆发电项目,我们不能太乐观,也不能太悲观,一个项目需要运行一段时间后才能看出是否可行”。
社会效益然而,国家“十一五”规划纲要提出,建设生物质发电550万千瓦装机容量的发展目标,《可再生能源中长期发展规划》确定了2020年生物质发电装机3000万千瓦的发展目标。
从国外情况来看,生物质发电在不同的政策激励和扶持下逐渐发展起来,并形成了目前蓬勃发展的生物质发电产业。
国外鼓励生物质发电发展的政策主要体现在价格激励、财政补贴、减免税费等方面。
截至目前,许多国家都制定了相应的计划,如日本的“阳光计划”、美国的“能源农场”、印度的“绿色能源工厂”等,都是把生物质能秸秆发电技术作为21世纪发展可再生能源战略的重点工程。
尽管国内目前还没有完全普及秸秆发电项目,不过现有的试点项目还是取得了成功。
吴效华对《中国投资》说,中节能生物质能公司宿迁秸秆直燃发电示范项目是我国投入点火运行的第一个国产秸秆直燃发电项目。
该项目一期工程占地面积200亩,总投资2.48亿元,建设规模为2台75t/h 中温中压燃烧秸秆锅炉,配置1台12MW冷凝式汽轮发电机组和1台12MW抽凝式汽轮发电机组以及相应的辅助设施。
据悉,项目建成后,每年可燃烧秸秆约17~20万吨,节约标准煤9.8万吨,外供电力13200万度,销售收入8500万元,利税1500万元,可使本地农民每年增加收入5000多万元。
“作为国有企业,我们不仅考虑社会效益、环境友好效益,同时也得考虑国有资产保值和增值问题。
所以我们力求经济效益持平或者微利。
”吴效华说。
李俊峰对《中国投资》说,目前国家发改委已经审批了20多个生物质能发电项目,真正已经落成大约两三个,其中有山东单县和河北晋州两个专案。
河北晋州和山东单县的生物质能秸秆发电工程已经被国家发改委列为国家级示范项目,两个示范项目都将引进丹麦BWE公司的世界先进秸秆发电技术。
单县生物发电厂是由国家电网公司旗下的国能生物发电有限公司投资建设的,并且是我国第一个生物质能发电厂。