风力发电机组雷电防护
- 格式:doc
- 大小:26.00 KB
- 文档页数:7
风力发电机组的气象防雷保护:随着风力发电机组单机容量的不断増大,风机轮毂高度和叶片高点也在不断増高,在旷野、山顶和沿海地区,风机遭受雷击的概率非常大。
从各风场反馈的情况来看,雷击不但是造成风机故障停机的重要因素,甚至直接影响风电场的安全运行。
本文首先从雷电的破坏机理和形式入手,对雷电的防护区域进行了划分,并提出了风力发电机组的防雷保护设计原则和防雷系统工程方案;而后对风机整机系统的防雷保护进行了系统的分析,并提出了具体的防雷保护方法。
标签:风力发电防雷雷电1引言风能是一种绿色、安全的清洁能源,也是当前技术最成熟、最具备规模开发条件的可再生能源。
近年来,风力发电机组的单机容量越来越大,为了吸收更多能量,轮毅高度和叶轮直径不断增高;同时,高原、沿海、海上等新型风力发电机组的开发,使风力发电机组开始大量应用于高原、沿海、海上等地形更为复杂,环境更为恶劣的地区,更加加大了风力发电机组被雷击的风险。
据统计,风电机组故障中,由遭遇雷击导致的故障占到4%。
电具有极大的破坏力,雷击释放的巨大能量会造成风力发电机组叶片损坏、发电机绝缘击穿、控制元器件烧毁等故障,给风电场带来直接和间接的巨大经济损失,此风力发电机组的防雷保护已日益引起各个风电机组制造厂家和风电机组研发设计人员的重视。
风电机组的防雷是一个综合性的工程,防雷设计的到位与否,直接关系到风电机组在雷雨天气时能否正常工作,并且确保风电机组内的各种设备不受损害。
2雷电的产生及危害雷电是雷云间或雷云与地面物体间的放电现象,电位差可达数兆瓦甚至十兆瓦,放电电流几十千安甚至几百千安。
经验表明,对地放电的雷云绝大部分带负电荷,当雷暴经过大地时,云块下方原本负电荷充电的几公里的雷暴范围内的大地可以变为正极充电。
这些正电荷会集中在垂的物体上,比如树木和高耸的建筑物。
这些物体向上释放出正极的放电,并试图与从云块发出的向下的负极放电相结合,当正负电荷相结合时,闪电就发生了。
2.1雷电的破坏形式风力发电机一般都是安装在空旷的地方,并且明显高于附近的建筑物和树木,所以整个风机是暴露在直接雷击的威胁下,尤其是叶片。
浅析风力发电机组的雷电防护摘要随着风电技术的发展,大型风力发电机不断研制成功,随之机组的塔架也越来越高,风力机遭受雷击的几率也比过去增加了很多,在沿海或林区的风电场,防雷是不可忽视的,在这些风电场尽管也采取了一些防雷措施,但雷击还是造成了叶片和电控器件的损坏,借鉴经验及总结教训,我们应该做到防患于未燃,将防雷工作做的更彻底、更全面,以使雷击对风机的损坏降到最小。
关键词:风电;风力发电机;防雷一、引言雷电是自然界中一种常见的放电现象。
关于雷电的产生有多种解释理论,通常我们认为由于大气中热空气上升,与高空冷空气产生摩擦,从而形成了带有正负电荷的小水滴。
当正负电荷累积达到一定的电荷值时,会在带有不同极性的云团之间以及云团对地之间形成强大的电场,从而产生云团对云团和云团对地的放电过程,这就是通常所说的闪电和响雷。
具体来说,冰晶的摩擦、雨滴的破碎、水滴的冻结、云体的碰撞等均可使云粒子起电。
一般云的顶部带正电,底部带负电,两种极性不同的电荷会使云的内部或云与地之间形成强电场,瞬间剧烈放电爆发出强大的电火花,也就是我们看到的闪电。
在闪电通道中,电流极强,温度可骤升至2万摄氏度,气压突增,空气剧烈膨胀,人们便会听到爆炸似的声波振荡,这就是雷声。
而对我们生活产生影响的主要是近地的云团对地的放电。
经统计,近地云团大多是负电荷,其场强最大可达20kV/m。
二、雷电的危害自然界每年都有几百万次闪电。
雷电灾害是“联合国国际减灾十年”公布的最严重的十种自然灾害之一。
最新统计资料表明,雷电造成的损失已经上升到自然灾害的第三位。
全球每年因雷击造成人员伤亡、财产损失不计其数。
雷击造成的危害主要有5种:(1)直击雷带电的云层对大地上的某一点发生猛烈的放电现象,称为直击雷。
它的破坏力十分巨大,若不能迅速将其泻放入大地,将导致放电通道内的物体、建筑物、设施、人畜遭受严重的破坏或损害——火灾、建筑物损坏、电子电气系统摧毁,甚至危及人畜的生命安全。
风力发电机的防雷解决方案(2009-03-02 00:00:54)标签:风机防雷教育分类:行业相关风能是当前技术最成熟、最具备规模开发条件的可再生洁净能源。
风能发电为人与自然和谐发展提供了基础。
由于风力发电机组是在自然环境下工作,不可避免的会受到自然灾害的影响。
由于现代科学技术的迅猛发展,风力发电机组的单机容量越来越大,为了吸收更多能量,轮毂高度和叶轮直径随着增高,相对的也增加了被雷击的风险,雷击成了自然界中对风力发电机组安全运行危害最大的一种灾害。
雷电释放的巨大能量会造成风力发电机组叶片损坏、发电机绝缘击穿、控制元器件烧毁等。
我国沿海地区地形复杂,雷暴日较多,应充分重视雷击给风力风电机组和运行人员带来的巨大威胁。
例如,红海湾风电场建成投产至今发生了多次雷击事件,据统计,叶片被击中率达4%,其他通讯电器元件被击中率更高达20%。
为了降低自然灾害带来的损失,必须充分了解它,并做出有针对性的防范措施。
风机的防雷是一个综合性的防雷工程,防雷设计的到位与否,直接关系到风机在雷雨天气时能否正常工作,并且确保风机内的各种设备不受损害等。
一、直击雷防护该风机主体高度约80米,叶片长度约40米,即风机最高点高度约为120米,且大多数风力发电机位于空旷地带,较孤立。
风机的高度加上所处特殊的环境,造成风力发电机在雷雨天气时极易遭受直击雷。
国际电工委员会对防雷过电压保护的防护区域划分为:LPZ0 区(LPZ0A、LPZ0B),LPZ1 区,LPZ2 区。
在金属塔架接地良好的情况下,叶片、机舱的外部(包括机舱)、塔架外部(包括塔架)、箱式变压器应属于LPZ0 区,这些部位是遭受直击雷(绕雷)或不遭受直击雷但电磁场没有衰减的部位。
机舱内、塔架内的设备应属于 LPZ1 区,这其中包括电缆、发电机、齿轮箱等。
塔架内电气柜中的设备,特别是屏蔽较好的弱电部分应属于 LPZ2。
对与现有风力发电机的 LPZ0 区防雷过电压保护装置进行分析后,在LPZ0 区内,直击雷的防护在没有技术突破的前提下仍然沿用传统的富兰克林避雷方法:利用自身的高度使雷云下的电场发生畸变,从而将雷电吸引,以自身代替被保护物受雷击,以达到保护避雷的目。
对风力发电机组直击雷防护措施的探讨摘要:本文探讨了风力发电机组的防雷技术,从直击雷对风力发电机组的危害的后果分析,探讨了其对应的防雷措施。
关键字:风力发电机组;直击雷;措施1.直击雷对风力发电机组的危害作用在遭受直接雷击时,强大的雷电流从雷击点流入被击物体,产生的热量能够在雷击点范围内及电流通路附近引起很高的温度,可以造成金属物体熔化或非金属物体的烧毁,这就是雷击热效应危害的典型表现。
一直以来风力发电机组的直击雷的防护都是利用机组的金属部分接闪,通过转动和非转动系统部件间的放电间隙过渡,流经引下线,然后通过良好的接地装置迅速而安全地引入大地。
机组上,桨叶、轴承和机舱特别容易遭受直击雷,下面就这三个部位进行相应的分析。
2.桨叶的防雷措施传统的桨叶防雷装置,主要由接闪器和引下导体组成。
通常将接闪器做成盘形状,将其嵌装在桨叶的叶尖部,盘面与叶面平齐。
当桨叶叶尖受到雷击时,雷电流由接闪器导入引下导体,叶片根部通过截面积不小于70mm2的铜芯电缆连接到轮毂,通过放电间隙把雷电流从叶根部轮毂引至机舱主机架和塔筒等,最终通过引下线泄入大地。
现在的大型风机使用的叶片,从结构上可分为两大类型:定浆距失速型风机和变桨距风机,前者广泛使用的是有叶尖阻尼器结构的叶片,后者则采用无叶尖阻尼器的叶片。
(1)无叶尖阻尼器的叶片防雷结构对于无叶尖阻尼器的叶片,一般是在叶尖部分的玻璃纤维外表面预置金属化物作为接闪器,并与埋置于叶片内的铜导体相连(50mm2铜导体与叶根处的金属法兰连接)。
外表面金属化物可以采用网状或箔状结构。
雷击可能会对这样的表面造成局部熔化或灼蚀损伤,但不会影响叶片的强度或结构。
(2)有叶尖阻尼器的叶片防雷结构在有叶尖阻尼器的叶片,通常是在叶尖部分的玻璃纤维中预置金属导体作为接闪器,通过碳纤维轴与用于兼作引下导体的刹车控制线(缆)连接,这种结构可以耐受200KA的冲击电流实验而叶片却不会损伤。
虽然这种叶片是金属结构组成的,雷击概率比绝缘材料制成的叶片高,只要要求导电结构有足够的强度和横截面积安全的将雷电流引入大地就可以了。
关于风力发电机主轴承的雷电防护措施摘要:在风力归电机组运行过程中,会出现遭受雷击的现象,雷击后会通过风力发电机的主轴承进行雷电产生电流的泄散,轴承会受到一定程度的损伤,也会对发电机产生危害。
因此,加强对主轴承的雷电防护是风力电力场的重要工作。
基于此,本文首先介绍了雷电的破坏形式,阐述了雷电防护设计的基本原则,并对风力发电力机主轴承的防雷保护进行分析,进而提出两种风力发电机主轴承的雷电防护方案,希望可保障风力发电机组的安全与稳定运行。
关键词:风电发电机;主轴承;雷电防护经过实践分析发现,雷击是导致风电机组轴承出现损坏的直接原因。
由于受到雷击的影响,风电机组的叶片以及主轴承等结构都易受到严重的损坏,并且这些结构的维修与更换所需消耗的成本较高,采取有效的措施避免风电机组遭受雷击至关重要。
因此,本文将针对风力发电机组的主轴承进行有效的雷电防护措施的探讨。
一、雷电的破坏形式1、雷电直接击中设备而使之出现损坏;2、雷电脉冲顺着信号线或电源线侵入其所连接着的设备,最终导致设备遭到损害;3、设备接地体在累计时产生瞬间高电位形成电位反击而损坏;4、设备因安装方法或安装位置不当,受雷电在空间分布的电场、磁场影响而损坏。
二、雷电防护设计的基本原则1、采取适合的防雷方法,应用先进的技术及设备,确保系统得以正常工作;2、防雷设计时要对投资的合理性进行详细分析,确保防护重点明确,并提高防护工作的全面性;3、确保防雷系统的使用寿命较长且具有合理性;4、应根据国家标准及相应规范进行防雷设计,以确保系统可得到良好的维护。
三、主轴承的防雷保护分析在雷击现象发生时,主轴承上会通过强大的雷电流,这会使轴承接触上出现明显的灼蚀点,但因轴承尺寸较大,雷电流的密度并不高,因此所产生的损伤对风电机组运行产生的影响并不大,但会使风电机组出现噪音或振动现象,进而会减少轴承的使用期限。
1、有绝缘垫层的雷电防护部分轴承设计时加装了绝缘垫层,主轴上的防雷碳刷会将雷电流传导至塔筒中,进而可有效减轻轴承受到的损伤。
风力发电机的雷电绕击分析与防护风力发电因其清洁无污染、可永续利用等特点,对于调整我国能源结构、加强资源节约利用、促进生态环境保护、推进经济可持续发展意义重大。
我国幅员辽阔,风能资源丰富,发展风力发电优势得天独厚。
为了能保障风机发电系统在一个可靠的环境下安全运行,对风机采取相应的雷击保护措施是不可避免的。
对此,本文针对风力发电机雷击及其防护进行了研究,以雷击风机桨叶暂态特性仿真分析为案例,提出了防雷整改措施,希望为雷击事故应对和处理提供参考。
标签:风力发电机;雷电绕击;防护风力发电是将风能进行较为直接地开发利用,风电场一般建立在山顶、荒漠、滩涂等自然地理环境复杂且容易受到雷电灾害影响的地方,雷击事故时有发生,风力发电的蓬勃发展正在受到日益严重的雷电灾害的威胁。
国内外相关案例都表明雷击是严重威胁风力发电场安全的主要问题之一。
雷电击中风机后,雷电流将会对风机叶片等结构造成严重破坏,导致高昂的经济损失,如维修费用、人工成本和停运损失等。
为避免雷击事故中雷电流对风机的损害,风电场的雷击防护至关重要。
一、雷电放电概述雷电具有非常强大的爆发力,也具有很大的随机性,雷电的放电主要是雷云和雷云之间或者雷云内部进行的,其中雷云放电是在某些适当的地理和气象条件下,由于比较强烈的潮湿热气流不断上升进入稀薄大气层后冷凝的结果。
雷云对地放电是从下行先导放电阶段开始的。
如今的风电机组容量已经从几百千瓦扩大到兆瓦级的,高度也已经达到了一百多米,属于高体结构,其雷云在下行先导通道中负电荷的感应作用下,风电机组会出现感应正电荷。
当下行先导头部接近机组时,风机的叶片尖端部分会发生畸变作用,伴随着电场强度快速扩大,附近的大部分空气产生游离,就会发生上行先导。
其中上升放电先导是分布正电荷,向上的速度是(0.05~1.2)×106m/s。
接着上升先导和下升先导在空气中会合之处就产生了回击放电,于是风机就遭受了雷击,会合之处就是雷击点。
风力发电机组防雷保护策略综述摘要:风电机组的防雷保护由于电气和机械特性而提出了许多问题。
本文以一种简单而全面的方式整理有关目前保护风电机组的现有工作,并提出可能有助于未来保护风电机组免受雷击造成的重大损失的建议。
关键词:雷击,风电机组接地,高压输电线路,防雷,浪涌一、概述目前,在世界上的103个国家,风力发电被用于民用和工商业用电。
风能是世界上增长最快的可再生能源之一。
然而,由于它们的物理尺寸,风电机组特别容易遭受雷击。
因此,本文梳理了有关防雷保护的已知信息,并提出了一些改进建议。
二、风电机组尺寸与雷击的关系在岸上和近海地区的规模继续增加。
众所周知,较大的风电机组被闪电击中的可能性较大。
然而,对于这些设备的保护和增加的高度和离岸安装的综合影响,人们明显缺乏专业知识。
考虑到额定功率,目前大规模应用的单机容量从0.25kW-4500kW不等。
风力发电机的功率输出主要取决于风速、涡轮额定功率和转子直径。
如果转子直径增加,塔架的高度也会增加。
随着风电机组整体高度的持续增长,它们变得越来越容易受到雷击。
三、防雷保护的现状与标准目前风机所采用的防雷系统由防雷点、导线、接地系统和各子系统的浪涌保护装置组成。
采用低阻抗路径是进行防雷工作的前提条件。
外部防雷系统,由以下部分组成:转子叶片中的空气终止和向下导体系统、保护机舱的空气终止系统、上层建筑,机舱,和轮毂。
外部防雷系统用于拦截塔上的直击雷击,包括雷击,并将雷电电流从撞击点引导到地面。
机舱的构造应成为防雷系统的组成部分,以确保闪电击中金属部件;或者在机舱上提供空气终止系统。
对于涂有玻璃纤维增强塑料或类似材料的机舱,应配备空气终止系统并在机舱周围形成笼。
该保护系统基于国际标准IEC61400-24和IEC62305。
防雷系统的所有子部件都应符合IEC61400-24规定的防雷等级(LPL-1),除非风险分析建议采用较低的LPL-1等级。
内部防雷系统,转子叶片广泛使用的防雷方法是一种能够承载雷电电流的内部避雷导体。
浅谈风力发电机主轴承的雷电防护摘要:在风力发电机运行过程中,由于雷电放电导致的风机主轴承损坏现象时有发生。
因此,为确保风力发电机在恶劣天气下安全运行,必须对风力发电机主轴承采取必要的防护措施。
本文主要针对风力发电机主轴承的雷电防护措施进行了研究,旨在为风力发电机的运行维护人员提供参考。
在风力发电机运行过程中,由于雷电放电产生的强脉冲电流会通过电缆、光缆等进入到风机主轴承中,当这些强脉冲电流在主轴承壳体中产生局部过热时,会造成风电机组主轴承局部温度升高。
在某些情况下,还会造成风机主轴承内部出现裂纹,这将对风电机组的安全运行构成严重威胁。
关键词:风力发电机;主轴承;雷电防护随着中国经济的快速发展,电力需求不断增加,使得风力发电得到了越来越广泛的应用。
风力发电机主轴承是由主轴、轴承和轴承座组成。
其中,主轴是整个风力发电机的核心部件,起着关键作用。
它将风能转化为机械能,并将其传递给轴承。
轴承则用于支撑主轴和整个机组的重量,还起着密封和润滑作用。
1.风力发电机雷电防护现状随着我国风电行业的发展,风电机组的单机容量也在不断增大,这为风电场的建设提供了巨大的空间。
然而,随着风电机组单机容量的增大,雷击造成的风机损坏事故也随之增多。
目前,在国内风电机组上使用最多的防雷措施是避雷针和接地装置,这两种防雷措施能有效地避免雷击事故对风机造成损伤。
而在实际工作中,由于雷击事故对风机主轴承的影响往往容易被忽视,从而导致风电机组遭受雷击事故。
风力发电机运行时产生的强脉冲电流会通过电缆、光缆等进入到风机主轴承中,由于电缆、光缆具有绝缘性能较差、线路防护等级低等特点,当这些强脉冲电流通过电缆、光缆进入到主轴承中时,会造成主轴承局部温度升高,进而对风电机组造成损伤。
在这种情况下,若不采取有效措施对风机主轴承进行防护,那么风力发电机将会因雷击而出现损坏。
然而目前国内对于风电机组雷电防护技术研究较少,对风机主轴承雷电防护技术不够重视。
风力发电机组的气象防雷保护:随着风力发电机组单机容量的不断増大,风机轮毂高度和叶片高点也在不断増高,在旷野、山顶和沿海地区,风机遭受雷击的概率非常大。
从各风场反馈的情况来看,雷击不但是造成风机故障停机的重要因素,甚至直接影响风电场的安全运行。
本文首先从雷电的破坏机理和形式入手,对雷电的防护区域进行了划分,并提出了风力发电机组的防雷保护设计原则和防雷系统工程方案;而后对风机整机系统的防雷保护进行了系统的分析,并提出了具体的防雷保护方法。
标签:风力发电防雷雷电1引言风能是一种绿色、安全的清洁能源,也是当前技术最成熟、最具备规模开发条件的可再生能源。
近年来,风力发电机组的单机容量越来越大,为了吸收更多能量,轮毅高度和叶轮直径不断增高;同时,高原、沿海、海上等新型风力发电机组的开发,使风力发电机组开始大量应用于高原、沿海、海上等地形更为复杂,环境更为恶劣的地区,更加加大了风力发电机组被雷击的风险。
据统计,风电机组故障中,由遭遇雷击导致的故障占到4%。
电具有极大的破坏力,雷击释放的巨大能量会造成风力发电机组叶片损坏、发电机绝缘击穿、控制元器件烧毁等故障,给风电场带来直接和间接的巨大经济损失,此风力发电机组的防雷保护已日益引起各个风电机组制造厂家和风电机组研发设计人员的重视。
风电机组的防雷是一个综合性的工程,防雷设计的到位与否,直接关系到风电机组在雷雨天气时能否正常工作,并且确保风电机组内的各种设备不受损害。
2雷电的产生及危害雷电是雷云间或雷云与地面物体间的放电现象,电位差可达数兆瓦甚至十兆瓦,放电电流几十千安甚至几百千安。
经验表明,对地放电的雷云绝大部分带负电荷,当雷暴经过大地时,云块下方原本负电荷充电的几公里的雷暴范围内的大地可以变为正极充电。
这些正电荷会集中在垂的物体上,比如树木和高耸的建筑物。
这些物体向上释放出正极的放电,并试图与从云块发出的向下的负极放电相结合,当正负电荷相结合时,闪电就发生了。
2.1雷电的破坏形式风力发电机一般都是安装在空旷的地方,并且明显高于附近的建筑物和树木,所以整个风机是暴露在直接雷击的威胁下,尤其是叶片。
浅析风力发电机组的雷电防护
摘要随着风电技术的发展,大型风力发电机不断研制成功,随之机组的塔架也越来越高,风力机遭受雷击的几率也比过去增加了很多,在沿海或林区的风电场,防雷是不可忽视的,在这些风电场尽管也采取了一些防雷措施,但雷击还是造成了叶片和电控器件的损坏,借鉴经验及总结教训,我们应该做到防患于未燃,将防雷工作做的更彻底、更全面,以使雷击对风机的损坏降到最小。
关键词:风电;风力发电机;防雷
一、引言
雷电是自然界中一种常见的放电现象。
关于雷电的产生有多种解释理论,通常我们认为由于大气中热空气上升,与高空冷空气产生摩擦,从而形成了带有正负电荷的小水滴。
当正负电荷累积达到一定的电荷值时,会在带有不同极性的云团之间以及云团对地之间形成强大的电场,从而产生云团对云团和云团对地的放电过程,这就是通常所说的闪电和响雷。
具体来说,冰晶的摩擦、雨滴的破碎、水滴的冻结、云体的碰撞等均可使云粒子起电。
一般云的顶部带正电,底部带负电,两种极性不同的电荷会使云的内部或云与地之间形成强电场,瞬间剧烈放电爆发出强大的电火花,也就是我们看到的闪电。
在闪电通道中,电流极强,温度可骤升至2万摄氏度,气压突增,空气剧烈膨胀,人们便会听到爆炸似的声波振荡,这就是雷声。
而对我们生活产生影响的主要是近地的云团对地的放电。
经统计,近地云团大多是负
电荷,其场强最大可达20kv/m。
二、雷电的危害
自然界每年都有几百万次闪电。
雷电灾害是“联合国国际减灾十年”公布的最严重的十种自然灾害之一。
最新统计资料表明,雷电造成的损失已经上升到自然灾害的第三位。
全球每年因雷击造成人员伤亡、财产损失不计其数。
雷击造成的危害主要有5种:(1)直击雷
带电的云层对大地上的某一点发生猛烈的放电现象,称为直击雷。
它的破坏力十分巨大,若不能迅速将其泻放入大地,将导致放电通道内的物体、建筑物、设施、人畜遭受严重的破坏或损害——火灾、建筑物损坏、电子电气系统摧毁,甚至危及人畜的生命安全。
(2)雷电波侵入
雷电不直接放电在建筑和设备本身,而是对布放在建筑物外部的线缆放电。
线缆上的雷电波或过电压几乎以光速沿着电缆线路扩散,侵入并危及室内电子设备和自动化控制等各个系统。
因此,往往在听到雷声之前,我们的电子设备、控制系统等可能已经损坏。
(3)感应过电压
雷击在设备设施或线路的附近发生,或闪电不直接对地放电,只在云层与云层之间发生放电现象。
闪电释放电荷时,在电源和数据传输线路及金属管道金属支架上感应生成过电压。
雷击放电于具有避雷设施的建筑物时,雷电波沿着建筑物顶部
接闪器(避雷带、避雷线、避雷网或避雷针)、引下线泄放到大地的过程中,会在引下线周围形成强大的瞬变磁场,轻则造成电子设备受到干扰,数据丢失,产生误动作或暂时瘫痪;严重时可引起元器件击穿及电路板烧毁,使整个系统陷于瘫痪。
(4)系统内部操作过电压
因断路器的操作、电力重负荷以及感性负荷的投入和切除、系统短路故障等系统内部状态的变化而使系统参数发生改变,引起的电力系统内部电磁能量转化,从而产生内部过电压,即操作过电压。
操作过电压的幅值虽小,但发生的概率却远远大于雷电感应过电压。
实验证明,无论是感应过电压还是内部操作过电压,均为暂态过电压(或称瞬时过电压),最终以电气浪涌的方式危及电子设备,包括破坏印刷电路印制线、元件和绝缘过早老化寿命缩短、破坏数据库或使软件误操作,使一些控制元件失控。
(5)地电位反击
如果雷电直接击中具有避雷装置的建筑物或设施,接地网的地电位会在数微秒之内被抬高数万或数十万伏。
高度破坏性的雷电流将从各种装置的接地部分,流向供电系统或各种网络信号系统,或者击穿大地绝缘而流向另一设施的供电系统或各种网络信号系统,从而反击破坏或损害电子设备。
同时,在未实行等电位连接的导线回路中,可能诱发高电位而产生火花放电的危险。
三、风力发电机防雷的必要性分析
在某些沿海风电场,如果广东石碑山风电场,雷电日为40个左
右,为雷雨多发地区,而据统计资料显示,对于高度为h(m)的建筑物在每年平均10个雷电日的情况下,年遭雷击的概率n如表1所示: 表1高度与雷击次数的关系
年均雷电日10天
表2显示了在强雷区中结构物分别高于12-16米都应考虑设置防雷保护,如金风s43/600风力发电机塔架高度为48.5米,加之叶片长度应在60米以上,因而更易遭到雷击.
表2应设防雷保护的结构物高度
统计表明风力发电机受到的雷击大多是直接雷击,并且遭受雷
击的风机如果缺少有效的防雷保护,其叶片和电器系统都会受到不同程度的损坏,严重的会导致风力发电机发生着火。
因此,风机的防雷技术很重要,应引起各风机制造厂家的重视,以使风机遭受雷击时受到的损害为最小。
四、金风s43/600风力机的雷电防护体系
金风s43/600机组的全雷电防护体系,包括对叶片、机舱、塔架、输电线路以及控制系统.它是利用雷电的选择最小阻抗路径的自然特性,人为架设一条低阻抗通路,让雷电的能量顺着预定的线路泄放,降低电位提升,减小温度升高,保护风力机设备免遭损坏.具体
的防雷体系及修改建议如下:
(一) 叶片的防雷保护
雷电击中叶片后,在内部形成的高温以及造成的空气膨胀,使叶片开裂,因此对于叶片的防雷应给以足够的重视, 叶片采用内置式的雷电接闪器。
见下图:
这种防雷装置经过试验室测定:可经受
1600kv的雷击电压和200ka的电流。
该装置简单精巧,与叶片的寿命一样。
如果需要,可以很方便的更换。
图1 叶片的雷电保护
1.液压缸支架
2.钢丝
3.碳纤维轴
4.接闪器
整个叶片分成两段,叶尖部分玻璃纤维聚脂层预制铸铝型心作为接闪器,通过碳纤维材料的阻尼器轴,与连接轮毂的叶尖阻尼器钢丝相连接,当遭到雷击时,雷电流经叶片中金属导体迅速传到叶根金属法兰和轮毂,在机舱主轴端设有两个防雷碳刷,用于传接由叶尖传过来的雷电流,最后通过接地低阻抗通路时雷电能量泄放,从而达到防雷目的。
在这里提出,钢丝绳与轮毂之间的连接导线采用专用的铜线,导线的横截面积不少于50mm².在石碑山风电场中,接地线的螺栓发生腐蚀,使导线和底板接触不良,形成隐患。
建议对接地螺栓采用防腐性能更好的螺栓.或采用专门的防腐材料进行及时有效的防腐。
另外,叶尖接闪面较小,接闪器离叶尖太远,雷电流经过叶尖雷击点到接闪器之间的玻璃纤维时引起叶尖材料温度急剧升高而爆
裂。
(二)对机舱的保护
风力机的风轮、机舱都是转动的,要将雷电的能量从转动的部分可靠的引到地下,关键要保持良好的接触,否则雷电流将会流到机舱其他部位,比如击穿油膜,对轴承或齿轮箱放电,从而损坏设备。
安装在机舱罩后上部的避雷针可以保护整个机舱,同时机舱内各部件包括机舱罩通过95mm²的接地电缆与机舱底座连接,机舱底座通过偏航轴承与塔架连接,确保雷电流迅速从塔架流入大地。
图2 发电机接地线图3 齿轮箱接地线
根据在风电场维护运行中,发现以上图片中接地电缆长度较长,发电机接地线的长度按工艺要求为550mm,可以缩减到520mm;齿箱接地线可以由610mm缩减到580mm,就可以满足安装要求.另一方面,接地线越短,其电阻越小,那么风机的低阻抗通路性能就越好.
(三)风机的接地
风机的接地系统是风机防雷系统中的关键环节,应包括一个围绕风机基础的环状导体,与基础一同构成风机的接地系统,环状导体采用70mm²或更大些的铜导体,若按这种方式测得接地电阻>2ω,则必须采取措施如增加电极直到≤2ω。
如图所示:
图4 风机接地
1.环状金属导体 2.接地电极
广东石碑山风电场属于临海地区,土壤电阻率较高,为降低接地电阻,开挖接地网沟后,建议用土壤电阻率较低的土壤回填,会比现有的添加降阻剂效果更加显著。
四、结论
1、改善叶尖防雷结构,接闪器离叶尖不易太远,雷电流经过叶尖雷击点到接闪器间的玻璃纤维时,引起叶尖材料温度急剧升高而爆裂,建议改进风机叶片的防雷设计,订购叶片时要求厂家提供叶片防雷的实验数据和资料。
2、针对广东沿海地区气候潮湿,接地螺栓的防腐须提高要求,防雷保护的关键在于金属接触要充分。
3、针对临海地区土壤电阻率较高,建议在开挖接地网沟后,用电阻率低的土壤回填。
注:文章内所有公式及图表请以pdf形式查看。