有限元分析基础第三章课后习题答案
- 格式:pdf
- 大小:1.09 MB
- 文档页数:12
有限元课后习题答案1.1有限元法的基本思想和基本步骤是什么首先,将表示结构的连续离散为若干个子域,单元之间通过其边界上的节点连接成组合体。
其次,用每个单元内所假设的近似函数分片地表示求解域内待求的未知厂变量。
步骤:结构的离散化,单元分析,单元集成,引入约束条件,求解线性方程组,得出节点位移。
1.2有限元法有哪些优点和缺点优点:有限元法可以模拟各种几何形状复杂的结构,得出其近似解;通过计算机程序,可以广泛地应用于各种场合;可以从其他CAD软件中导入建好的模型;数学处理比较方便,对复杂形状的结构也能适用;有限元法和优化设计方法相结合,以便发挥各自的优点。
缺点:有限元计算,尤其是复杂问题的分析计算,所耗费的计算时间、内存和磁盘空间等计算资源是相当惊人的。
对无限求解域问题没有较好的处理办法。
1.3有限元法在机械工程中有哪些具体的应用静力学分析模态分析动力学分析热应力分析其他分析2.1杆件结构划分单元的原则是什么?1)杆件的交点一定要取为节点2)阶梯形杆截面变化处一定要取为节点3)支撑点和自由端要取为节点4)集中载荷作用处要取为节点5)欲求位移的点要取为节点6)单元长度不要相差太多2.2简述单元刚度矩阵的性质。
单元刚度矩阵是描述单元节点力与节点位移之间关系的矩阵。
2.3有限元法基本方程中每一项的意义是什么?{Q}---整个结构的节点载荷列阵(包括外载荷、约束力);{}---整个结构的节点位移列阵;[K]---结构的整体刚度矩阵,又称总刚度矩阵。
2.4简述整体刚度矩阵的性质和特点。
对称性奇异性稀疏性主对角上的元素恒为正2.5位移边界条件和载荷边界条件的意义是什么由于刚度矩阵的线性相关性不能得到解,从而引入边界条件。
2.6写出平面刚架问题中单元刚度矩阵的坐标变换式2.7推导平面刚架局部坐标系下的单元刚度矩阵。
2.8简述整体坐标的概念。
单元刚度矩阵的坐标变换式把平面刚架的所有单元在局部坐标系X’O’Y’下的单元刚度矩阵变换到一个统一的坐标系xOy下,这个统一的坐标系xOy称为整体坐标系。
1.像床单那样薄、那样宽的板用梁单元来模型化×通常用板单元或壳单元来作模型化2.对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元○3.一般自由度多的模型分析成本高○4.使用尽可能多种类单元的模型是一个好的模型×单元种类的多样性与模型的好坏没有关系5.杆单元是壳单元的一种×6.不能把梁单元、壳单元和实体单元混合在一起作成模型×两者混在一起可做模型化处理7.四边形的壳单元尽可能作成接近正方形形状的单元○8.因为实体单元是3维单元,所以即使有严重的扭曲也没关系×9.将作用有垂直载荷的悬臂梁用多个杆单元作成×杆单元因为不传递弯曲不适用于弯曲分析10.将作用有垂直载荷的两端自由支持的梁用杆单元来模型化×11.三角形单元和四边形单元不能混在一起使用×12.平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化处理的话会得到一样的答案×13.同样形状的话,使用三角形单元和使用四边形单元解是相同的×14.边长为10cm和边长为100cm 的正方形的板,后者的单元数如果是前者的10倍的话,才行×划分的数量不是依形状的大小15.为了校核连续的相同管子剖面内的应力状态,要使用平面应力单元×这种情况使用平面应变单元??16.对热应力问题,1维单元也好2维单元也好,所求的解都搞不清×?17.对于热传导分析必须输入线膨胀系数×对于热传导分析必需的是热传导率18.热应力随结构的约束状态而变化○19.FEM分析变形越大应力就越高×??20.在线性分析中,即使变形变大,如果可以将这部分单元划分得多一些的话,也会保证解的适当正确×线性分析是以微小变形的范围内为对象的21.为了评价应力集中,在网格划分时应该把整个作成一样的单元尺寸×22.板厚并不一致的情况下,一定要用到实体单元×即使是板单元也可以表现厚度的变化23.单元数相同的话,1阶单元、2阶单元的解都一样×24.为了忠实地尽可能表现结构的形状,必须严格按装配顺序来做模型化处理×模型化的顺序与分析结果无关25.节点的位置依赖于形态,而并不依赖于载荷的位置×为给出节点载荷必须要在载荷点设置节点26.一般应力变化大的地方单元尺寸要划的小才好○27.仅用TETRA单元的模型与仅用HEXA单元的模型相比,后者的精度要好○28.相接的单元尺寸大小不要变化太厉害○29.在进行特征值分析时,必须输入质量○30.进行热应力分析时,必须输入线膨胀系数○ (比较17题)31.壳单元表面的应力因为与表面内的应力相比精度会降低所以必须注意×在单元的表面精度是不会变化的???32.象船和火箭那样的结构因为漂浮在水(空)中而没被固定住,所以,FEM分析不可以使用×33.约束条件用全固定或许加上铰固定就能表现完全×也有半固定(例如用弹簧约束)???34.一般在特征值分析中一定是采用节点编号连续来编的方法,所得精度要高×连续编号精度并不觉得提高???35.用固有振动分析求应力,应力高的部分必须要加强×用固有振动来求的值物理量不同???36.屈曲模态并不依赖于约束条件×37.自由度有位移自由度和转角自由度○(3个位移成分和3个转角成分)38.一般在FEM中使用的模型称为刚体模型×39.对比铁更硬的部分所做模型化处理的单元称为刚体单元×40.刚体单元和梁单元和板单元组合在一起进行分析是不可以的×41.一般网格划分过度的话,很费分析时间○42.对啤酒罐的压缩强度要用固有振动分析来评价×(用屈曲分析)???43.表示自由度的坐标系有局部坐标系和整体坐标系○44.应力集中的部分是多个载荷所加的部位×应力与周围部分相比要高的部分称为应力集中的部分45.在加上热载的情况下,即使是同一个模型,根据约束条件,所发生的应力有很大的不同○ (约束不同应力不同)46.用有限元法可以对正在动的(移动)物体的结构进行分析○47.对膜(membran)单元也可用面压载荷×(壳)48.可对膜(membran)单元可以用集中载荷○ (47、48)49.施加强迫位移的分析要进行静力分析○????50.一般所给出的载荷的总和与反力的总和相一致○51.即使将不同的局部坐标系下定义好的节点连起来也可定义单元○52.所谓自由度是直接翻译degrees of freedom的○53.所谓实体单元意味着刚体单元的集合×(刚体只有自由度,没有变形)54.杨氏率是纵弹性系数(模量)○55.共鸣现象与固有频率有关○56.杨氏率是评价材龄的基值×杨氏率是表示材料的坚硬程度的常数不是表示年轻与否57.即使是同一种材料,梁单元和板单元也要输入不同的材料性质数值×如果相同的材料,即使单元的种类不同,也要用相同的材料58.泊松比是在纵向加压时发生在纵向的应变和横向的应变的比率○59.用弹性材料可表现塑性化现象×进行塑性分析必须输入塑性材料的特性60.一般线膨胀系数是作为材料常数之一输入○(material properties)61.一般用FEM模型化时,大的结构求得的热变形小×62.约束条件全都没被定义的结构不能分析×63.X、Y、Z全部方向上的位移都是1时称为刚体变形×64.分析结果是对称的模型,使用对称条件可以用较少的单元来进行分析○65.所谓铰约束条件是约束位移自由度而让转角自由度自由○66.强迫位移是一种约束条件○67.即使所有的自由度都约束也会发生变形×(实体内每个节点的所有自由度)68.对于设置了约束的自由度即使输入载荷也发生位移○69.有限单元分析约束条件尽量少则精度好×(静力问题不能没约束还错)70.所谓约束就是消去自由度○71.所谓全约束只要将位移自由度约束住×72.壳单元与实体单元可约束的自由度不同○(壳作面分析)73.线性分析将同样大的载荷加在反向产生位移的绝对值不变○(前提线性分析)74.由分析所得的最大应力受网格划分的影响○75.载荷和应力表示同一件东西×76.主应力并不依赖于基本坐标系○77.在应力分析中,应力小的部位单元尺寸要小,大的部位单元尺寸要大来进行模型化处理×78.实特征值分析是一种求最大应力的手段×(求固有频率)79.具有切口附近的应力集中用FEM不能严密地计算○(不是可以用裂缝单元吗)80.1阶单元是假定单元内的应力都一样的单元×(位移单元一阶插值)81.表现材料的弹性界限是所谓的屈服应力○82.在屈服曲面内材料表现为弹性行为○(仍视为屈服界限内)83.位移能用6个矢量成分来表示○84.转角是一种位移○(广义位移)85.载荷点的位移通常最大×86.线性应力分析也可以得到极大的变形×(位移为一阶插值函数,变形为位移的导数,变形的极大值点是位移的二阶导数值为零的拐点,线性应力无拐点)87.与材料无关的相同变形量产生相同的应力×(材料特性)88.给出同一载荷杨氏率越大则变形也越大×(越小)89.对于静力分析质量是不可缺少的数据×(涉及到重力时才需要)90.实特征值分析中必须定义集中载荷或分布载荷×(固有振动分析没必要的)91.屈曲分析和固有振动分析是类似的特征值问题○(还是弄不懂)92.使用同一模型时,一般特征值分析要比线弹性分析花时间○93.一般求特征值分析所求的模态数多也好少也好,分析时间是一样的×一般求的模态数增加,则分析时间变长??94.在静力分析中,仅施加左右方向的载荷时,不约束上下方向也可以×必须约束住不至于刚体运动(转动)95.卡车通过时,玻璃窗会别别地振动,这是与玻璃的固有频率有关○96.FEM也被用在医学上○97.有限元法、有限体积法、有限差分法、边界元法这中间FEM是有限差分法×98.有限元法基本的是求解联立方程式○99.FEM理论1950年前开始就有了○100.考虑阻尼的特征值问题成了复特征值问题○第1章引言1.简要论述求解工程问题的一般方法和步骤;图1-1 工程问题的一般求解步骤2.简要论述有限元方法求解问题的一般步骤选择单元、划分网格、设置求解参数、求解3.说明ANSYS中关于单位制的使用问题第2章弹性力学问题有限元分析4.出一道由单刚组装总刚的问题5.为什么位移有限元得到的应力结果的精度低于位移结果?在当前计算结果的基础上如何进一步提高应力结果的精度?有限元分析以有限单元数模拟实体,其自由度小于真实实体自由度,因而位移结果较小。
弹性力学与有限元分析试题及参考答案四、分析计算题1、试写出无体力情况下平面问题的应力分量存在的必要条件,并考虑下列平面问题的应力分量是否可能在弹性体中存在。
(1)By Ax x +=σ,Dy Cx y +=σ,Fy Ex xy +=τ; (2))(22y x A x +=σ,)(22y x B y +=σ,Cxy xy =τ; 其中,A ,B ,C ,D ,E ,F 为常数。
解:应力分量存在的必要条件是必须满足下列条件:(1)在区域内的平衡微分方程⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂00x yy xxy y yxx τστσ;(2)在区域内的相容方程()02222=+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂y x y x σσ;(3)在边界上的应力边界条件()()()()⎪⎩⎪⎨⎧=+=+s fl m s f m l y s xy y xs yx x τστσ;(4)对于多连体的位移单值条件。
(1)此组应力分量满足相容方程。
为了满足平衡微分方程,必须A =-F ,D =-E 。
此外还应满足应力边界条件。
(2)为了满足相容方程,其系数必须满足A +B =0;为了满足平衡微分方程,其系数必须满足A =B =-C /2。
上两式是矛盾的,因此,此组应力分量不可能存在。
2、已知应力分量312x C Qxy x +-=σ,2223xy C y -=σ,y x C y C xy 2332--=τ,体力不计,Q 为常数。
试利用平衡微分方程求系数C 1,C 2,C 3。
解:将所给应力分量代入平衡微分方程⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂00x yy x xy y yxx τστσ 得⎩⎨⎧=--=--+-023033322322212xy C xy C x C y C x C Qy 即()()()⎩⎨⎧=+=+--0230333222231xy C C y C Q x C C 由x ,y 的任意性,得⎪⎩⎪⎨⎧=+=+=-023030332231C C C Q C C 由此解得,61Q C =,32Q C -=,23QC = 3、已知应力分量q x -=σ,q y -=σ,0=xy τ,判断该应力分量是否满足平衡微分方程和相容方程。
ANSYS有限元基础教程第三章答案1.填空题(1)ANSYS 11.0的操作方式可分为GUI方式和命令方式。
(2)主菜单(Main Menu)是使用GUI模式进行有限元分析的主要操作窗口,包含了ANSYS软件的主要功能:参数选择、预处理器、求解计算器或求解计算模块、通用后处理、时间历程后处理模块或称时间历程后处理器和优化设计模块等。
(3)可以对图形视窗中的模型进行缩放、移动和视角切换的工具栏是试图工具栏。
(4)工程领域常用的数据模拟方法有有限元法、边界元法、离散单元法和有限差分法等。
就广泛性而言,主要还是有限单元法。
2.判断题(1)ANSYS是一个通用的有限元分析软件,它具有多种多样的分析能力,包括简单的线性静态分析和复杂的非线性动态分析。
(√)(2)选择开始→程序→ANSYS 11.0→ANSYS Product Launcher命令可直接启动ANSYS 11.0程序。
(×)(3)ANSYS软件中常用到的有限单元有Link单元、Beam单元、Block单元和Plane单元等。
(√)(4)一个典型的ANSYS分析过程可分为以下6个步骤:定义参数、创建几何模型、划分网格、加载数据、求解计算和结果分析。
(√)第2章实体建模1.填空题(1)实体模型由点、线、面和体组合而成,这些基本的点、线、面和体在ANSYS软件中通常称为图元。
直接生成实体模型的方法主要有自底向上和自顶向下两种。
(2)建立实体模型时,关键点是最小的图元对象,关键点即为结构中一个点的坐标,点与点连接成线,也可直接组合成面及体。
(3)布尔运算就是对生成的实体模型进行诸如交、并、减等的逻辑运算处理。
这样就给用户快速生成复杂模型提供了极大的方便。
(4)将两个或多个图元连接以生成三个或更多新的图元的布尔运算叫做搭接运算。
2.判断题(1)选择Main Menu→Preprocessor→Modeling→Delete→Lines Only命令,可删除线及其上的关键点。
1、有限元是近似求解一般连续场问题的数值方法2、有限元法将连续的求解域离散为假设干个子域,得到有限个单元,单元和单元之间用节点连接3、直梁在外力的作用下,横截面的内力有剪力和弯矩两个.4、平面刚架结构在外力的作用下横截面上的内力有轴力、剪力、弯矩.5、进行直梁有限元分析,平面刚架单元上每个节点的节点位移为挠度和转角6、平面刚架有限元分析,节点位移有轴向位移、横向位移、转角 .7、在弹性和小变形下,节点力和节点位移关系是线性关系.8、弹性力学问题的方程个数有15个,未知量个数有15个.9、弹性力学平面问题方程个数有8,未知数8个.10、几何方程是研究应变和位移之间关系的方程11、物理方程是描述应力和应变关系的方程12、平衡方程反映了应力和体力之间关系的13、把经过物体内任意一点各个截面上的应力状况叫做一点的应力状态14、9形函数在单元上节点上的值 ,具有本点为_1_.它点为零的性质,并且在三角形单元的任一节点上,三个行函数之和为_1_15、形函数是三角形单元内部坐标的线性函数他反映了单元的位移状态16、在进行节点编号时,同一单元的相邻节点的号差尽量小.17、三角形单元的位移模式为_线性位移模式_-18、矩形单元的位移模式为双线性位移模式19、在选择多项式位移模式的阶次时,要求_所选的位移模式应该与局部坐标系的方位无关的性质为几何各向同性20、单元刚度矩阵描述了节点力和节点位移之间的关系21、矩形单元边界上位移是连续变化的1.诉述有限元法的定义答:有限元法是近似求解一般连续场问题的数值方法2.有限元法的根本思想是什么答:首先,将表示结构的连续离散为假设干个子域,单元之间通过其边界上的节点连接成组合体.其次,用每个单元内所假设的近似函数分片地表示求解域内待求的未知厂变量.3.有限元法的分类和根本步骤有哪些答:分类:位移法、力法、混合法;步骤:结构的离散化,单元分析,单元集成,引入约束条件,求解线性方程组,得出节点位移.4.有限元法有哪些优缺点答:优点:有限元法可以模拟各种几何形状复杂的结构,得出其近似解;通过计算机程序,可以广泛地应用于各种场合;可以从其他CAD软件中导入建好的模型;数学处理比较方便, 对复杂形状的结构也能适用;有限元法和优化设计方法相结合,以便发挥各自的优点.缺点:有限元计算,尤其是复杂问题的分析计算, 所消耗的计算时间、内存和磁盘空间等计算资源是相当惊人的. 对无限求解域问题没有较好的处理方法. 尽管现有的有限元软件多数使用了网络自适应技术, 但在具体应用时,采用什么类型的单元、多大的网络密度等都要完全依赖适用者的经验.5.梁单元和平面钢架结构单元的自由度由什么确定答:由每个节点位移分量的总和确定6.简述单元刚度矩阵的性质和矩阵元素的物理意义答:单元刚度矩阵是描述单元节点力和节点位移之间关系的矩阵单元刚度矩阵中元素aml的物理意义为单元第L个节点位移分量等于1,其他节点位移分量等于0时,对应的第m个节点力分量.7.有限元法根本方程中的每一项的意义是什么P14答:Q——整个结构的节点载荷列阵〔外载荷、约束力〕;整个结构的节点位移列阵;结构的整体刚度矩阵,又称总刚度矩阵.8.位移边界条件和载荷边界条件的意义是什么答:由于刚度矩阵的线性相关性不能得到解,引入边界条件,使整体刚度矩阵求的唯一解.9.简述整体刚度矩阵的性质和特点P14答:对称性;奇异性;稀疏性;对角线上的元素恒为正.10简述整体坐标的概念P25答:在整体结构上建立的坐标系叫做整体坐标,又叫做统一坐标系.11.简述平面钢架问题有限元法的根本过程答:1〕力学模型确实定,2〕结构的离散化,3〕计算载荷的等效节点力,4〕计算各单元的刚度矩阵,5〕组集整体刚度矩阵,6〕施加边界约束条件,7〕求解降价的有限元根本方程, 8〕求解单元应力,9〕计算结果的输出.12.弹性力学的根本假设是什么.答:连续性假定,弹性假定,均匀性和各向同性假定,小变形假定,无初应力假定.13.弹性力学和材料力学相比,其研究方法和对象有什么不同.答:研究对象:材料力学主要研究杆件,如柱体、梁和轴,在拉压、剪切、弯曲和扭转等作用下的应力、形变和位移.弹性力学研究各种形状的弹性体,除杆件外,还研究平面体、空间体,板和壳等.因此,弹性力学的研究对象要广泛得多.研究方法:弹性力学和材料力学既有相似之外,又有一定区别.弹性力学研究问题,在弹性体区域内必须严格考虑静力学、几何学和物理学三方面条件,在边界上严格考虑受力条件或约束条件,由此建立微分方程和边界条件进行求解,得出较精确的解答.而材料力学虽然也考虑这几方面的条件,但不是十分严格的,材料力学只研究和适用于杆件问题. 14.简述圣维南原理. 答;把物体一小局部上的面力变换为分布不同但静力等效的面力,但影响近处的应力分量, 而不影响远处的应力.“局部影响原理〞15.平面应力问题和平面应变问题的特点和区别各是什么试各举出一个典型平面应力和平面应变的问题的实例.答:平面应力问题的特点:长、宽尺寸远大于厚度,沿板面受有平行板的面力,且沿厚度均匀分布,体力平行于板面且不沿厚度变化,在平板的前后外表上无外力作用平面应变问题的特点:Z向尺寸远大于x、y向尺寸,且与z轴垂直的各个横截面尺寸都相同,受有平行于横截面且不沿z向变化的外载荷,约束条件沿z向也不变,即所有内在因素的外来作用都不沿长度变化.区别:平面应力问题中z方向上应力为零,平面应变问题中z方向上应变为零、应力不为零.举例:平面应力问题等厚度薄板状弹性体,受力方向沿板面方向,荷载不沿板的厚度方向变化,且板的外表无荷载作用.平面应变问题一一水坝用于很长的等截面四柱体,其上作用的载荷均平行于横截面,且沿柱长方向不变法.16.三角形常应变单元的特点是什么矩形单元的特点是什么写出它们的位移模式.答:三角形单元具有适应性强的优点,较容易进行网络划分和逼近边界形状,应用比较灵活.其缺点是它的位移模式是线性函数,单元应力和应变都是常数,精度不够理想.矩形单元的位移模式是双线性函数,单元的应力、应变式线性变化的,具有精度较高, 形状规整,便于实现计算机自动划分等优点,缺点是单元不能适应曲线边界和斜边界,也不能随意改变大小,适用性非常有限.17.写出单元刚度矩阵表达式、并说明单元刚度与哪些因素有关.答:单元刚度矩阵与节点力坐标变换矩阵,局部坐标系下的单元刚度矩阵,节点位移有关的坐标变换矩阵.18.如何由单元刚度矩阵组建整体刚度矩阵〔叠加法〕答:〔1〕把单元刚度矩阵扩展成单元奉献矩阵 ,把单元刚度矩阵中的子块按其在整体刚度矩阵中的位置排列, 空白处用零子块填充.〔2〕把单元的奉献矩阵的对应列的子块相叠加, 即可得出整体刚度矩阵 .19.整体刚度矩阵的性质.答:〔1〕整体刚度矩阵中每一列元素的物理意义为:欲使弹性体的某一节点沿坐标方形发生单位为移,而其他节点都保持为零的变形状态,在各节点上所需要施加的节点力;〔2〕整体刚度矩阵中的主对角元素总是正的;〔3〕整体刚度矩阵是一个对称阵;〔4〕整体刚度矩阵式一个呈带状分布的稀疏性矩阵.〔5〕整体刚度矩阵式一个奇异阵,在排除刚体位移后,他是正定阵.20.简述形函数的概念和性质.答:形函数的性质有:〔1〕形函数单元节点上的值,具有“本点为一、他点为零〞的性质;〔2〕在单元的任一节点上,三角函数之和等于1; 〔3〕三角形单元任一一条边上的形函数,仅与该端点节点坐标有关,而与另外一个节点坐标无关;〔4〕型函数的值在0〜1之间变换.21.结构的网格划分应注意哪些问题 .如何对其进行节点编号.才能使半带宽最小.P50, P8相邻节点的号差最小答:一般首选三角形单元或等参元.对平直边界可选用矩形单元,也可以同时选用两种或两种以上的单元.一般来说,集中力,集中力偶,分布在和强度的突变点,分布载荷与自由边界的分界点,支撑点都应该取为节点,相邻节点的号差尽可能最小才能使半带宽最小22.为了保证解答的收敛性,单元位数模式必须满足什么条件答:〔1〕位移模式必须包含单元刚体位移;〔2〕位移模式必须包含单元的常应变;〔3〕位移模式在单元内要连续,且唯一在相邻单元之间要协调.在有限单元法中,把能够满足条件1和条件2的单元称为完备单元,把满足条件3的单元叫做协调单元或保续单元.23有限元分析求得的位移解收敛于真实解得下界的条件.答:1.位移模式必须包含单元的刚体位移,2.位移模式必须包含单元的常应变,3.位移模式在单元内要连续,且位移在相邻单元之间要协调.24.简述等参数单元的概念.答:坐标变换中采用节点参数的个数等于位移模式中节点参数的个数,这种单元称为等参单元.25.有限元法中等参数单元的主要优点是什么答:1〕应用范围广.在平面或空间连续体,杆系结构和板壳问题中都可应用.2〕将不规那么的单元变化为规那么的单元后,易于构造位移模式.3〕在原结构中可以采用不规那么单元,易于适用边界的形状和改变单元的大小.4〕可以灵活的增减节点,容易构造各种过度单元.5〕推导过程具有通用性.一维,二维三维的推导过程根本相同.26.简述四节点四边形等参数单元的平面问题分析过程.答:〔1〕通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;〔2〕通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;〔3〕将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵〔4〕用虚功原理球的单元刚度矩阵,,最后用高斯积分法计算完成.27.为什么等参数单元要采用自然坐标来表示形函数为什么要引入雅可比矩阵答:简化计算得到形函数的偏导关系.28. ANSYS软件主要包括哪些局部各局部的作用是什么答:1.前处理模块:提供了一个强大的实体建模及网络划分工具,用户可以方便地构造有限元模型.2.分析计算模块:包括结构分析、流体力学分析、磁场分析、声场分析、压电分析以及多种物理场的耦合分析,可以模拟多种物理介质的相互作用,具有灵敏度分析及优化分析水平.3.后处理模块:可将计算后果以彩色等值线显示、梯度显示、矢量显示、粒子流迹显示、立体切片显示、透明及半透明显示等图形方式显示出来,也可将计算结果以图表、曲线形式显示出来或输出.29. ANSYS软件提供的分析类型有哪些答:结构静力分析、机构动力分析、结构非线性分析、动力学分析、热分析、流体力学分析、电磁场分析、声场分析、压电分析.30.简述ANSYS软件分析静力学问题的根本流程.答:1.前处理器:1〕定义单元类型,2〕定义实常数,3〕定义材料属性,4〕创立实体几何模型,5〕划分网络;2.求解器:1〕定义分析类型,2〕施加载荷和位移约束条件,3〕求解;三角形三节点单元的位移是连续的,应变和应力在单元内是常数,因而其相邻单元将具有不同的应力和应变,即在单元的公共边界上和应变的值将会有突变.矩形单元的边界上,位移是线性变化的,显然,在两个相邻矩形单元的公共边界上,其位移是连续的.节点的选用原那么:一般说,集中力、集中力偶、分布载荷强度的突变点、分布载荷与自由边界的分界点、支承点都能赢取为节点.单元的划分原那么:〔1〕划分单元的数目,视要求的计算精度和计算机的性能而定.〔2〕单元的大小,可根据部位的不同而有所不同.1、试述街节点力和节点载荷的区别.节点力是单元与节点之间的作用力;如果取整个结构为研究对象,节点力为内力,节点载荷是作用在节点上的外载荷.2、试述求整体刚度矩阵的两种方法.分别建立各节点的平衡方程式,写成矩阵形式,可求得整体刚度矩阵;将各单元刚度矩阵按规律叠加,也可得整体刚度矩阵.3、平面问题中划分单元的数目是否越多越好不是越多越好.划分单元的数目,视要求的计算精度和计算机的性能而定.随着单元数目的接连多,有限元解逐步逼近于真实解,但是,单元数目接连加,刚求解的有限元线性方程组的数目接连多, 需要占用更多的计算机内存资源,求解时间接连长,所以,在计算机上进行有限元分析时,还要考虑计算机的性能.单元数过多并不经济.4、写出单元刚度矩阵的表达式,并说明单元刚度与那些因素有关[B]-单元应变矩阵,[D]-弹性矩阵,t-厚度〕单元刚度矩阵取决于单元的大小、方向、和弹性常数,而与单元的位置无关,即不随单元或坐标轴的平移而改变.5、选择多项式为单元的位移模式时,除了要满足单元的完备性和协调性要求,还须考虑什么因素还须考虑两个因素:1、所选的位移模式应该与局部坐标系的方位无关,即几何各向同性. 2、多项式位移模式中的项数必须等于或稍大于单元边界上的外节点的自由度数,通常取多项式的项数与单元的外节点的自由度数想等.。
第三章有限元方法的分析基础如前所述,有限元分析主要包含以下步骤:(1)求解域的离散;(2)选择场函数;(3)单元刚度矩阵的建立;(4)单刚集成结构总体刚度矩阵;(5整体结构平衡方程求解;(6) 按单元计算场内的各种物理量。
本章将概述有限元分析各阶段的基本要求。
第一节结构的离散化将求解域离散为子域(有限元)是有限元分析的第一步,这也意味着用一个具有有限自由度数目的系统来代替具有无限自由度数目的系统。
离散的实施主要取决于对物理问题的认知和物理模型的建立,在选择单元的形状、尺寸、数量和排列时必须以能正确反映待解决问题为前提,尽可能以更好的精度和更高的计算速率精确地模拟原问题。
3.1.1基本单元形状对任一个给定的物体,必须靠工程实际或研究判断力来选择适当的单元进行离散化。
在大多数情况下,单元类型的选择取决于物体的几何形状以及描述系统所需要的独立的空间坐标数。
图3.1.1、图3.1.2、图3.1.3分别示出了某些常用的一维、二维和三维单元.图3.1.1 一维单元当几何形状、材料性质和其他参数(如应力、位移)仅需用一个空间坐标描述时,可以采用如图3.1.1所示的一维单元。
虽然这种单元有横截面面积,但一般在示意图中都用线段来表示。
在某些问题中,单元的横截面面积可沿长度变化。
当问题的几何形状和其他参数可以用二个独立的空间变量结点来描述时,可以采用图3.1.2所示的二维单元。
二维分析中常用的基本单元是三角形单元,虽然四边形(或其特殊形式矩形或平行四边形)单元可以用二个或四个三角形单元集合而成(如图3.1.3所示),但在某些情况下用四边形(或矩形,平行四边形)单元仍然是有利的。
图3.1.2二维单元149150图3.1.3 由二个或四个三角形单元集合成的四边形单元如果物体的几何形状,材料性质和其他参数可以用三个独立的空间坐标来描述,就可以采用图3.1.4所示的三维单元来离散物体。
与二维问题中的三角形单元类似,基本三维单元是四面体单元,但在某些情况下用六面体单元会更有利。
有限元思考题答案第一篇:有限元思考题答案红字为答疑时老师给的解答第一章思考题1-1 “用加权余量法求解微分方程,其权函数V和场函数u的选择没有任何限制”,这种说法对吗?答:不对,有连续性要求。
1-2 “加权余量法仅适用为传热学问题建立基本的有限元方程,而基于最小势能原理的虚功原理仅适合为弹性力学问题建立基本的有限元方程”,这种说法对吗?答:不对。
虚位移原理不仅可以应用于弹性力学问题,还可以应用于非线性弹性以及弹塑性等非线性问题,虚功原理可以用来推导各种力学问题的有限元基本方法中的基本方程。
最小势能原理仅适用于弹性力学问题。
加权残值法尤其适用于具有连续场的非力学问题,如声、电、磁学的有限元方程的建立。
1-3 现代工程分析中的数值分析方法主要有有限差分法、有限元法和边界元法。
这些方法本质上是将求解区域进行网格离散化,然后求解方程获得数值结果。
是否可以将求解区域离散成结点群,但是没有网格进行求解?答:可以,无网格方法是近年发展起来的一种新的数值计算方法。
与基于网格的方法不同,无网格方法只需要节点的信息,不需要节点的信息而不需要节点之间相互联系的信息。
典型无网格方法有配点法、Galerkin方法、Petrov-Galerkin方法等。
(无网格方法数值求解的基本思想:在每个节点上构建待求物理量近似值的插值函数,并用加权残量法和该近似函数对微分方程进行离散,形成与待求物理量相关的各节点近似值的离散方程,并求解之。
)第二章思考题2-1 ANSYS软件有哪些模块?在GUI方式下的六个窗口有何功能特点?主要包括前处理模块,分析计算模块和后处理模块①前处理模块提供了一个强大的试题建模及网格划分工具,用户可以方便地构造有限元②分析计算模块包括结构分析、流体动力学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力③后处理可将计算结果以彩色等值线显示、梯度显示、矢量显示、粒子流迹显示、立体切片显示、透明及半透明显示等图形方式显示出来,也可将计算记过以图表、曲线形式显示或输出。
中南大学有限元习题与答案通过整理的中南大学有限元习题与答案相关文档,希望对大家有所帮助,谢谢观看!中南大学有限元习题与答案习题 2.1 解释如下的概念:应力、应变,几何方程、物理方程、虚位移原理。
解应力是某截面上的应力在该处的集度。
应变是指单元体在某一个方向上有一个ΔU的伸长量,其相对变化量就是应变。
表示在x轴的方向上的正应变,其包括正应变和剪应变。
几何方程是表示弹性体内节点的应变分量与位移分量之间的关系,其完整表示如下:物理方程:表示应力和应变关系的方程某一点应力分量与应变分量之间的关系如下:虚位移原理:在弹性有一虚位移情况下,由于作用在每个质点上的力系,在相应的虚位移上虚功总和为零,即为:若弹性体在已知的面力和体力的作用下处于平衡状态,那么使弹性体产生虚位移,所有作用在弹性体上的体力在虚位移上所做的工就等于弹性体所具有的虚位能。
2.2说明弹性体力学中的几个基本假设。
连续性假设:就是假定整个物体的体积都被组成该物体的介质所填满,不存在任何间隙。
完全弹性假设:就是假定物体服从虎克定律。
各向同性假设:就是假定整个物体是由同意材料组成的。
小变形和小位移假设:就是指物体各点的位移都远远小于物体原来的尺寸,并且其应变和转角都小于1。
2.3简述线应变与剪应变的几何含义。
线应变:应变和刚体转动与位移导数的关系,剪应变表示单元体棱边之间夹角的变化。
2.4 推到平面应变平衡微分方程。
解:对于单元体而言其平衡方程:在平面中有代入上式的2.5 如题图2.1所示,被三个表面隔离出来平面应力状态中的一点,求和的值。
解:x方向上:联立二式得:2.6相对于xyz坐标系,一点的应力如下某表面的外法线方向余弦值为,,求该表面的法相和切向应力。
解:该平面的正应力全应力该平面的切应力2.7一点的应力如下MP 求主应力和每一个主应力方向的方向余弦;球该店的最大剪应力。
解:设主平面方向余弦为,由题知将代入得即,。
最大剪应力(1)当时代入式(2.21)(2)当时代入式(2.21)且2.8已知一点P的位移场为,求该点p(1,0,2)的应变分量。
第三章 平面问题有限单元法习题答案3-2图示等腰直角三角形单元,设μ=1/4,记杨氏弹性模量E ,厚度为t ,求形函数矩阵[N ]、应变矩阵[B ]、应力矩阵[S ]与单元刚度矩阵[K ]e 。
【解】:⎪⎩⎪⎨⎧-=-=-=-=-=-=-=-=-=i j m j i m i j j i mm i j i m j m i i m j j m i m j i j m m j i xx c y y b y x y x a x x c y y b y x y x a x x c y y b y x y x a ,,,,,,⎪⎩⎪⎨⎧-=-=-=-==-==-==-==-==-==-==-=aa c a ab a a a a a ac b a a a c a a b a a m m mj j j i i i 0,0,0*0*0,000,00**0000,0,0*00*02 []⎥⎦⎤⎢⎣⎡=m jim j iN N N N N N N 0000 ),,()(21m j i y c x b a AN i i i i ++=221001010121a a a A ==[]⎥⎦⎤⎢⎣⎡----=--=--==++==++=y x a y x yx a y x a N ay x a ay ax a a N ay ay x a N a x y ax a N m j i 0000001)(1)00(1)00(12222aaj(0,a)[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----+-=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-----+-=10003101310310001310311103)411(24121000141410411411)421)(41()411()1(22100011011)21)(1()1(E E E E D μμμμμμμμμ[][]321B B B B =⎪⎩⎪⎨⎧-=-=-=-==-==-==-==-==-==-==-=aa c a ab a a a a a ac b a a a c a a b a a m m mj j j i i i 0,0,0*0*0,000,00**0000,0,0*00*02 [][][][][]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11011010100001000111110011011000110000110000100212a B a B a B a a a a B b c c b AB m j i i ii ii[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=10003101310E D []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=1101101010000100011a B[][][]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==1101103130011310031011011010100001000110003101310a E a E B D S[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=10003101310E D []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=1101101010000100011a B[][][][]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------------=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----==42311124111331300111011011011013100320211101101010000100011000310131101101010000100011022Et a t a E tAB D B K TT e3-3正方形薄板,受力与约束如图所示,划分为两个三角形单元,μ=1/4,板厚为t ,求各节点位移与应力。