最新人教版八年级数学下册 18.2.1 第2课时 矩形的判定 优质教案
- 格式:doc
- 大小:1.08 MB
- 文档页数:2
人教版数学八年级下册18.2.1第2课时《矩形的判定》教学设计一. 教材分析人教版数学八年级下册18.2.1第2课时《矩形的判定》是本节课的主要内容。
通过上一节课的学习,学生已经掌握了矩形的性质,本节课将进一步引导学生探究矩形的判定方法,培养学生的逻辑思维能力。
本节课的内容在数学知识体系中起到承上启下的作用,为后续学习正方形和其他四边形的性质奠定基础。
二. 学情分析八年级的学生已经具备了一定的几何知识基础,对矩形的性质有所了解。
但是,学生在判断一个四边形是否为矩形时,可能会因为对矩形性质的理解不够深入而出现判断错误。
因此,在教学过程中,教师需要引导学生深入理解矩形的性质,并通过实例让学生学会运用矩形的性质进行判定。
三. 教学目标1.让学生掌握矩形的判定方法。
2.培养学生的逻辑思维能力和空间想象能力。
3.提高学生运用矩形性质解决实际问题的能力。
四. 教学重难点1.教学重点:矩形的判定方法。
2.教学难点:如何引导学生运用矩形的性质进行判定,并解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入矩形的判定,激发学生的学习兴趣。
2.启发式教学法:引导学生主动探究矩形的判定方法,培养学生的逻辑思维能力。
3.合作学习法:分组讨论,让学生在合作中交流,提高解决问题的能力。
4.巩固练习法:通过适量练习,让学生巩固所学知识。
六. 教学准备1.教学课件:制作课件,展示矩形的判定方法及实例。
2.练习题:准备一些有关矩形判定的练习题,用于课堂练习和巩固。
3.教学道具:准备一些四边形模型,用于直观展示矩形的性质。
七. 教学过程1.导入(5分钟)利用生活实例引入矩形的判定,激发学生的学习兴趣。
如:展示一些生活中的矩形物品,如门窗、电视屏幕等,让学生观察并思考如何判断它们是矩形。
2.呈现(10分钟)呈现矩形的判定方法,引导学生主动探究。
如:用课件展示矩形的判定定理,并用动画演示判定过程。
3.操练(10分钟)分组讨论,让学生在合作中交流,提高解决问题的能力。
知识回顾1.矩形的定义:有一个角是直角的平行四边形叫做矩形.2.矩形的性质:矩形的四个角都是直角;矩形的对角线相等.交流预习工人师傅做铝合金窗框,分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料,如图①,使AB=CD,EF=GH;(2)摆放成如图②所示的四边形,则这时窗框的形状是___________,根据的数学道理是______________________________________;(3)将直角尺靠窗框的一个角,如图③,调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时,如图④,说明窗框合格,这时窗框是_____,根据的数学道理是____________ ____________________________________.行四边形是矩形吗? 已知:四边形ABCD 是平行四边形,且AC=BD.求证:四边形ABCD 是矩形.证明:∵ 四形边ABCD 是平行四边形∴ AB=DC ,AB ∥DC又 AC=BD ,BC=CB∴ △ABC ≌△DCB (SSS)∴ ∠ABC=∠DCB∵ AB ∥DC∴ ∠ABC+∠DCB=180°∴ ∠ABC=90°∴ 四边形ABCD 是矩形矩形的判定定理1:对角线相等的平行四边形是矩形.几何符号语言:∵ 四边形ABCD 是平行四边形,且AC=BD∴ 四边形ABCD 是矩形探究点二想一想对角线互相平分且相等的四边形是矩形吗?为什么?思考前面我们研究了矩形的四个角,知道它们都是直角.它的逆命题成立吗?即四个角都是直角的四边形是矩形吗?进一步,至少有几个角是直角的四边形是矩形?矩形的判定定理2:有三个角是直角的四边形是矩形.几何符号语言:∵ ∠A=∠B=∠C=90°∴ 四边形ABCD 是矩形【课堂检测案】例2如图,在□ABCD 中,对角线AC ,BD 相交于点O ,且OA=OD ,∠OAD=50°. 求∠OAB 的度数.解:∵ 四边形ABCD 是平行四边形∴ OA=OC=21AC ,OB=OD=21BD 又 OA=OD∴ AC=BD∴ 四边形ABCD 是矩形∴ ∠DAB=90°又 ∠OAD=50°∴ ∠OAB=40°练习1.八年级(3)班同学要在广场上布置一个矩形的花坛,计划用红花摆成两条对角线.如果一条对角线用了38盆红花,还需要从花房运来多少盆红花?为什么?如果一条对角线用了49盆呢?解:由于矩形对角线互相平分且相等,所以如果一条对角线用了38盆红花,那么还需要从花房运来38盆红花;如果一条对角线用了49盆必做题:60页习题18.2第1、2题。
人教版八年级下册数学第18章平行四边形18.2 特殊的平行四边形18.2.1 矩形课时2矩形的判定教案【教学目标】知识与技能目标1.理解并掌握矩形的判定方法.2.使学生能应用矩形的定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.过程与方法目标1.从矩形性质定理的逆命题出发,提出猜想,发现结论,然后给出证明,进一步理解互逆命题的意义,体会矩形的性质与判定的区别与联系.2.让学生经历探索矩形判定定理的过程,理解并掌握矩形的判定方法,积累几何学习的经验,发展合情推理和演绎推理的能力.情感、态度与价值观目标在课堂活动中,通过观察、思考、猜想、证明,培养学生主动参与、乐于探究、勤于动手的学习习惯.【教学重点】矩形判定定理的运用.【教学难点】矩形判定方法的理解及应用.【教学准备】教师准备:教学中出示的教学插图和例题.学生准备:复习矩形的定义及其性质.【教学过程设计】一、情境导入我们已经知道,有一个角是直角的平行四边形是矩形.这是矩形的定义,我们可以依此判定一个四边形是矩形.除此之外,我们能否找到其他的判定矩形的方法呢?矩形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:1.两条对角线相等且互相平分;2.四个内角都是直角.这些性质,对我们寻找判定矩形的方法有什么启示?二、合作探究知识点一:有一个角是直角的平行四边形是矩形例1如图,在△ABC中,AB=AC,AD是BC边上的高,AE是△BAC的外角平分线,DE∥AB交AE于点E.求证:四边形ADCE是矩形.解析:首先利用外角性质得出∠B=∠ACB=∠F AE=∠EAC,进而得到AE∥BC,即可得出四边形AEDB是平行四边形,再利用平行四边形的性质得出四边形ADCE是平行四边形,再根据AD是高即可得出四边形ADCE是矩形.证明:∵AB=AC,∴∠B=∠ACB.∵AE是△BAC的外角平分线,∴∠F AE =∠EAC.∵∠B+∠ACB=∠F AE+∠EAC,∴∠B=∠ACB=∠F AE=∠EAC,∴AE∥BC.又∵DE∥AB,∴四边形AEDB是平行四边形,∴AE平行且等于BD.又∵AB=AC,AD⊥BC,∴BD=DC,∴AE平行且等于DC,故四边形ADCE 是平行四边形.又∵∠ADC=90°,∴平行四边形ADCE是矩形.方法总结:平行四边形的判定与性质以及矩形的判定常综合运用,解题时利用平行四边形的判定得出四边形是平行四边形再证明其中一角为直角即可.知识点二:对角线相等的平行四边形是矩形例2如图,在平行四边形ABCD中,对角线AC、BD相交于点O,延长OA 到N,ON=OB,再延长OC至M,使CM=AN.求证:四边形NDMB为矩形.解析:首先由平行四边形ABCD可得OA=OC,OB=OD.若ON=OB,那么ON=OD.而CM=AN,即ON=OM.由此可证得四边形NDMB的对角线相等且互相平分,即可得证.证明:∵四边形ABCD为平行四边形,∴AO=OC,OD=OB.∵AN=CM,ON=OB,∴ON=OM=OD=OB,∴MN=BD,∴四边形NDMB为矩形.方法总结:证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等.知识点三:有三个角是直角的四边形是矩形例3如图,▱ABCD各内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.解析:利用“有三个内角是直角的四边形是矩形”证明四边形EFGH是矩形.证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAB+∠ABC=180°.∵AH,BH分别平分∠DAB与∠ABC,∴∠HAB=12∠DAB,∠HBA=12∠ABC,∴∠HAB+∠HBA=12(∠DAB+∠ABC)=12×180°=90°,∴∠H=90°.同理∠HEF=∠F=90°,∴四边形EFGH是矩形.方法总结:题设中隐含多个直角或垂直时,常采用“三个角是直角的四边形是矩形”来判定矩形.探究点四:矩形的性质和判定的综合运用【类型一】矩形的性质和判定的运用例4如图,O是矩形ABCD的对角线的交点,E、F、G、H分别是OA、OB、OC、OD上的点,且AE=BF=CG=DH.(1)求证:四边形EFGH是矩形;(2)若E、F、G、H分别是OA、OB、OC、OD的中点,且DG⊥AC,OF=2cm,求矩形ABCD的面积.解析:(1)证明四边形EFGH对角线相等且互相平分;(2)根据题设求出矩形的边长CD和BC,然后根据矩形面积公式求得.(1)证明:∵四边形ABCD是矩形,∴OA=OB=OC=OD.∵AE=BF=CG=DH,∴AO-AE=OB-BF=CO-CG=DO-DH,即OE=OF=OG=OH,∴四边形EFGH是矩形;(2)解:∵G是OC的中点,∴GO=GC.∵DG⊥AC,∴∠DGO=∠DGC=90°.又∵DG=DG,∴△DGC≌△DGO,∴CD=OD.∵F是BO中点,OF=2cm,∴BO=4cm.∵四边形ABCD是矩形,∴DO=BO=4cm,∴DC=4cm,DB=8cm,∴CB=DB2-DC2=43cm,∴S矩形ABCD=4×43=163(cm2).方法总结:若题设条件与这个四边形的对角线有关,要证明一个四边形是矩形,通常证这个四边形的对角线相等且互相平分.【类型二】矩形的性质和判定与动点问题例5如图所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD是平行四边形?(2)经过多长时间,四边形PQBA是矩形?解析:(1)设经过t s时,四边形PQCD是平行四边形,根据DP=CQ,代入后求出即可;(2)设经过t′s时,四边形PQBA是矩形,根据AP=BQ,代入后求出即可.解:(1)设经过t s,四边形PQCD为平行四边形,即PD=CQ,所以24-t =3t,解得t=6;(2)设经过t′s,四边形PQBA为矩形,即AP=BQ,所以t′=26-3t′,解得t′=13 2.方法总结:①证明一个四边形是平行四边形,若题设条件与这个四边形的边有关,通常证这个四边形的一组对边平行且相等;②题设中出现一个直角时,常采用“有一角是直角的平行四边形是矩形”来判定矩形.三、教学小结师生一起归纳总结:矩形的判定方法分两类:从四边形来判定和从平行四边形来判定.常用的判定方法有三种:①矩形的定义:有一个角是直角的平行四边形是矩形;②矩形的判定定理:对角线相等的平行四边形是矩形;③矩形的判定定理:三个角都是直角的四边形是矩形.四、学习检测1.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BEB.DE⊥DCC.∠ADB=90°D.CE⊥DE 解析:∵四边形ABCD为平行四边形,∴AD∥BC,且AD=BC,AB=CD,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形.A.∵AB=BE,AB=CD,∴BE=CD,∴平行四边形DBCE为矩形,故本选项错误;B.∵DE⊥DC,∴∠EDB=90°+∠CDB>90°,∴四边形DBCE不可能是矩形,故本选项正确;C.∵∠ADB=90°,∴∠EDB=90°,∴平行四边形DBCE为矩形,故本选项错误;D.∵CE⊥DE,∴∠CED=90°,∴平行四边形DBCE为矩形,故本选项错误.故选B.2.工人师傅在做门框或矩形零件时,常用测量平行四边形两条对角线是否相等来检测直角的精度,工人师傅依据的几何道理是.解析:工人师傅根据“对角线相等的平行四边形是矩形”,通过测量平行四边形两条对角线是否相等可判断做的门框或零件是否为矩形,进而判断直角的精度.故填对角线相等的平行四边形是矩形.3.如图,要使平行四边形ABCD成为矩形,应添加的条件是(只填一个). 解析:∵有一个角是直角的平行四边形叫做矩形,∴可填∠ABC=90°(或其余三个内角中的一个为90°);又∵对角线相等的平行四边形是矩形,∴可填“AC=BD”.故可填∠ABC=90°(答案不唯一).4.如图所示,矩形ABCD的对角线AC,BD相交于O,E,F,G,H分别是OA,OB,OC,OD 的中点.求证:四边形EFGH是矩形.证明:∵矩形ABCD的对角线AC,BD相交于O,∴AO=BO=CO=DO.又∵E,F,G,H分别是OA,OB,OC,OD的中点,∴EO=FO=GO=HO.∴四边形EFGH为平行四边形,EG=HF,∴四边形EFGH是矩形.【板书设计】18.2 特殊的平行四边形 18.2.1 矩形课时2 矩形的判定1.矩形的判定有一角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形.2.矩形的性质和判定的综合运用3.学习检测【教学反思】在本节数学课的教学中,不仅要让学生掌握矩形判定的几种方法,更要注重学生在学习的过程中是否真正掌握了探究问题的基本思路和方法.教师在例题练习的教学中,若能适当地引导学生多做一些变式练习,类比、迁移地思考、做题,就能进一步拓展学生的思维,提高课堂教学的效率.人教版八年级下册数学第18章平行四边形18.2 特殊的平行四边形18.2.1 矩形课时2矩形的判定学案【学习目标】1.经历矩形判定定理的猜想与证明过程,理解并掌握矩形的判定定理;2.能应用矩形的判定解决简单的证明题和计算题.【学习重点】经历矩形判定定理的猜想与证明过程,理解并掌握矩形的判定定理.【学习难点】能应用矩形的判定解决简单的证明题和计算题.【自主学习】一、知识回顾1.矩形的定义是什么?2.矩形有哪些性质?二、新知探究知识点1:二次根式的乘法想一想 1.类比平行四边形的定义也是判定平行四边形的一种方法,那么矩形的定义也是判定矩形的一种方法.除了定义以外,判定矩形的方法还有没有呢?2.上节课我们已经知道“矩形的对角线相等”,反过来,小明猜想对角线相等的四边形是矩形,你觉得对吗?如果不对,你的猜想是什么?对角线_______的__________________是矩形.证一证已知:如图,在□ABCD中,AC,DB是它的两条对角线, AC=DB.求证:□ABCD是矩形.证明:∵AB = DC,BC = CB,AC = DB,∴△ABC______△DCB ,∴∠ABC______∠DCB.∵AB∥CD,∴∠ABC + ∠DCB =______°,∴∠ABC = _______°,∴□ ABCD是__________.思考数学来源于生活,事实上工人师傅为了检验两组对边相等的四边形窗框是否成矩形,一种方法是量一量这个四边形的两条对角线长度,如果对角线长相等,窗框一定是矩形,你现在知道为什么了吗?要点归纳:矩形的判定定理:对角线相等的平行四边形是矩形.几何语言描述:在平行四边形ABCD中,∵AC=BD,∴平行四边形ABCD是矩形.【典例探究】例1如图,矩形ABCD的对角线AC、BD相交于点O,E、F、G、H分别是AO、BO、CO、DO上的一点,且AE=BF=CG=DH.求证:四边形EFGH是矩形.【跟踪练习】1.如图,在▱ABCD中,AC和BD相交于点O,则下面条件能判定▱ABCD是矩形的是( )A.AC=BDB.AC=BCC.AD=BCD.AB=AD2.如图,在平行四边形ABCD中, ∠1= ∠2中.此时四边形ABCD是矩形吗?为什么?知识点2:有三个角是直角的四边形是矩形想一想 1.上节课我们研究了矩形的四个角,知道它们都是直角,它的逆命题是什么?成立吗?2.至少有几个角是直角的四边形是矩形?猜测:有_____个角是直角的四边形是矩形.证一证已知:如图,在四边形ABCD中,∠A=∠B=∠C=90°.求证:四边形ABCD是矩形.证明:∵∠A=∠B=∠C=90°,∴∠A+∠B=_______°,∠B+∠C=_______°,∴AD_____BC,AB_____CD.∴四边形ABCD是______________,∴四边形ABCD是________.思考一个木匠要制作矩形的踏板.他在一个对边平行的长木板上分别沿与长边垂直的方向锯了两次,就能得到矩形踏板.为什么?要点归纳:矩形的判定定理:有三个角是直角的四边形是矩形.几何语言描述:在四边形ABCD中,∵∠A=∠B=∠C=90°,∴四边形ABCD是矩形.【典例探究】例3如图,□ ABCD的四个内角的平分线分别相交于E、F、G、H,求证:四边形EFGH为矩形.例4 如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为E,求证:四边形ADCE为矩形.【跟踪练习】在判断“一个四边形门框是否为矩形”的数学活动课上,一个合作学习小组的4位同学分别拟定了如下的方案,其中正确的是( )A.测量对角线是否相等B.测量两组对边是否分别相等C.测量一组对角是否都为直角D.测量其中三个角是否都为直角三、知识梳理内容矩形的判定定义:有一个角是直角的平行四边形是矩形.判定定理:对角线相等的平行四边形是矩形.有三个角是直角的四边形是矩形.四、学习过程中我产生的疑惑【学习检测】1.下列说法错误的是( )A.对角线相等的四边形是矩形B.对角线相等的平行四边形是矩形C.有一个角是直角的平行四边形是矩形D.有三个角是直角的四边形是矩形A(解析:根据矩形的判定方法进行判断.)2.在四边形ABCD中,AC和BD的交点为O,则下列条件中不能判定四边形ABCD是矩形的是( )A.AB=CD,AD=BC,AC=BDB.AO=CO,BO=DO,∠BAD=90°C.∠BAD=∠BCD,∠ABC+∠ADC=180°,∠AOB=∠BOCD.AB∥CD,AB=CD,∠BAD=90°C(解析:AB=CD,AD=BC,由两组对边分别相等的四边形是平行四边形,知四边形ABCD是平行四边形,又AC=BD,由对角线相等的平行四边形是矩形知▱ABCD是矩形,故A正确;AO=CO,BO=DO,故四边形ABCD是平行四边形,又∠BAD=90°,故平行四边形ABCD是矩形,故B正确;AB∥CD,AB=CD,故四边形ABCD是平行四边形,又∠BAD=90°,故平行四边形ABCD是矩形,故D正确.故选C.)3.如果平行四边形各内角的平分线能够围成一个四边形,则这个四边形是( )A.正方形B.矩形C.梯形D.平行四边形B(解析:平行四边形相邻两角的平分线相交成直角,根据有三个角是直角的四边形是矩形可判断.故选B.)4.如图所示,E,F,G,H分别是四边形ABCD的四边中点,要使四边形EFGH为矩形,则四边形ABCD应具备的条件是( )A.一组对边平行而另一组对边不平行B.对角线相等C.对角线互相垂直D.对角线互相平分C(解析:由三角形的中位线平行于第三边并且等于第三边的一半知四边形EFGH 是平行四边形,由四边形ABCD的对角线互相垂直可得∠EFG=90°,根据有一个角是直角的平行四边形是矩形可解答.故选C.)5.要从一张长40 cm,宽20 cm的矩形纸片中剪出长为18 cm,宽为12 cm的矩形纸片,则最多能剪出( )A.1个B.2个C.3个D.4个C(解析:在矩形纸片的长上依次截取三个12 cm,再在纸片的宽上截取一个18 cm,可知共3个.故选C.)6.下列各句判定矩形的说法是否正确?(1)对角线相等的四边形是矩形;(2)对角线互相平分且相等的四边形是矩形;(3)有一个角是直角的四边形是矩形;(4)有三个角都相等的四边形是矩形;(5)有三个角是直角的四边形是矩形;(6)四个角都相等的四边形是矩形;(7)对角线相等,且有一个角是直角的四边形是矩形;(8)一组对角互补的平行四边形是矩形.7.如图,在四边形ABCD中,AB∥CD,∠BAD=90°,AB=5,BC=12,AC=13.求证:四边形ABCD是矩形.8.如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,延长CD到点E,使得DE=CD.连接AE,BE,求证四边形ACBE为矩形.证明:∵在△ABC中,∠ACB=90°,CD为AB边上的中线,∴AD=BD.∵DE=CD,∴四边形ACBE为平行四边形,又∵∠ACB=90°,∴四边形ACBE为矩形.9.如图,平行四边形ABCD中,对角线AC、BD相交于点O,延长OA到N,使ON=OB,再延长OC至M,使CM=AN.求证:四边形NDMB为矩形.10.如图,将▱ABCD的边AB延长至点E,使AB=BE,连接DE,EC,BD,DE交BC于点O.(1)求证△ABD≌△BEC;(2)若∠BOD=2∠A,求证四边形BECD是矩形.证明:(1)在平行四边形ABCD中,AD=BC,AB=CD,BE∥CD.又∵AB=BE,∴BE=DC,∴四边形BECD为平行四边形,∴BD=EC.在△ABD与△BEC中,∴△ABD≌△BEC(SSS).(2)由(1)知四边形BECD为平行四边形,则OD=OE,OC=OB.∵四边形ABCD为平行四边形,∴∠A=∠BCD,即∠A=∠OCD.又∵∠BOD=2∠A,∠BOD=∠OCD+∠ODC,∴∠OCD=∠ODC,∴OC=OD,∴OC+OB=OD+OE,即BC=ED,∴平行四边形BECD为矩形.11. 如图,△ABC中,AB=AC,AD是BC边上的高,AE是△BAC的外角平分线,DE∥AB交AE于点E,求证:四边形ADCE是矩形.12.如图,直线MN经过线段AC的端点A,点B,D分别在∠NAC和∠MAC的平分线AE,AF上,BD交AC于点O,如果O是BD的中点,当点O在AC的什么位置时,四边形ABCD是矩形?并说明理由.解:O是AC的中点时,四边形ABCD是矩形.理由如下:因为AO=CO,BO=DO,所以四边形ABCD是平行四边形,又∠F AC=∠MAC,∠CAE=∠CAN,所以∠F AE=∠F AC+∠CAE=(∠MAC+∠CAN)=×180°=90°,所以四边形ABCD是矩形.13. 如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从A出发沿A方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD是平行四边形?(2)经过多长时间,四边形PQBA是矩形?14.如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠ACD的平分线于点F.(1)求证OE=OF;(2)当点O运动到何处时,四边形AECF是矩形?说明理由.(1)证明:∵MN∥BC,∴∠OEC=∠BCE.∵CE平分∠BCA,∴∠BCE=∠OCE,∴∠OEC=∠OCE.∴OC=OE.同理可证OC=OF.∴OE=OF.(2)解:当点O运动到AC中点时,四边形AECF是矩形.理由如下:∵OA=OC,OE=OF,∴四边形AECF是平行四边形,又∠ACF=∠ACD,∠ACE=∠ACB,所以∠ECF=∠ACF+∠ACE=(∠ACD+∠ACB)=×180°=90°.∴四边形AECF是矩形.。
18.2.1 第2课时矩形的判定(教案)一、教学目标1.理解矩形的定义及性质;2.掌握矩形的判定方法;3.能够运用所学知识判断一个图形是否为矩形。
二、教学重难点1.矩形的定义及性质的理解;2.矩形的判定方法的掌握;3.运用所学知识进行矩形判定的能力。
三、教学准备1.教师:黑板、粉笔、投影仪;2.学生:课本、计算器。
四、教学过程1. 导入新知识通过观察一些几何图形,询问学生是否会将它们称为矩形,并引导学生思考,什么样的图形才能被称为矩形。
导入问题:以下图形中,哪些是矩形?为什么?(图片展示)2. 矩形的定义及性质定义:引导学生回顾并默写矩形的定义:定义:有四条边的四边形,且对角线相等且垂直,就叫做矩形。
性质:1.矩形的四条边都相等;2.矩形的对角线相等且垂直;3.矩形的四个内角都是直角。
3. 矩形的判定方法方法一:判断四边是否相等如果一个四边形的四条边都相等,那么它就是矩形。
方法二:判断对角线是否相等且垂直如果一个四边形的对角线相等且垂直,那么它就是矩形。
4. 判定例题讲解例题1:判断下列图形是否为矩形。
(图片展示)解答:根据方法一,四边相等的矩形的判定方法,我们可以测量一下各边的长度。
•AB = 6cm•BC = 8cm•CD = 6cm•DA = 8cm由上述测量结果可知,AB ≠ CD且BC ≠ DA,不满足四边相等的条件,因此这个四边形不是矩形。
五、课堂练习1. 判断题选择1.下列几何图形中,哪个不是矩形?A. 图1B. 图2C. 图3D. 图42.若一个四边形的对角线互相垂直,并且对角线相等,那么这个四边形一定是矩形。
()2. 计算题根据所学知识,判断下列图形是否为矩形。
(图片展示)六、课堂小结通过本节课的学习,我们学习了矩形的定义及性质,并掌握了矩形的判定方法。
在实际应用中,我们可以用这些知识来判断一个图形是否是矩形。
七、作业布置1.完成课堂练习题;2.思考并回答以下问题:哪些图形不是矩形,但拥有部分矩形的性质?八、教学反思本节课的教学重点是矩形的定义及性质,通过引导学生观察、思考和讨论,能够充分激发学生的学习兴趣和动手能力。
18.2.1矩形(2)一、教学目标:1. 知识与技能:经历并了解矩形判定方法的探索过程,使学生逐步掌握说理的基本方法;掌握矩形的判定方法,能根据判定方法进行初步运用。
2. 过程与方法:在探索判定方法的过程中发展学生的合理推理意识、主动探究的习惯,在画矩形的过程中,培养学生动手实践能力,积累数学活动经验。
3. 情感态度与价值观:激发学生学习数学的热情,培养学生勇于探索的精神和独立思考合作交流的良好习惯,体验数学活动来源于生活又服务于生活,提高学生的学习兴趣。
通过与他人的合作,培养学生的合作意识和团队精神。
二、教学重点与难点:教学重点:探索矩形的判定方法、突破方法:为了突出重点,以学生自主探索、合作交流为主,提出问题,让学生动眼观察,动脑猜想,动手验证,进而掌握矩形的判定方法。
教学难点:判定方法的理解和初步运用,突破方法采用教师引导和学生合作的教学方法,及化归的数学思想。
三、教具准备:教师:三角板、圆规学生:三角板、圆规、白纸四、教学过程(一)自学导纲1.创设情境导入新课师:请同学们观察教室的门窗是什么形状?工人师傅在制作这些门窗时,是怎样验证它们是矩形的?大家想不想知道?本节老师将带领大家一起探讨这一问题。
(板书课题 18.2.1 矩形的判定)2.出示导学案,学生自学师:请同学们自学教材,独立完成下列问题(二)合作互动探究新知1.师:哪们同学愿意将你自学的成果展示给大家,其他同学注意倾,看有没有与自己不同的在方。
生、汇报师:大家完成的很好,请猜想它是真命题还是假命题?你能证明一下你的猜想吗?请同学们用圆规和直尺画对角线相等的平行四边形,并与同桌交流一下,这是个什么图形?生:汇报师:这像个矩形,如何用逻辑推理的方法验证,请同学们小组合作,讨论验证。
生:小组合作交流师:请同学们说说你的证明过程(学生回答)你们为什么想到用这种方法?通过动手操作和逻辑推理明白它是个真命题,我们把它做为矩形的判定定理1(板书定理1)判定定理1 对角线相等的平行四边形是矩形。
18.2 特殊的平行四边形18.2.1 矩形 第2课时 矩形的判定学习目标:1、学习矩形的判定定理,解决简单的证明题和计算题,进一步培养分析能力;2、培养综合应用知识分析解决问题的能力. 重难点:掌握矩形的判定定理 学习过程: 一、复习旧知二、探究新知1、探究归纳矩形的判定定理,并用模式表示:(1)你能确定有三个角是直角的四边形是矩形吗?(自己探究)。
判定定理1(从四边形⇒矩形):有三个角是直角的四边形是矩形。
几何语言 在四边形ABCD 中,∵ ∴(2)我们知道矩形的定义:有一个角是直角的平行四边形叫做矩形。
由此这个定义可以作为一个判定吗?判定定理2(从平行四边形⇒矩形):有一个角是直角(900)的平行四边形是矩形。
几何语言 在平行四边形ABCD 中, ∵ 或 或 或 ∴(3)矩形的对角线 ,对角线相等的平行四边形是矩形吗?(证明你的回答)A BD A BD证明:判定定理3(从平行四边形 矩形):对角线相等的平行四边形是矩形。
几何语言在平行四边形ABCD中,∵∴【归纳总结】矩形的判定方法:1、有一个角是的平行四边形是矩形;2、四个角都是的四边形是矩形;3、对角线的四边形是矩形。
或者说,对角线的平行四边形是矩形三、课堂练习思考:下列命题是否正确,正确的加以证明,不正确的通过举反例或画图加以说明(1)有一个角是直角的四边形是矩形(2)对角线互相平分且又相等的四边形是矩形(3)四个角都相等的四边形是矩形四、课堂小结(1)证明四边形是矩形的方法:一般先证明它是平行四边形,然后再证明一个直角或者对角线相等(2)证明平行四边形是矩形的方法:一般可在角上找条件,也可在对角线上找条件。
判定方法:从角的条件看、( 种)D C从对角线的条件看。
五、课后作业1、在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是().A、测量对角线是否相互平分B、测量两组对边是否分别相等C、测量一组对角是否都为直角D、测量其中三个角是否都为直角2、如图,已知ABCD的对角线AC、BD 相交于O,△ABO是等边三角形,AB=4cm,求这个平行四边形的面积六、课后反思。
18.2.1矩形(2)【理论支持】矩形是生活中常见的图形,学习矩形的判定方法是对前面所学的全等三角形和平行四边形性质的回顾与延伸,也是为后续特殊平行四边形的判定方法奠定基础,起着承上起下的作用,本节课对培养学生的探索精神,动手能力,应用意识都有有很好的作用.知识需要溶入情境之中,才能显示出活力和美感.所以在教学的过程中利用情景向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、培养能力、获得经验,强调形成积极主动的学习态度,使获得基础知识与基本技能的过程同时成为学会学习和形成正确价值观的过程.教师应该注意以下几个方面:一是鼓励学生积极思考和探索; 二是注意新旧知识的相容性.本课主要学习方式是学生在自主探索和合作交流的过程中,,使更大面积的同学真正理解和掌握基本的数学知识与技能、培养能力.在作业的处理上,进行分层练习,让不同的学生得到不同的发展,树立学生学习数学的信心,让学生在学习活动中获得成功的喜悦,从而激发学生学习数学的兴趣.【教学目标】1.教学重点:三个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形.2.教学难点:矩形的判定及性质的灵活运用【课时安排】一课时【教学设计】活动一:情景引入有人说,校长办公室的窗户是斜的,怎样判断到底有没有斜呢?〖设计说明〗利用情景向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、培养能力、获得经验.活动二:复习1.矩形是特殊的平行四边形2.矩形的性质类比平行四边形的判定,从性质的逆命题研究矩形的判定.(1)请同学们说出最基本的方法:(用定义)(2)回顾矩形的性质:矩形的四个角都是直角,交换题设和结论,得到:四个角是直角的四边形是矩形.证明成立.(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可1 / 32 /3 知,这时第四个角一定是直角.)总结:矩形的判定方法.矩形判定方法2:有三个角是直角的四边形是矩形.(3).回顾矩形的性质:矩形的对角线相等.交换题设和结论,得到:对角钱相等的平行四边形是矩形.证明成立总结:矩形的判定方法.矩形判定方法3:对角钱相等的平行四边形是矩形.推论:对角钱相等且平分的四边形是矩形.〖设计说明〗解决问题的关键是把未知转化为已知,提出这个问题后,激发学生的兴趣,以活跃学生的思维活动三 解决情境中遇到的问题〖设计说明〗检查学生对定义的熟悉程度,对下面解题有一定的帮助。
第2课时 矩形的判定
1.掌握矩形的判定方法;(重点)
2.能够运用矩形的性质和判定解决实际问题.(难点)
一、情境导入 我们已经知道,有一个角是直角的平行四边形是矩形.这是矩形的定义,我们可以依此判定一个四边形是矩形.除此之外,我们能否找到其他的判定矩形的方法呢?
矩形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:
1.两条对角线相等且互相平分; 2.四个内角都是直角. 这些性质,对我们寻找判定矩形的方法有什么启示?
二、合作探究 探究点一:有一个角是直角的平行四边形是矩形
如图,在△ABC 中,AB =AC ,AD 是BC
边上的高,AE 是△BAC 的外角平分线,DE ∥AB 交AE 于点E .求证:四边形ADCE 是矩形.
解析:首先利用外角性质得出∠B =∠ACB =∠F AE =∠EAC ,进而得到AE ∥BC ,即可得出四边形AEDB 是平行四边形,再利用平行四边形的性质得出四边形ADCE 是平行四边形,再根据AD 是高即可得出四边形ADCE 是矩形.
证明:∵AB =AC ,∴∠B =∠ACB .∵AE 是△BAC 的外角平分线,∴∠F AE =∠EAC .∵∠B +∠ACB =∠F AE +∠EAC ,∴∠B =∠ACB =∠F AE =∠EAC ,∴AE ∥BC .又∵DE ∥AB ,∴四边形AEDB 是平行四边形,∴AE 平行且等于BD .又∵AB =AC ,AD ⊥BC ,∴BD =DC ,∴AE 平行且等于DC ,故四边形ADCE 是平行四边形.又∵∠ADC =90°,∴平行四边形
ADCE 是矩形.
方法总结:平行四边形的判定与性质以及矩形的判定常综合运用,解题时利用平行四边形的判定得出四边形是平行四边形再证明其中一角为直角即可.
探究点二:对角线相等的平行四边形是矩形
如图,在平行四边形ABCD 中,对角线AC 、
BD 相交于点O ,延长OA 到N ,ON =OB ,再延长OC 至M ,使CM =AN .求证:四边形NDMB 为矩形.
解析:首先由平行四边形ABCD 可得OA =OC ,OB =OD .若ON =OB ,那么ON =OD .而CM =AN ,即ON =OM .由此可证得四边形NDMB 的对角线相等且互相平分,即可得证.
证明:∵四边形ABCD 为平行四边形,∴AO =OC ,OD =OB .∵AN =CM ,ON =OB ,∴ON =OM =OD =OB ,∴MN =BD ,∴四边形NDMB 为矩形.
方法总结:证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等.
探究点三:有三个角是直角的四边形是矩形
如图,▱ABCD 各内角的平分线分别相交于
点E ,F ,G ,H .求证:四边形EFGH 是矩形.
解析:利用“有三个内角是直角的四边形是矩形”证明四边形EFGH 是矩形.
证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DAB +∠ABC =180°.∵AH ,BH 分别平分∠DAB 与∠ABC ,∴∠HAB =1
2∠DAB ,
∠HBA =12∠ABC ,∴∠HAB +∠HBA =1
2(∠DAB +
∠ABC )=1
2×180°=90°,∴∠H =90°.同理∠HEF =
∠F =90°,∴四边形EFGH 是矩形.
方法总结:题设中隐含多个直角或垂直时,常采用“三个角是直角的四边形是矩形”来判定矩形.
探究点四:矩形的性质和判定的综合运用 【类型一】 矩形的性质和判定的运用
如图,O 是矩形ABCD 的对角线的交点,
E 、
F 、
G 、
H 分别是OA 、OB 、OC 、OD 上的点,且AE =BF =CG =DH .
(1)求证:四边形EFGH 是矩形;
(2)若E 、F 、G 、H 分别是OA 、OB 、OC 、OD 的中点,且DG ⊥AC ,OF =2cm ,求矩形ABCD 的面积.
解析:(1)证明四边形EFGH 对角线相等且互相平分;(2)根据题设求出矩形的边长CD 和BC ,然后根据矩形面积公式求得.
(1)证明:∵四边形ABCD 是矩形,∴OA =OB =OC =OD .∵AE =BF =CG =DH ,∴AO -AE =OB -BF =CO -CG =DO -DH ,即OE =OF =OG =OH ,∴四边形EFGH 是矩形;
(2)解:∵G 是OC 的中点,∴GO =GC .∵DG ⊥AC ,∴∠DGO =∠DGC =90°.又∵DG =DG ,∴△DGC ≌△DGO ,∴CD =OD .∵F 是BO 中点,OF =2cm ,∴BO =4cm.∵四边形ABCD 是矩形,∴DO =BO =4cm ,∴DC =4cm ,DB =8cm ,∴CB =DB 2-DC 2=43cm ,∴S 矩形ABCD =4×
43=163(cm 2).
方法总结:若题设条件与这个四边形的对角线有关,要证明一个四边形是矩形,通常证这个四边形的对角线相等且互相平分.
【类型二】 矩形的性质和判定与动点问题
如图所示,在梯形ABCD 中,AD ∥BC ,
∠B =90°,AD =24cm ,BC =26cm ,动点P 从点A 出发沿AD 方向向点D 以1cm/s 的速度运动,动点Q 从点C 开始沿着CB 方向向点B 以3cm/s 的速度运动.点P 、Q 分别从点A 和点C 同时出发,当其中一点到达端点时,另一点随之停止运动.
(1)经过多长时间,四边形PQCD 是平行四边形?
(2)经过多长时间,四边形PQBA 是矩形?
解析:(1)设经过t s 时,四边形PQCD 是平行四边形,根据DP =CQ ,代入后求出即可;(2)设经过t ′s
时,四边形PQBA 是矩形,根据AP =BQ ,代入后求出即可.
解:(1)设经过t s ,四边形PQCD 为平行四边形,即PD =CQ ,所以24-t =3t ,解得t =6;
(2)设经过t ′s ,四边形PQBA 为矩形,即AP =
BQ ,所以t ′=26-3t ′,解得t ′=
132
. 方法总结:①证明一个四边形是平行四边形,若
题设条件与这个四边形的边有关,通常证这个四边形的一组对边平行且相等;②题设中出现一个直角时,常采用“有一角是直角的平行四边形是矩形”来判定矩形.
三、板书设计 1.矩形的判定
有一角是直角的平行四边形是矩形; 对角线相等的平行四边形是矩形; 有三个角是直角的四边形是矩形. 2.矩形的性质和判定的综合运用
在本节课的教学中,不仅要让学生掌握矩形判定的几种方法,更要注重学生在学习的过程中是否真正掌握了探究问题的基本思路和方法.教师在例题练习的教学中,若能适当地引导学生多做一些变式练习,类比、迁移地思考、做题,就能进一步拓展学生的思维,提高课堂教学的效率.。