2015-2016年度上学期第一次月考试卷七年级数学
- 格式:doc
- 大小:152.00 KB
- 文档页数:4
2015-2016学年七年级上学期第一次月考数学试卷(试卷满分为120 分,考试时间为120 分钟)班级: 姓名: 得分:题号 一 二 三 总分 得分温馨提示:认真思考 仔细答题 字迹工整 卷面整洁 一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的序号填入下面的方格里每小题3分,共24分)题号 1 2 3 4 5 6 7 8 答案1、2015的相反数是( ) A 、-2015 B 、20151- C 、2015 D 、20151 2、计算:-3+4的结果是( ) A 、 -7 B 、-1 C.、1 D 、7 3、下列计算中,正确的是( )A、(-2)-(-5)=-7 B、(-2)+(-3)=-1C、(-2)×(-3)=6 D、(-12)÷(-2)=-64、小明同学在一条南北走向的公路上晨练,跑步情况记录如下:(向北为正,单位:m ):500,-400,-700,800 小明同学跑步的总路程为( )-11abA 、800 mB 、200 mC 、2400 mD 、-200 m5、比较-3,1,-2的大小,下列判断正确的是( )A 、-3<-2<1B 、-2<-3<1C 、1<-2<-3D 、1<-3<-2 6、一个数的倒数等于它本身的数是( )A 、1B 、-1C 、 ±1D 、 ±1 和 0 7、若 ▏a ▏=5,b=-3,则a-b=( )A 、2或8B 、-2或8C 、2或-8D 、-2或-8 8、有理数a,b 在数轴上的对应点的位置如图所示: 则( ) A 、 a+b >0 B 、 a+b <0 C.、a-b <0 D 、 a-b=0 二、填空题(把答案填写在题中横线上. 每小题3分,共36分) 9、在数 -8,+4.3,-︱-2︱,0 ,50,-21,3 中 是正数, 是负数, 是负整数。
某某省某某市邳州市赵墩中学2015-2016学年七年级数学上学期月考试题一、填空题(每题2分,共20分)1.﹣的绝对值是__________,相反数是__________,倒数是__________.2.数轴上的一点由+3出发,向左移动4个单位,又向右移动了5个单位,两次移动后,这一点所表示的数是__________.__________.4.在数轴上距原点2个单位长度的点表示__________.5.某日最高气温是9℃,最低气温是﹣4℃,该日的温差为__________℃.6.在图中输入﹣1,按所示的程序运算,输出的结果是__________.7.大于且小于2的所有整数是__________.8.绝对值不大于3的非负整数有__________.9.比较大小:__________(填“>”或“<”)10.比﹣2大7的数是__________.二、选择题(每题3分,共18分)11.一个数的绝对值是正数,这个数一定是( )A.正数 B.非零数C.任何数D.以上都不是12.下列说法中,正确的是( )A.有理数中没有最大的负整数B.有理数中没有最大的正整数C.同号两数相加的和一定比加数大D.异号两数相加的和一定比加数小13.下列各对数:+(﹣6)与+6;﹣(+6)与﹣6;﹣(﹣6)与﹣(+6);﹣(+6)与+(﹣6);+(+6)与﹣(﹣6);+6与﹣(+6).其中,互为相反数的有( )A.3对B.4对C.5对D.6对14.下列计算中正确的有( )①0﹣(+3)=+3;②0﹣(﹣3)=+3;③+5﹣5=0;④()﹣0=;⑤;⑥.A.2个B.3个C.4个D.5个15.下列运算结果不一定为负数的是( )A.异号两数相乘 B.异号两数相除C.异号两数相加 D.奇数个负因数的乘积16.下列说法正确的是( )①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小.A.①② B.①③ C.①②③D.①②③④三、解答题(每小题45分,共45分)17.(45分)计算:(1)28+(﹣72)(2)0+(﹣5)(3)﹣+(+)(4)(﹣3)﹣(﹣5)(5)(6)(﹣8)+(﹣5)﹣(+5)(7)﹣37﹣40+3﹣22(7)(8)(﹣5)×(﹣4)×3×(﹣2)(9)﹣12÷(10)(11)9(12)100÷(13)(14).四、解答题(32,33每题各6分,34题5分,共17分)18.将下列各数填入相应的括号里5.1,﹣3.14,0.222…,0,﹣有理数集合:{ }无理数集合:{ }.19.先在数轴上画出表示:3,﹣1.5,0,﹣1,,各数的点,再按从小到大的顺序用“<”把这些数连接起来.20.某种袋装奶粉标明标准净含量为400g.抽检其中8袋,记录如下(“+”表示超出标准净含量,“﹣”表示不足标准净含量)编号 1 2 3 4 5 6 7 8差值/g +5 0 +5 0 0 +2 ﹣5求:这8袋奶粉的总净含量是多少?2015-2016学年某某省某某市邳州市赵墩中学七年级(上)月考数学试卷一、填空题(每题2分,共20分)1.﹣的绝对值是,相反数是,倒数是﹣.【考点】倒数;相反数;绝对值.【分析】根据绝对值,相反数,倒数的性质求解即可.【解答】解:﹣的绝对值是,相反数是,倒数是﹣.【点评】本题主要考查了倒数,相反数,绝对值的定义.2.数轴上的一点由+3出发,向左移动4个单位,又向右移动了5个单位,两次移动后,这一点所表示的数是4.【考点】数轴;有理数的加减混合运算.【分析】分别求出每次移动后的各个数,利用数轴即可表示.【解答】解:+3向左移动4个单位长度,到达A,表示﹣1,﹣1向右移动了5个单位,就到达B,表示4.【点评】借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小有直观、简捷,举重若轻的优势..【考点】正数和负数.【专题】应用题.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以若某水库的水位下降1米,记作﹣1米,那么+1.2米表示该水库的水位上升1.2米.故答案为:该水库的水位上升1.2米.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.4.在数轴上距原点2个单位长度的点表示±2.【考点】数轴.【分析】根据数轴的概念,则在数轴上距原点2个单位长度的点可能在数轴的左边,也可能在数轴的右边.【解答】解:在数轴上距原点2个单位长度的点表示±2.故答案为:±2.【点评】此题考查了数轴上的点和对应的数的中间的关系.5.某日最高气温是9℃,最低气温是﹣4℃,该日的温差为13℃.【考点】有理数的减法.【专题】应用题.【分析】求该日的温差就是作减法,用最高气温减去最低气温,列式计算.【解答】解:依题意,温差为:9﹣(﹣4)=9+4=13℃.【点评】本题主要考查了有理数的减法的应用,注意﹣4的符号不要搞错.6.在图中输入﹣1,按所示的程序运算,输出的结果是3.【考点】有理数的混合运算.【专题】计算题;图表型.【分析】把x=﹣1代入程序中计算,使其结果大于2,输出即可.【解答】解:把x=﹣1代入得:﹣1+4﹣(﹣3)﹣5=﹣3+3﹣5=﹣5,把x=﹣5代入得:﹣5+4﹣(﹣3)﹣5=﹣5+4+3﹣5=﹣3,把x=﹣3代入得:﹣3+4﹣(﹣3)﹣5=﹣3+4+3﹣5=﹣1,把x=﹣1代入得:﹣1+4﹣(﹣3)﹣5=﹣1+4+3﹣5=1,把x=1代入得:1+4﹣(﹣3)﹣5=1+4+3﹣5=3>2,则输出的结果是3.故答案为:3.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.7.大于且小于2的所有整数是0、±1.【考点】有理数大小比较;数轴.【分析】设这个整数是x,根据题意得出不等式组﹣1<x<2,求出不等式组的整数解即可.【解答】解:∵设这个整数是x,则﹣1<x<2,∴整数x的值是0、±1,故答案为:0、±1.【点评】本题考查了有理数的大小比较和不等式组,关键是找出不等式组﹣1<x<2的整数解,题目比较好,难度适中.8.绝对值不大于3的非负整数有0,1,2,3.【考点】绝对值.【分析】根据绝对值的意义,正数和0的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.【解答】解:根据绝对值的意义,绝对值不大于3的非负整数有0,1,2,3.【点评】要正确理解绝对值的意义,注意“0”属于非负整数.9.比较大小:>(填“>”或“<”)【考点】有理数大小比较.【专题】探究型.【分析】先把各数化为小数的形式,再根据负数比较大小的法则进行比较即可.【解答】解:∵﹣=﹣0.75<0,﹣=﹣0.8<0,∵|﹣0.75|=0.75,|﹣0.8|=0.8,0.75<0.8,∴﹣0.75>﹣0.8,∴﹣>﹣.故答案为:>.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.10.比﹣2大7的数是5.【考点】有理数的加法.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:﹣2+7=5.故答案为5.【点评】本题考查了有理数的加法,熟练掌握运算法则是解本题的关键.二、选择题(每题3分,共18分)11.一个数的绝对值是正数,这个数一定是( )A.正数 B.非零数C.任何数D.以上都不是【考点】绝对值.【分析】根据绝对值的性质解答.【解答】解:∵一个数的绝对值是正数,∴这个数一定不是0,∴这个数是非零数.故选B.【点评】本题考查了绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.下列说法中,正确的是( )A.有理数中没有最大的负整数B.有理数中没有最大的正整数C.同号两数相加的和一定比加数大D.异号两数相加的和一定比加数小【考点】有理数.【分析】根据有理数的意义,可判断①②,根据有理数的加减法,可判断③④.【解答】解:A、有理数中最大的负整数是﹣1,故错误;B、有理数中没有最大的正整数,故正确;C、同号两数相加,取相同的符号,用较大的绝对值加较小的绝对值,和不一定比加数大,故错误;D、异号两数相加,取绝对值较大的加数的符号,用较大的绝对值减去较小的绝对值,和小于较大的加数,故错误;故选B.【点评】本题考查了有理数,注意有理数中没有最大的正整数,也没有最小的有理数.13.下列各对数:+(﹣6)与+6;﹣(+6)与﹣6;﹣(﹣6)与﹣(+6);﹣(+6)与+(﹣6);+(+6)与﹣(﹣6);+6与﹣(+6).其中,互为相反数的有( )A.3对B.4对C.5对D.6对【考点】相反数.【分析】两数互为相反数,它们的和为0,解本题时可以将所给的两个数相加,看和是否为0,若和为0,则两数互为相反数.【解答】解:+(﹣6)+(+6)=0;﹣(+6)+(﹣6)=﹣12;﹣(﹣6)+[﹣(+6)]=0;﹣(+6)+[+(﹣6)]=﹣12;+(+6)+[﹣(﹣6)]=12;+6+[﹣(+6)]=0.互为相反数的有3对.故选A.【点评】本题考查了相反数的概念.两数互为相反数,它们的和为0.14.下列计算中正确的有( )①0﹣(+3)=+3;②0﹣(﹣3)=+3;③+5﹣5=0;④()﹣0=;⑤;⑥.A.2个B.3个C.4个D.5个【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式各项计算得到结果,即可做出判断.【解答】解:①0﹣(+3)=0﹣3=﹣3,错误;②0﹣(﹣3)=0+3=3,正确;③+5﹣5=0,正确;④()﹣0=﹣,错误;⑤﹣×(﹣)=,正确;⑥﹣÷2=﹣×=﹣,错误.故选B.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.15.下列运算结果不一定为负数的是( )A.异号两数相乘 B.异号两数相除C.异号两数相加 D.奇数个负因数的乘积【考点】有理数的乘法;有理数的加法;有理数的除法.【分析】根据有理数的乘法、除法及加法法则作答.【解答】解:A、根据有理数的乘法法则,两数相乘,异号得负,可知异号两数相乘,积为负,选项错误;B、根据有理数的除法法则,两数相除,异号得负,可知异号两数相除,积为负,选项错误;C、根据有理数的加法法则,绝对值不相等的异号两数相加,取绝对值较大的加数符号,故当正加数的绝对值大于负加数的绝对值时,和为正,由此可知,异号两数相加,结果不一定为负数,选项正确;D、根据几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负,可知奇数个负因数的乘积为负,选项错误.故选C.【点评】本题考查了有理数的乘法、除法及加法法则.有理数的乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘.(2)任何数字同0相乘,都得0.(3)几个不等于0的数字相乘,积的符号由负因数的个数决定.当负因数有奇数个数时,积为负;当负因数有偶数个数时,积为正.(4)几个数相乘,有一个因数为0时,积为0.有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.有理数的加法法则:绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.16.下列说法正确的是( )①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小.A.①② B.①③ C.①②③D.①②③④【考点】绝对值;相反数;有理数大小比较.【分析】根据绝对值的意义对①④进行判断;根据相反数的定义对②③进行判断.【解答】解:0是绝对值最小的有理数,所以①正确;相反数大于本身的数是负数,所以②正确;数轴上在原点两侧且到原点的距离相等的数互为相反数,所以③错误;两个负数比较,绝对值大的反而小,所以④错误.故选A.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.也考查了相反数.三、解答题(每小题45分,共45分)17.(45分)计算:(1)28+(﹣72)(2)0+(﹣5)(3)﹣+(+)(4)(﹣3)﹣(﹣5)(5)(6)(﹣8)+(﹣5)﹣(+5)(7)﹣37﹣40+3﹣22(7)(8)(﹣5)×(﹣4)×3×(﹣2)(9)﹣12÷(10)(11)9(12)(13)(14)100÷.【考点】有理数的混合运算.【专题】计算题.【分析】根据有理数的加减乘除的法则进行计算即可.【解答】解:(1)28+(﹣72)=﹣(72﹣28)=﹣44 (2)0+(﹣5)=﹣5(3)﹣+(+)=﹣()=﹣(4)(﹣3)﹣(﹣5)=(﹣3)+5 =2 (5)=()+()=﹣(6)(﹣8)+(﹣5)﹣(+5)=(﹣8)+(﹣5)+(﹣5)=﹣18(7)﹣37﹣40+3﹣22=(﹣37)+(﹣40)+3+(﹣22)=﹣96 (8)=3×2=6(9)(﹣5)×(﹣4)×3×(﹣2)=﹣5×4×3×2=﹣120(10)﹣12÷(11)=(12)9=12×4×=18 =6﹣15+14=5 =﹣×8 =(13)100÷=﹣100×8×8=﹣6400 (14)=﹣1×=﹣(15)=﹣=﹣【点评】本题考查有理数的混合运算,关键是明确有理数的加减乘除的法则.四、解答题(32,33每题各6分,34题5分,共17分)18.将下列各数填入相应的括号里5.1,﹣3.14,0.222…,0,﹣有理数集合:{ }无理数集合:{ }.【考点】实数.【分析】根据有理数是有限小数或无限循环小数是有理数,无理数是无限不循环小数,可得答案.【解答】解:有理数集合:{5.1,﹣3.14,0.222…,0,﹣};};故答案为:5.1,﹣3.14,0.222…,0,﹣.【点评】本题考查了实数,有理数和无理数统称实数,有理数是有限小数或无限循环小数是有理数,无理数是无限不循环小数.19.先在数轴上画出表示:3,﹣1.5,0,﹣1,,各数的点,再按从小到大的顺序用“<”把这些数连接起来.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,再从左到右用“<”把这些数连接起来即可.【解答】解:如图所示,,故﹣1.5<﹣1<0<2<3.【点评】本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.20.某种袋装奶粉标明标准净含量为400g.抽检其中8袋,记录如下(“+”表示超出标准净含量,“﹣”表示不足标准净含量)编号 1 2 3 4 5 6 7 8差值/g +5 0 +5 0 0 +2 ﹣5求:这8袋奶粉的总净含量是多少?【考点】正数和负数.【分析】根据有理数的加法,可得答案.【解答】解:400×8+[(﹣4.5)+5+0+5+0+0+2+(﹣5)]=3202.5(g).答:这8袋奶粉的总净含量是3202.5克.【点评】本题考查了正数和负数,利用有理数的加法是解题关键.。
2015-2016学年湖南省邵阳市武冈三中七年级(上)第一次月考数学试卷一、选择题(每小题3分,共30分)1.如果零上5℃记作+5℃,那么零下7℃可记作( )A.﹣7℃B.+7℃C.+12℃D.﹣12℃2.某同学春节期间将自己的压岁钱800元,存入银行.十一放假取出350元买了礼物去看爷爷,母亲节时他又取出100元给妈妈买了礼物,则存上存入、支出情况显示为( ) A.+800,+350,﹣100 B.+800,+350,+100C.+800,﹣350,﹣100 D.﹣800,﹣350,+1003.﹣6的相反数为( )A.6 B.C.D.﹣64.下列式子中,﹣(﹣3),﹣|﹣3|,3﹣5,﹣1﹣5是负数的有( )A.1个B.2个C.3个D.4个5.下列计算不正确的是( )A.﹣(﹣3)×=﹣1 B.+[﹣(﹣)]=1 C.﹣3+|﹣3|=0 D.﹣÷5=﹣6.下列四个数中,最小的数是( )A.2 B.﹣2 C.0 D.﹣7.如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是( )A.﹣4 B.﹣2 C.0 D.48.某种面粉袋上的质量标识为“25±0.25kg”,则下列面粉中合格的是( )A.24.70kg B.25.30kg C.25.51kg D.24.80kg9.(﹣1)﹣(﹣3)+2×(﹣3)的值等于( )A.1 B.﹣4 C.5 D.﹣110.若ab≠0,则+的值不可能是( )A.2 B.0 C.﹣2 D.1二、填空题(每小题3分,共30分)11.①3的相反数是__________,②﹣2的倒数是__________,③|﹣2012|=__________.12.如果m>0,n<0,m<|n|,那么m、n、﹣m、﹣n的大小关系是__________.13.写出一个比﹣1小的数是__________.14.7×(﹣2)的相反数是__________.15.如图,数轴上A,B两点分别对应实数a、b,则a、b的大小关系为__________.16.若|x|=3,y=2,则|x+y|=__________.17.计算|﹣|﹣的结果是__________.18.武冈某天早晨气温是﹣5℃,到中午升高5℃,晚上又降低3℃,到午夜又降了4℃,午夜时温度为__________.19.已知a,b互为相反数,且都不为0,则(a+b﹣5)×(﹣3)=__________.20.一组按规律排列的数:,,,,…请你推断第9个数是__________.三、简答题21.(16分)计算(1)3+(﹣)﹣(﹣)+2(2)(﹣12)÷(﹣)÷(﹣9)(3)﹣2﹣12×(﹣+)(4)﹣﹣(﹣)﹣|﹣|22.把下列各数写在相应的集合里﹣5,10,﹣4,0,+2,﹣2.15,0.01,+66,﹣,15%,,2003,﹣16正整数集合:__________负整数集合:__________正分数集合:__________负分数集合:__________整数集合:__________负数集合:__________正数集合:__________.23.画出数轴,并在数轴上画出表示:﹣(﹣4),+(﹣2.5),﹣|﹣3|,+2,﹣(﹣1.5)24.某单位一星期内收入情况如下(盈余为正):+853.5元,+237.2元,﹣325元,+138.5元,﹣280元,﹣520元,+103元,那么,这一星期内该单位是盈余还是亏损?盈余或亏损多少元?25.为节约能源,电力部门按以下规定收取每月电费:用电不超过120度,按每月每度0.57元收费,如果超过120度,超过部分按每度0.69元收费,若某用户五月份共用电220度,该用户五月份应交电费多少元?26.出租车司机小石某天下午营运全是在东西走向的人民大街上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+15,﹣3,+14,﹣11,+10,﹣12,+4,﹣15,+16,﹣18(1)将最后一名乘客送到目的地时,小石距离下午出发地点的距离多少千米?(2)若汽车耗油量为0.56升/千米,这天下午汽车共耗油多少升?2015-2016学年湖南省邵阳市武冈三中七年级(上)第一次月考数学试卷一、选择题(每小题3分,共30分)1.如果零上5℃记作+5℃,那么零下7℃可记作( )A.﹣7℃B.+7℃C.+12℃D.﹣12℃考点:正数和负数.分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:∵“正”和“负”相对,∴零上5℃记作+5℃,则零下7℃可记作﹣7℃.故选A.点评:此题考查了正数与负数的定义.解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.某同学春节期间将自己的压岁钱800元,存入银行.十一放假取出350元买了礼物去看爷爷,母亲节时他又取出100元给妈妈买了礼物,则存上存入、支出情况显示为( ) A.+800,+350,﹣100 B.+800,+350,+100C.+800,﹣350,﹣100 D.﹣800,﹣350,+100考点:正数和负数.分析:根据存入为正数,支出为负数,即可解答.解答:解:根据题意得:+800,﹣350,﹣100,故选:C.点评:此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.3.﹣6的相反数为( )A.6 B.C.D.﹣6考点:相反数.分析:根据相反数的定义:只有符号不同的两个数叫相反数,可以直接得到答案.解答:解:﹣6的相反数是:6,故选:A,点评:此题主要考查了相反数的定义,同学们要熟练掌握相反数的定义.4.下列式子中,﹣(﹣3),﹣|﹣3|,3﹣5,﹣1﹣5是负数的有( )A.1个B.2个C.3个D.4个考点:正数和负数;绝对值.分析:先化简各数,再根据负数的概念求解.解答:解:﹣(﹣3)=3是正数,﹣|﹣3|=﹣3是负数,3﹣5=﹣2是负数,﹣1﹣5=﹣6是负数.负数有三个,故选C.点评:本题主要考查了负数的概念,解题的关键是:先将各数化简.5.下列计算不正确的是( )A.﹣(﹣3)×=﹣1 B.+[﹣(﹣)]=1 C.﹣3+|﹣3|=0 D.﹣÷5=﹣考点:有理数的乘法;有理数的加法;有理数的除法.分析:根据有理数的乘法、加法、除法,逐个计算,即可解答.解答:解:A、﹣(﹣3)×=1,计算结果错误;B、,计算结果正确;C、﹣3+|﹣3|=0,计算结果正确;D、,计算结果正确;故选:A.点评:本题考查了有理数的乘法、加法、除法,解决本题的关键是熟练掌握有理数的运算.6.下列四个数中,最小的数是( )A.2 B.﹣2 C.0 D.﹣考点:有理数大小比较.分析:根据有理数比较大小的法则进行比较即可.解答:解:∵2>0,﹣2<0,﹣<0,∴可排除A、C,∵|﹣2|=2,|﹣|=,2>,∴﹣2<﹣.故选B.点评:本题考查的是有理数的大小比较,熟知正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小是解答此题的关键.7.如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是( )A.﹣4 B.﹣2 C.0 D.4考点:绝对值;数轴.专题:计算题.分析:如果点A,B表示的数的绝对值相等,那么AB的中点即为坐标原点.解答:解:如图,AB的中点即数轴的原点O.根据数轴可以得到点A表示的数是﹣2.故选B.点评:此题考查了数轴有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.确定数轴的原点是解决本题的关键.8.某种面粉袋上的质量标识为“25±0.25kg”,则下列面粉中合格的是( )A.24.70kg B.25.30kg C.25.51kg D.24.80kg考点:正数和负数;有理数的加法;有理数的减法.专题:应用题.分析:根据正负数的意义,判断产品是否合格.解答:解:∵25+0.25=25.25,25﹣0.25=24.75,∴符合条件的只有D.故选D.点评:解答此题关键是要弄清题意,某种面粉袋上的质量标识为“25±0.25kg”,则说明面粉的重量在25.25﹣24.75kg之间.9.(﹣1)﹣(﹣3)+2×(﹣3)的值等于( )A.1 B.﹣4 C.5 D.﹣1考点:有理数的混合运算.专题:计算题.分析:原式先计算乘法运算,再计算加减运算即可得到结果.解答:解:原式=﹣1+3﹣6=﹣4,故选B点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.10.若ab≠0,则+的值不可能是( )A.2 B.0 C.﹣2 D.1考点:有理数的除法;绝对值;有理数的乘法.分析:由于ab≠0,则有两种情况需要考虑:①a、b同号;②a、b异号;然后根据绝对值的性质进行化简即可.解答:解:①当a、b同号时,原式=1+1=2;或原式=﹣1﹣1=﹣2;②当a、b异号时,原式=﹣1+1=0.则+的值不可能的是1.故选D.点评:此题考查的是绝对值的性质,能够正确的将a、b的符号分类讨论,是解答此题的关键.二、填空题(每小题3分,共30分)11.①3的相反数是﹣3,②﹣2的倒数是﹣,③|﹣2012|=2012.考点:倒数;相反数;绝对值.分析:根据相反数、倒数、绝对值的定义,即可解答.解答:解:①3的相反数是﹣3,②﹣2的倒数是﹣,③|﹣2012|=2012,故答案为:﹣3,﹣,2012.点评:本题考查了相反数、倒数、绝对值的定义,解决本题的关键是熟记相反数、倒数、绝对值的定义.12.如果m>0,n<0,m<|n|,那么m、n、﹣m、﹣n的大小关系是﹣n>m>﹣m>n.考点:有理数大小比较.分析:先确定m、n、﹣m、﹣n的符号,再根据正数大于0,负数小于0即可比较m,n,﹣m,﹣n的大小关系.解答:解:根据正数大于一切负数,只需分别比较m和﹣n,n和﹣m.再根据绝对值的大小,得﹣n>m>﹣m>n,故答案为:﹣n>m>﹣m>n.点评:此题主要考查了实数的大小的比较,解决本题的关键熟记两个负数,绝对值大的反而小.13.写出一个比﹣1小的数是﹣2.考点:有理数大小比较.专题:开放型.分析:本题答案不唯一.根据有理数大小比较方法可得.解答:解:根据两个负数,绝对值大的反而小可得﹣2<﹣1,所以可以填﹣2.答案不唯一.点评:比较有理数的大小的方法:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.14.7×(﹣2)的相反数是14.考点:有理数的乘法;相反数.分析:先计算7×(﹣2)=﹣14,再求相反数,即可解答.解答:解:7×(﹣2)=﹣14,﹣14的相反数是14,故答案为:14.点评:本题考查了有理数的乘法和相反数,解决本题的关键是熟记有理数的乘法法则.15.如图,数轴上A,B两点分别对应实数a、b,则a、b的大小关系为a<b.考点:实数大小比较;实数与数轴.专题:计算题.分析:先根据数轴上各点的位置判断出a,b的符号及|a|与|b|的大小,再进行计算即可判定选择项.解答:解:∵A在原点的左侧,B在原点的右侧,∴A是负数,B是正数;∴a<b.故答案为:a<b.点评:此题主要考查了实数的大小的比较,要求学生能正确根据数在数轴上的位置判断数的符号以及绝对值的大小.16.若|x|=3,y=2,则|x+y|=5或1.考点:绝对值.专题:计算题.分析:利用绝对值的代数意义求出x的值,即可确定出原式的值.解答:解:∵|x|=3,∴x=±3,当x=3,y=2时,原式=5;当x=﹣3,y=2时,原式=1,故答案为:5或1点评:此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.17.计算|﹣|﹣的结果是﹣.考点:有理数的减法;绝对值.分析:根据绝对值的性质和有理数的减法运算法则进行计算即可得解.解答:解:|﹣|﹣=﹣=﹣.故答案为:﹣.点评:本题考查了有理数的减法运算,绝对值的性质,是基础题,熟记运算法则和性质是解题的关键.18.武冈某天早晨气温是﹣5℃,到中午升高5℃,晚上又降低3℃,到午夜又降了4℃,午夜时温度为﹣7℃.考点:有理数的加减混合运算.专题:应用题.分析:把实际问题转化成有理数的加减法,可根据题意列式为:﹣5+5﹣3﹣4.解答:解:根据题意得:﹣5+5﹣3﹣4=﹣7(℃),故答案为:﹣7℃.点评:本题考查了有理数的混合运算,解决本题的关键是正确列出式子.19.已知a,b互为相反数,且都不为0,则(a+b﹣5)×(﹣3)=.考点:有理数的混合运算;相反数.专题:计算题.分析:利用互为相反数两数之和为0得到a+b=0,代入原式计算即可得到结果.解答:解:根据题意得:a+b=0,则原式=×3=,故答案为:点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.一组按规律排列的数:,,,,…请你推断第9个数是.考点:规律型:数字的变化类.分析:根据已知数据,找出规律,验证正确后,根据规律计算得到答案.解答:解:=,=,=,…第9个数是=,故答案为:.点评:本题考查的是数字的变化规律问题,根据给出的一组数据,正确找出其排列规律是解题的关键.三、简答题21.(16分)计算(1)3+(﹣)﹣(﹣)+2(2)(﹣12)÷(﹣)÷(﹣9)(3)﹣2﹣12×(﹣+)(4)﹣﹣(﹣)﹣|﹣|考点:有理数的混合运算.专题:计算题.分析:(1)原式利用减法法则变形,结合后相加即可得到结果;(2)原式利用除法法则变形,约分即可得到结果;(3)原式第二项利用乘法分配律计算即可得到结果;(4)原式利用减法法则及绝对值的代数意义变形,计算即可得到结果.解答:解:(1)原式=(3﹣)+(+2)=3+3=6;(2)原式=﹣12××=﹣2;(3)原式=﹣2﹣4+3﹣6=﹣9;(4)原式=﹣+﹣=﹣.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.把下列各数写在相应的集合里﹣5,10,﹣4,0,+2,﹣2.15,0.01,+66,﹣,15%,,2003,﹣16正整数集合:10,+66,2003负整数集合:﹣5,﹣16正分数集合:+2,0.01,15%,负分数集合:﹣4,﹣2.15,﹣整数集合:﹣5,10,0,+66,2003,﹣16负数集合:﹣5,﹣4,﹣2.15,﹣,﹣16正数集合:10,+2,0.01,+66,15%,,2003.考点:有理数.分析:按照有理数的分类填写:有理数.解答:解:正整数集合:10,66,2003;负整数集合:﹣5,﹣16;正分数集合:+2,0.01,15%,;负分数集合:﹣4,﹣2.15,﹣;整数集合:﹣5,10,0,+66,2003,﹣16;负数集合:﹣5,﹣4,﹣2.15,﹣,﹣16;正数集合:10,+2,0.01,+66,15%,,2003.点评:本题考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.23.画出数轴,并在数轴上画出表示:﹣(﹣4),+(﹣2.5),﹣|﹣3|,+2,﹣(﹣1.5)考点:数轴.专题:计算题.分析:各项计算得到结果,表示在数轴上即可.解答:解:﹣(﹣4)=4,+(﹣2.5)=﹣2.5,﹣|﹣3|=﹣3,+2=2,﹣(﹣1.5)=1.5,点评:此题考查了数轴,绝对值,以及有理数的乘方,熟练掌握运算法则是解本题的关键.24.某单位一星期内收入情况如下(盈余为正):+853.5元,+237.2元,﹣325元,+138.5元,﹣280元,﹣520元,+103元,那么,这一星期内该单位是盈余还是亏损?盈余或亏损多少元?考点:正数和负数.分析:把所有收入情况相加,再根据正、负数的意义解答.解答:解:(+853.5)+(+237.2)+(﹣325))+(+138.5)+(﹣280)+(﹣520)+(+103),=853.5+237.2+138.5+103﹣325﹣280﹣520,=1332.2﹣1125,=207.2,答:盈余202.7元.点评:此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.25.为节约能源,电力部门按以下规定收取每月电费:用电不超过120度,按每月每度0.57元收费,如果超过120度,超过部分按每度0.69元收费,若某用户五月份共用电220度,该用户五月份应交电费多少元?考点:有理数的混合运算.专题:应用题.分析:根据题意的用电规定列出算式,计算即可得到结果.解答:解:根据题意得:120×0.57+(220﹣120)×0.69=68.4+69=137.4(元),则该用户五月份应交电费137.4元.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.26.出租车司机小石某天下午营运全是在东西走向的人民大街上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+15,﹣3,+14,﹣11,+10,﹣12,+4,﹣15,+16,﹣18(1)将最后一名乘客送到目的地时,小石距离下午出发地点的距离多少千米?(2)若汽车耗油量为0.56升/千米,这天下午汽车共耗油多少升?考点:正数和负数.分析:(1)把所有行车里程相加,再根据正数和负数的意义解答;(2)求出所有行车里程的绝对值的和,再乘以0.56即可.解答:解:(1)15+(﹣3)+14+(﹣11)+10+(﹣12)+4+(﹣15)+16+(﹣18)=15﹣3+14﹣11+10﹣12+4﹣15+16﹣18=0(千米),答:将最后一名乘客送到目的地时,小石距离下午出发地点的距离0千米.(2)|15|+|﹣3|+|14|+|﹣11|+|10|+|﹣12|+|4|+|﹣15|+|16|+|﹣18|=15+3+14+11+10+12+4+15+16+18=118118×0.56=66.08(升),答:这天下午汽车共耗油66.08升.点评:此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.。
2015——2016上学期七年级阶段性测试数学试卷一、选择题:(本大题共12小题,每小题3分,满分36分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母填在答题表中)1. -2的相反数是( ) A .2 B. -2 C.21 D. - 21 2. 下列说法中错误的是( )A.负整数和负分数统称为负有理数B.正整数、零、负整数统称为整数C.3.14是小数,也是分数D.正有理数和负有理数组成全体有理数3.下列说法中正确的是( )A .a -一定是负数B .若一个数小于它的绝对值,则这个数一定是负数.C .若b a =则a 与b 互为相反数.D .只有两个数相等时它们的绝对值才相等.4.下列各数+|-2|, +[-(-2)], -(+2), -[-(-2)], -|-2|中,负数的个数有( )A.1个B.2个C. 3个D.4个5.下列说法正确的是( )A.几个有理数相乘,当负因数有奇数个时积为负.B.倒数等于它本身的数是+1.C.一个有理数的相反数一定是负有理数.D .-1乘以任何有理数,都等于这个有理数的相反数.6.已知有理数a,b 在数轴上位置如图所示,则下列式子中正确的是( )A .a+b <0B .a+b >0C .a-b <0D .a•b>07.一个数是8,另一个数比8的相反数小-2,这两个数的和是 ( )A .-2 B.14 C.+2 D.188. 一天早晨的气温是7-℃,中午上升了11℃,午夜又下降了9℃,午夜的气温是( )A .5-℃B .6-℃C .7-℃D .9-℃9.若两个非0的有理数是互为相反数,则它们的商是 ( )A .0B .-1C .1D .不能确定 10.a 、b 两数在数轴上位置如图所示,将b a b a --、、、用“<”连接,其中正确的是( )abA .a <a -<b <b -B .b -<a <a -<bC .a -<b <b -<aD .b -<a <b <a -11.已知:,4,3==b a 且a <b 则b a -的值是( )A .1-B .71--或 C. 71±±或 D. 1或712.已知整数a 1,a 2,a 3,a 4…满足下列条件:a 1=0,a 2=-|a 1+1|,a 3=-|a 2+2|,a 4=-|a 3+3|,依次类推,则a 2015 的值为依次类推,则a 2015的值为( )A.-1007B.-1008C.-1009D.-2015二、填空题:(每小题3分,共30分. 不需写出解答过程,请将答案直接写在答题卡相应位置上)13.已知甲地的海拔高度是300m ,乙地的海拔高度是-50m ,则甲地比乙地高___________.14.-0.25的倒数是 .15.绝对值大于1而小于13的所有整数的和为__________.16. 比较大小: 17. 若∣a-2∣+∣b+3∣=0,则(a-3)(b+1)=__________.18.式子8-∣x-2∣,当x=____________时,有最大值是_____________.19.在数轴上有两点A 和B ,已知线段AB 长为4个单位,若点A 表示的数是-1,则点B 表示的数是 .20. 如果|x|=|-5|,那么x=_______ __.21.观察排列规律,填入适当的数: 65,54,43,32,21---第100个数是_________ 22.定义新运算“⊗”,规定:a ⊗b = 13a -4b ,则12⊗ (-1)= . 四.解答题(本题5个答题,共54分,请在指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)23. 计算:①()()13181420----+- ②()()169441281-÷⨯÷-③125.0)85()125.0(9)413(75.0---+---++- ④)51(30)2132(-÷⨯- ⎪⎭⎫ ⎝⎛----32_______43⑤ ()42)733261(-⨯+-⑥ 1-2+3-4+5-6+…+2015-201624.某公司在2014年第一季度平均每月亏损1.5万元,第二季度平均每月盈利2.6万元,第三季度平均每月盈利1.7万元,第四季度平均每月亏损2.3万元.这个公司去年总的盈亏情况如何?25.有8袋面粉,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:1.5,-3, 2, -0.5, 1, -2, -2, -2.5问:这8袋面粉一共多少千克?26.已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,求cd m mb a 2-++的值.27.股民小张星期五买某公司股票1000股,每股14.80元,下表为第二周星期一至星期五每日(1)(2)本周内最高价是每股多少元?最低价是每股多少元?(3)已知小张买进股票时付了成交额0.15%的手续费,卖出时付了成交额0.15%的手续费和成交额0.1%的交易税,如果小张在星期五收盘前将全部股票卖出,那么他的收益情况如何?。
2015~2016学年度七年级上学期第一次月考数学试卷一、选择题(共10小题)1.下列各数中,在﹣2和0之间的数是()A.﹣1 B.1 C.﹣3 D.32.下列运算正确的是()A.﹣9÷2×=﹣9 B.6÷(﹣)=﹣1 C.1﹣1÷=0 D.﹣÷÷=﹣83.下列说法:①规定了原点、正方向的直线是数轴;②数轴上两个不同的点可以表示同一个有理数;③无理数在数轴上无法表示出来;④任何一个有理数都可以在数轴上找到与它对应的唯一点,其中正确的是()A.①②③④B.②②③④C.③④D.④4.任何一个有理数的绝对值一定()A.大于0 B.小于0 C.不大于0 D.不小于05.在下列数﹣,+1,6.7,﹣14,0,,﹣5,25%中,属于整数的有()A.2个B.3个C.4个D.5个6.一个数的相反数比它的本身大,则这个数是()A.正数B.负数C.0 D.负数和07.下列说法正确的是()A.整数就是正整数和负整数B.分数包括正分数和负分数C.在有理数中,不是负数就是正数D.零是整数,但不是自然数8.如图,根据有理数a,b,c在数轴上的位置,下列关系正确的是()A.c>a>0>b B.a>b>0>c C.b>0>a>c D.b>0>c>a9.某天上午6:00柳江河水位为80.4米,到上午11:30水位上涨了5.3米,到下午6:00水位又跌了0.9米,下午6:00水位应为()A.76米B.84.8米C.85.8米D.86.6米10.下列结论正确的是()A.两数之和为正,这两数同为正B.两数之差为负,这两数为异号C.几个数相乘,积的符号由负因数的个数决定D.正数的任何次幂都是正数,负数的偶次幂是正数二、填空题(共8小题)(除非特别说明,请填准确值)11.(1)﹣180+90=﹣26﹣(﹣15)=(3)﹣3﹣6=(4)﹣15+(﹣37)=.12.4.3与互为相反数,﹣的相反数是,﹣的倒数是.13.比较大小:﹣π﹣3.14;﹣﹣(选填“>”、“=”、“<”)14.某地气温不稳定,开始是6℃,一会儿升高4℃,再过一会儿又下降11℃,这时气温是℃.15.如果正午(中午12:00)记作0小时,午后3点钟记作+3小时,那么上午8点钟可表示为.16.规定a﹡b=5a+2b﹣1,则(﹣4)﹡6的值为.17.若|﹣a|=5,则a=.18.数轴上一点A表示的数为﹣5,将点A先向右移2个单位,再向左移10个单位,则这个点表示的数是.三、解答题(共6小题)(选答题,不自动判卷)19.泰州出租车司机小李,一天下午以车站为出发点,在南北走向的路上营运,如果规定向北为正,向南为负,他这天下午行车里程(单位:千米)如下:+15,﹣2,+5,﹣13,+10,﹣7,﹣8,+12,+4,﹣5,+6(1)将最后一名乘客送到目的地时,小李距下午出车时的出发车站多远?在车站的什么方向?(2)若每千米的价格为3元,这天下午小李的营业额是多少?20.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正、减产为负):星期一二三四五六日增减+5 ﹣2 ﹣4 +13 ﹣10 +16 ﹣9(1)根据记录可知前三天共生产辆;产量最多的一天比产量最少的一天多生产辆;(3)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?21.某冷冻厂的一个冷库的室温原来是﹣5℃,经过5小时室温降到﹣25℃.(1)这个冷库的室温平均每小时降低多少℃?若把该冷库的室温降到﹣50℃,则还需经过多长时间?22.给出下列各数:,﹣6,3.5,﹣1.5,0,4,﹣,(1)在这些数中,整数是;负分数是.在数轴上表示出这些数,并指出与原点距离最远的数是.(3)把这些数用“<”连接起来.23.同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.如|x﹣3|的几何意义是数轴上表示有理数3的点与表示有理数的点之间的距离.试探索:(1)求|5﹣(﹣2)|=.若|x﹣3|=|x+1|,则x=.(3)同样道理|x+5|+|x﹣2|表示数轴上有理数x所对点到﹣5和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7,这样的整数是.24.计算题(1)﹣5+6﹣7+8 (2)6+(﹣5)﹣2﹣(﹣3)(3)(﹣7)×(﹣5)﹣90÷(﹣15)(4)42×(﹣)+(﹣)÷(﹣0.25)(5)(﹣36)×(﹣+﹣)(6)(﹣99)×8.无锡市宜兴市丁蜀学区六校联考2014~2015学年度2015~2016学年度七年级上学期第一次月考数学试卷》参考答案与试题解析一、选择题(共10小题)1.下列各数中,在﹣2和0之间的数是()A.﹣1 B.1 C.﹣3 D.3考点:有理数大小比较.分析:根据有理数的大小比较法则比较即可.解答:解:A、﹣2<﹣1<0,故本选项正确;B、1>0,1不在﹣2和0之间,故本选项错误;C、﹣3<﹣2,﹣3不在﹣2和0之间,故本选项错误;D、3>0,3不在﹣2和0之间,故本选项错误;故选A.点评:本题考查了有理数的大小比较的应用,注意:正数都大于0,负数都小于0,正数都大于负数,两个负数比较大小,其绝对值大的反而小.2.下列运算正确的是()A.﹣9÷2×=﹣9 B.6÷(﹣)=﹣1 C.1﹣1÷=0 D.﹣÷÷=﹣8考点:有理数的混合运算.专题:计算题.分析:各项计算得到结果,即可做出判断.解答:解:A、原式=﹣9××=﹣,错误;B、原式=6÷(﹣)=6×(﹣6)=36,错误;C、原式=1﹣×=1﹣=﹣,错误;D、原式=﹣×4×4=﹣8,正确,故选D点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.3.下列说法:①规定了原点、正方向的直线是数轴;②数轴上两个不同的点可以表示同一个有理数;③无理数在数轴上无法表示出来;④任何一个有理数都可以在数轴上找到与它对应的唯一点,其中正确的是()A.①②③④B.②②③④C.③④D.④考点:数轴.分析:①根据数轴的定义,可判断①,②数轴上的点与数的关系,可判断②,③根据实数与数轴的关系,可判断③,④根据数轴与有理数的关系,可判断④解答:解:①规定了原点、单位长度、正方向的直线是数轴,故①错误;②数轴上的每一个点表示一个有理数,故②错误;③无理数可以在数轴上表示出来,故③错误;④有理数都可以用数轴上的点表示,故④正确;故选:D.点评:本题考查了有理数,利用了数轴与有理数的关系,数轴与无理数的关系.4.任何一个有理数的绝对值一定()A.大于0 B.小于0 C.不大于0 D.不小于0考点:非负数的性质:绝对值.专题:推理填空题.分析:由绝对值的定义可知,任何一个有理数的绝对值一定大于等于0,从而求解.解答:解:由绝对值的定义可知,任何一个有理数的绝对值一定大于等于0.题中题中选项只有D符合题意.故选D.点评:考查绝对值的性质,即任何一个数的绝对值都大于等于0,此题是一道基础题.5.在下列数﹣,+1,6.7,﹣14,0,,﹣5,25%中,属于整数的有()A.2个B.3个C.4个D.5个考点:有理数.分析:根据分母为一的数是整数,可得整数集合.解答:解:+1,﹣14,0,﹣5是整数,故选:C.点评:本题考查了有理数,分母为一的数是整数.6.一个数的相反数比它的本身大,则这个数是()A.正数 B.负数 C.0 D.负数和0考点:相反数.分析:根据相反数的定义和有理数的大小比较解答.解答:解:∵一个数的相反数比它的本身大,∴这个数是负数.故选B.点评:本题考查了相反数的定义,是基础题,熟记概念是解题的关键.7.下列说法正确的是()A.整数就是正整数和负整数B.分数包括正分数和负分数C.在有理数中,不是负数就是正数D.零是整数,但不是自然数考点:有理数.分析:根据有理数的分类,采用排除法来判断.解答:解:0也是整数,A错误;分数包括正分数和负分数,B正确;0也是有理数,C错误;0也是自然数,D错误.故选B.点评:本题主要考查概念的理解,概念清晰了才能作出正确判断.8.如图,根据有理数a,b,c在数轴上的位置,下列关系正确的是()A.c>a>0>b B.a>b>0>c C.b>0>a>c D.b>0>c>a考点:有理数大小比较;数轴.专题:综合题.分析:数轴上的数,右边的数总比左边的数大,利用这个特点可比较四个数的大小.解答:解:∵数轴上的数,右边的数总比左边的数大,∴b>0>a>c.故选C.点评:本题考查了利用数轴比较有理数的大小,也就是把“数”和“形”结合起来,注意数轴上的数右边的数总比左边的数大.9.某天上午6:00柳江河水位为80.4米,到上午11:30水位上涨了5.3米,到下午6:00水位又跌了0.9米,下午6:00水位应为()A.76米B.84.8米C.85.8米D.86.6米考点:有理数的加减混合运算.专题:应用题.分析:水位上涨用加,下跌用减,列出算式求解即可.解答:解:根据题意列算式得:80.4+5.3﹣0.9,=85.7﹣0.9,=84.8(米).故选B.点评:本题考查了负数的意义和有理数的加减混合运算,熟练掌握概念和法则是解题的关键.10.下列结论正确的是()A.两数之和为正,这两数同为正B.两数之差为负,这两数为异号C.几个数相乘,积的符号由负因数的个数决定D.正数的任何次幂都是正数,负数的偶次幂是正数考点:实数的运算.分析:A、B、C、D根据有理数的加法、减法及乘除法和乘方的运算法则计算即可判定.解答:解:A、两数之和为正,这两数同为正;错,如6+(﹣3)=3,两数为一正一负,故选项错误;B、两数之差为负,这两数为异号;错,如6﹣8=﹣2,则6和8均为正数,故选项错误;C、应为几个“非0数”数相乘,积的符号由负因数的个数决定,故选项错误;D、正数的任何次幂都是正数,负数的偶次幂是正数,故选项正确.故选D.点评:本题主要考查了有理数的加法、减法及乘除法和乘方的运算法则,解答时需要逐一分析.二、填空题(共8小题)(除非特别说明,请填准确值)11.(1)﹣180+90=﹣90﹣26﹣(﹣15)=﹣11(3)﹣3﹣6=﹣9(4)﹣15+(﹣37)=﹣52.考点:有理数的加法;有理数的减法.专题:计算题.分析:(1)原式利用异号两数相加的法则计算即可得到结果;原式利用减法法则变形,计算即可得到结果;(3)原式利用减法法则计算即可得到结果;(4)原式利用同号两数相加的法则计算即可得到结果.解答:解:(1)原式=﹣(180﹣90)=﹣90;原式=﹣26+15=﹣11;(3)原式=﹣(3+6)=﹣9;(4)原式=﹣=﹣52.故答案为:(1)﹣90;﹣11;(3)﹣9;(4)﹣52点评:此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.12.4.3与﹣4.3互为相反数,﹣的相反数是,﹣的倒数是﹣.考点:相反数;倒数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据乘积为1的两个数互为倒数,可得一个数的倒数.解答:解:4.3与﹣4.3互为相反数,﹣的相反数是,﹣的倒数是﹣,故答案为:﹣4.3,,﹣.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.13.比较大小:﹣π<﹣3.14;﹣<﹣(选填“>”、“=”、“<”)考点:有理数大小比较.分析:根据有理数大小比较的方法,在两个负数中,绝对值大的反而小可求解.解答:解:根据在两个负数中,绝对值大的反而小这个规律可得﹣π<﹣3.14,﹣<﹣.点评:(1)在以向右方向为正方向的数轴上两点,右边的点表示的数比左边的点表示的数大.正数大于0,负数小于0,正数大于负数.(3)两个正数中绝对值大的数大.(4)两个负数中绝对值大的反而小.14.某地气温不稳定,开始是6℃,一会儿升高4℃,再过一会儿又下降11℃,这时气温是﹣1℃.考点:有理数的加减混合运算.分析:气温上升用加,下降用减,列出算式求解即可.解答:解:根据题意,列式6+4﹣11=10﹣11=﹣1.故答案为:﹣1.点评:此题主要考查正负数在实际生活中的意义,学生在学这一部分时一定要联系实际,不能死学.15.如果正午(中午12:00)记作0小时,午后3点钟记作+3小时,那么上午8点钟可表示为﹣4小时.考点:正数和负数.分析:由在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示;可首先求得上午8点钟距中午12:00有:12﹣8=4(小时),即可求得上午8点钟的表示方法.解答:解:∵正午(中午12:00)记作0小时,午后3点钟记作+3小时,又∵上午8点钟距中午12:00有:12﹣8=4(小时),∴上午8点钟可表示为:﹣4小时.故答案为:﹣4小时.点评:此题考查了正数与负数的意义.注意解题关键是理解“正”和“负”的相对性.16.规定a﹡b=5a+2b﹣1,则(﹣4)﹡6的值为﹣9.考点:有理数的混合运算.专题:新定义.分析:先根据规定得到有理数的算式,计算即可.解答:解:∵a﹡b=5a+2b﹣1,∴(﹣4)﹡6=5×(﹣4)+2×6﹣1,=﹣20+12﹣1,=﹣9.点评:本题考查的是有理数的运算能力、以及能根据代数式转化成有理数的形式的能力.17.若|﹣a|=5,则a=±5.考点:绝对值.分析:根据绝对值的性质得,|5|=5,|﹣5|=5,故求得a的值.解答:解:∵|﹣a|=5,∴a=±5.点评:绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.本题是绝对值性质的逆向运用,此类题要注意答案一般有2个,除非绝对值为0的数才有一个为0.18.数轴上一点A表示的数为﹣5,将点A先向右移2个单位,再向左移10个单位,则这个点表示的数是﹣13.考点:数轴.分析:先设向右为正,向左为负,那么向右移2个单位就记为+2,再向左移,10个单位记为﹣810据此计算即可.解答:解:先设向右为正,向左为负,那么﹣5+2﹣10=﹣13,则这个点表示的数是﹣13故答案是:﹣13.点评:本题考查了有理数的加减混合运算,解题的关键是利用相反意义的量来解决.三、解答题(共6小题)(选答题,不自动判卷)19.泰州出租车司机小李,一天下午以车站为出发点,在南北走向的路上营运,如果规定向北为正,向南为负,他这天下午行车里程(单位:千米)如下:+15,﹣2,+5,﹣13,+10,﹣7,﹣8,+12,+4,﹣5,+6(1)将最后一名乘客送到目的地时,小李距下午出车时的出发车站多远?在车站的什么方向?若每千米的价格为3元,这天下午小李的营业额是多少?考点:正数和负数.分析:(1)规定向北为正,向南为负,要求他将最后一名乘客送抵目的地时,李师傅距下午出发地有多远就要把记录相加,看结果即可.要求这天下午汽车共耗油多少升就要求共走了多少千米,然后再计算.小李的营业额就是把绝对值相加,乘3即可.解答:解:(1)+15﹣2+5﹣13+10﹣7﹣8+12+4﹣5+6=17千米,∵17>0,∴小李距下午出车时的出发车站17米,在车站的北边;|+15|+|﹣2|+|+5|+|﹣13|+|+10|+|﹣7|+|﹣8|+|+12|+|+4|+|﹣5|+|+6|=87千米,87×3=261(元).答:这天下午小李的营业额是261元.点评:此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.20.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正、减产为负):星期一二三四五六日增减+5 ﹣2 ﹣4 +13 ﹣10 +16 ﹣9(1)根据记录可知前三天共生产599辆;产量最多的一天比产量最少的一天多生产26辆;(3)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?考点:正数和负数.分析:(1)根据有理数的加法,可得答案;根据最大数减最小数,可得答案;(3)根据实际生产的量乘以单价,可得工资,根据超出的部分或不足的部分乘以每辆的奖金,可得奖金,根据工资加奖金,可得答案.解答:解:(1)5﹣2﹣4+200×3=599(辆);16﹣(﹣10)=26(辆);(3)5﹣2﹣4+13﹣10+16﹣9=9,(1400+9)×60+9×15=84675(元).故答案为:599,26,84675.点评:本题考查了正数和负数,有理数的加法运算是解题关键.21.某冷冻厂的一个冷库的室温原来是﹣5℃,经过5小时室温降到﹣25℃.(1)这个冷库的室温平均每小时降低多少℃?若把该冷库的室温降到﹣50℃,则还需经过多长时间?考点:有理数的混合运算.专题:应用题.分析:(1)根据题意列出算式,计算即可得到结果;根据题意列出算式,计算即可得到结果.解答:解:(1)根据题意得:[﹣5﹣(﹣25)]÷5=20÷5=4,则这个冷库的室温平均每小时降低4℃;根据题意得:[﹣25﹣(﹣50)]÷4=6,则还需经过6小时.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.给出下列各数:,﹣6,3.5,﹣1.5,0,4,﹣,(1)在这些数中,整数是﹣6,0,4;负分数是﹣1.5,﹣.在数轴上表示出这些数,并指出与原点距离最远的数是﹣6.(3)把这些数用“<”连接起来.考点:有理数大小比较;有理数;数轴.分析:(1)根据整数与分数的定义进行解答即可;在数轴上表示出各数,根据各点在数轴上的位置即可得出结论;(3)从左到右用“<”把各数连接起来即可.解答:解:(1)在这些数中,整数是﹣6,0,4;负分数是﹣1.5,﹣.故答案为:﹣6,0,4;﹣1.5,﹣.各数在数轴上表示为:由图可知,与原点距离最远的数是﹣6.故答案为:﹣6;(3)由图可知,﹣6<﹣<﹣1.5<0<<3.5<5.点评:本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.23.同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.如|x﹣3|的几何意义是数轴上表示有理数3的点与表示有理数的点之间的距离.试探索:(1)求|5﹣(﹣2)|=7.若|x﹣3|=|x+1|,则x=1.(3)同样道理|x+5|+|x﹣2|表示数轴上有理数x所对点到﹣5和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7,这样的整数是﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2.考点:绝对值.分析:(1)根据5与﹣2两数在数轴上所对的两点之间的距离为7得到答案;根据题意可得方程x﹣3+x+1=0,再解即可;(3)由于|x+5|表示x与﹣5两数在数轴上所对的两点之间的距离,|x﹣2|表示x与2两数在数轴上所对的两点之间的距离,而|x+5|+|x﹣2|=7,则x表示的点在﹣5与2表示的点之间.解答:解:(1)|5﹣(﹣2)|=|5+2|=7,故答案为:7;由题意得:x﹣3+x+1=0,解得:x=1,故答案为:1;(3)∵|x+5|表示x与﹣5两数在数轴上所对的两点之间的距离,|x﹣2|表示x与2两数在数轴上所对的两点之间的距离,而﹣5与2两数在数轴上所对的两点之间的距离为2﹣(﹣5)=7,|x+5|+|x﹣2|=7,∴﹣5≤x≤2.∴x=﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,故答案为:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2.点评:本题考查了绝对值和数轴,关键是掌握绝对值的性质:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.24.计算题(1)﹣5+6﹣7+86+(﹣5)﹣2﹣(﹣3)(3)(﹣7)×(﹣5)﹣90÷(﹣15)(4)42×(﹣)+(﹣)÷(﹣0.25)(5)(﹣36)×(﹣+﹣)(6)(﹣99)×8.考点:有理数的混合运算.专题:计算题.分析:(1)原式结合后,相加即可得到结果;原式利用减法法则变形,计算即可得到结果;(3)原式先计算乘除运算,再计算加减运算即可得到结果;(4)原式先计算乘除运算,再计算加减运算即可得到结果;(5)原式利用乘法分配律计算即可得到结果;(6)原式变形后,利用乘法分配律计算即可得到结果.解答:解:(1)原式=﹣5﹣7+6+8=﹣12+14=2;原式=6﹣5﹣2+3=6+3﹣2﹣5=9﹣7=2;(3)原式=35+6=41;(4)原式=﹣28+3=﹣25;(5)原式=16﹣30+21=7;(6)原式=(﹣100+)×8=﹣800+1=﹣799.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键。
人教版七年级上册数学《第一次月考》考试(附答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知(x-2015)2+(x-2017)2=34,则(x-2016)2的值是()A.4 B.8 C.12 D.162.下列各曲线中表示y是x的函数的是()A.B.C.D.3.如图,下列条件中,能判断AB∥CD的是()A.∠FEC=∠EFB B.∠BFC+∠C=180°C.∠BEF=∠EFC D.∠C=∠BFD4.94的值等于()A.32B.32-C.32±D.81165.如图,函数y1=﹣2x 与y2=ax+3 的图象相交于点A(m,2),则关于x 的不等式﹣2x>ax+3 的解集是()A.x>2 B.x<2 C.x>﹣1 D.x<﹣16.有理数m ,n 在数轴上分别对应的点为M ,N ,则下列式子结果为负数的个数是( )①m n +;②m n -;③m n -;④22m n -;⑤33m n .A .2个B .3个C .4个D .5个7.下列各组线段不能组成三角形的是 ( )A .4cm 、4cm 、5cmB .4cm 、6cm 、11cmC .4cm 、5cm 、6cmD .5cm 、12cm 、13cm8.64的立方根是( )A .4B .±4C .8D .±8 9.若关于x 的不等式mx - n >0的解集是15x <,则关于x 的不等式()m n x n m >-+的解集是( )A .23x >-B .23x <-C .23x <D .23x > 10.如图,△ABC 中,AD 为△ABC 的角平分线,BE 为△ABC 的高,∠C=70°,∠ABC=48°,那么∠3是( )A .59°B .60°C .56°D .22°二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.2.已知关于x ,y 的二元一次方程组2321x y k x y +=⎧⎨+=-⎩的解互为相反数,则k 的值是_________.3.已知有理数a ,b 满足ab <0,a+b >0,7a+2b+1=﹣|b ﹣a|,则()123a b a b ⎛⎫++- ⎪⎝⎭ 的值为________. 4.若x 2+kx+25是一个完全平方式,则k 的值是__________.5.如果一个角的补角是150°,那么这个角的余角的度数是________度.6.关于x 的分式方程721511x m x x -+=--有增根,则m 的值为__________. 三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)75331x y x y +=⎧⎨+=⎩ (2)()346126x y y x y y ⎧+-=⎪⎨+-=⎪⎩2.先化简,再求值:(a ﹣2b )(a+2b )﹣(a ﹣2b )2+8b 2,其中a=﹣2,b=123.如图,AD 平分∠BAC 交BC 于点D ,点F 在BA 的延长线上,点E 在线段CD 上,EF 与AC 相交于点G ,∠BDA+∠CEG=180°.(1)AD 与EF 平行吗?请说明理由;(2)若点H 在FE 的延长线上,且∠EDH=∠C ,则∠F 与∠H 相等吗,请说明理由.4.已知:如图,直线AB 、CD 相交于点O ,EO ⊥CD 于O .(1)若∠AOC=36°,求∠BOE 的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,请你过点O画直线MN⊥AB,并在直线MN上取一点F (点F与O不重合),然后直接写出∠EOF的度数.5.某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.学生读书数量统计表阅读量/本学生人数1 152 a3 b4 5(1)直接写出m、a、b的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?6.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a 值应是多少?此时,哪种方案对公司更有利?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、C4、A5、D6、B7、B8、A9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、±32、-13、0.4、±10.5、606、4.三、解答题(本大题共6小题,共72分)1、(1)52xy=⎧⎨=⎩;(2)2xy=⎧⎨=⎩2、4ab,﹣4.3、略4、(1)54°;(2)120°;(3)∠EOF的度数为30°或150°.5、(1)m的值是50,a的值是10,b的值是20;(2)1150本.6、(1)9万元(2)共有5种进货方案(3)购买A款汽车6辆,B款汽车9辆时对公司更有利。
2015-2016学年湖南省益阳市国基实验学校七年级(上)第一次月考数学试卷一、填空题(每小题3分,共30分)1.上升3.5米记作______米;下降5.3米记作______米.2.的相反数是______,倒数是______,绝对值是______.3.化简: =______,﹣(﹣3)=______.4.用“<”号或“>”号填空:(1)3.6______2.5;(2)﹣3______0;(3)﹣16______﹣1.6.5.用科学记数法表示数:5080000=______.6.若m和n互为相反数,那么m+n=______.7.(﹣1)2010+(﹣1)2011=______.8.p和q互为倒数,则pq的值为______.9.______和______统称为有理数.10.观察下面的一列数,按某种规律在横线上填上适当的数.2、5、9、14、20、______、35、…二、选择题(每小题3分,共30分)11.下列结论中正确的是()A.0既是正数,又是负数B.O是最小的正数C.0是最大的负数D.0既不是正数,也不是负数12.下列各数中,互为倒数的是()A.0和0 B.1和﹣1 C.﹣1和﹣1 D.﹣0.75与13.下列计算正确的是()A.﹣32=9 B.C.(﹣8)2=﹣16 D.﹣5﹣(﹣2)=﹣314.规定向东为正,某人第一次走了+40米,第二次走了﹣30米,第三次又走了﹣40米,则该人实际上()A.向东走了30米B.向西走了30米C.向东走了110米D.向西走了﹣30米15.下列说法,不正确的是()A.数轴上的数,右边的数总比左边的数大B.绝对值最小的有理数是0C.在数轴上,右边的数的绝对值比左边的数的绝对值大D.离原点越远的点,表示的数的绝对值越大16.将6﹣(+3)﹣(﹣7)+(﹣2)写成省略加号的和的形式为()A.﹣6﹣3+7﹣2 B.6﹣3﹣7﹣2 C.6﹣3+7﹣2 D.6+3﹣7﹣217.若ab<0,必有()A.a>0,b<0 B.a<0,b>0 C.a、b同号D.a、b异号18.下列说法中,正确的是()A.0是最小的整数B.1是最小的正整数C.1是最小的整数D.一个有理数不是正数就是负数19.倒数等于它本身的数有()A.1个B.2个C.3个D.无数个20.点A为数轴上的表示﹣2的动点,当点A沿数轴移动4个单位长度到点B时,点B所表示的有理数为()A.2 B.﹣6C.2或﹣6 D.不同于以上答案三、简答(共30分)21.填空:在﹣,1,0,8.9,﹣6,,﹣3.2,+108,﹣0.05,28,﹣9这些有理数中,(1)正整数是______;(2)负整数是______;(3)正分数是______;(4)负分数是______.22.如图,填空:(1)A点表示的数是______,B点表示的数是______,C点表示的数是______,D点表示的数是______;(2)A点与原点的距离等于______,B点与原点的距离等于______,C点与原点的距离等于______,D点与原点的距离等于______;(3)______与______互为相反数.23.画出数轴,在数轴上表示下列各数,并用“<”连接:+5,﹣(﹣3.5),,+(﹣4),0.24.直接写出计算结果:(1)(﹣6)+(﹣7)=______(2)(﹣6)﹣(﹣7)=______(3)﹣(﹣2)2=______(4)﹣23+(﹣3)2=______.四、计算题(共30分)25.(1)6﹣(+3)﹣(﹣7)+(﹣2)(2)﹣13﹣3×(﹣1)3(3)(+﹣)÷(﹣)(4)﹣(﹣2)2﹣3÷(﹣1)3+0×(﹣2)3(5)(﹣2)2﹣22﹣|﹣|×(﹣10)2(6).2015-2016学年湖南省益阳市国基实验学校七年级(上)第一次月考数学试卷参考答案与试题解析一、填空题(每小题3分,共30分)1.上升3.5米记作+3.5 米;下降5.3米记作﹣5.3 米.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:上升记为“+”,下降记为“﹣”,上升3.5米记作+3.5米,下降5.3米记作﹣5.3米.故答案为:+3.5,﹣5.3.2.的相反数是 1.5 ,倒数是﹣,绝对值是 1.5 .【考点】倒数;相反数;绝对值.【分析】只有符号不同的两个数是互为相反数;若两个数的乘积是1,我们就称这两个数互为倒数;一个正数的绝对值等于它本身,一个负数的绝对值等于它的相反数,0的绝对值是0.【解答】解:的相反数是 1.5,倒数是﹣,绝对值是 1.5.故答案为1.5;﹣;1.5.3.化简: = ﹣,﹣(﹣3)= 3 .【考点】绝对值;相反数.【分析】根据相反数以及绝对值的性质即可求解.【解答】解: =﹣,﹣(﹣3)=3.故答案是﹣和3.4.用“<”号或“>”号填空:(1)3.6 > 2.5;(2)﹣3 <0;(3)﹣16 <﹣1.6.【考点】有理数大小比较.【分析】本题为简单的有理数大小比较问题,直接比较即可.【解答】解:(1)3.6>2.5,(2)﹣3<0,(3)﹣16<﹣1.6.故答案为:>;<;<.5.用科学记数法表示数:5080000= 5.08×106.【考点】科学记数法—表示较大的数.【分析】把一个大于10的数写成科学记数法a×10n的形式时,将小数点放到左边第一个不为0的数位后作为a,把整数位数减1作为n,从而确定它的科学记数法形式.5 080 000的数位是7,则n的值为6.【解答】解:5 080 000=5.08×106.故答案为:5.08×106.6.若m和n互为相反数,那么m+n= 0 .【考点】相反数.【分析】根据相反数的定义知,任意两个相反数的和为0即可得到结论.【解答】解:任意两个相反数的和为0,因此m+n=0.故若m、n互为相反数,则m+n=0.故答案为:0.7.(﹣1)2010+(﹣1)2011= 0 .【考点】有理数的乘方.【分析】根据(﹣1)的偶数次幂等于1,奇数次幂等于﹣1计算即可得解.【解答】解:(﹣1)2010+(﹣1)2011=1+(﹣1)=0.故答案为:0.8.p和q互为倒数,则pq的值为 1 .【考点】倒数.【分析】根据倒数定义可得.【解答】解:∵p和q互为倒数,∴pq=1,故答案为:1.9.整数和分数统称为有理数.【考点】有理数.【分析】根据有理数的定义进行解答即可.【解答】解:整数和分数统称为有理数.故答案为整数,分数.10.观察下面的一列数,按某种规律在横线上填上适当的数.2、5、9、14、20、27 、35、…【考点】规律型:数字的变化类.【分析】设该数列中第n个数为a n(n为正整数),依次找出相邻两数的差(后面的数减前面的数),根据差的变化找出变化规律,依此规律即可得出结论.【解答】解:设该数列中第n个数为a n(n为正整数),观察,发现规律:a2﹣a1=5﹣2=3,a3﹣a2=9﹣5=4,a4﹣a3=14﹣9=5,a5﹣a4=20﹣14=6,…,∴a n+1﹣a n=n+2,∴a6=a5+7=20+7=27.故答案为:27.二、选择题(每小题3分,共30分)11.下列结论中正确的是( )A .0既是正数,又是负数B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数【考点】正数和负数.【分析】根据实数分为正数,负数和零,即可得出答案.【解答】解:根据0既不是正数,也不是负数,可以判断A 、B 、C 都错误,D 正确.故选D .12.下列各数中,互为倒数的是( )A .0和0B .1和﹣1C .﹣1和﹣1D .﹣0.75与【考点】倒数.【分析】根据倒数的定义作答.【解答】解:A 、0乘以任何数都得0,而不是1,选项错误;B 、1×(﹣1)=﹣1,选项错误;C 、﹣1×(﹣1)=1,选项正确;D 、﹣0.75×(﹣)=,选项错误.故选C .13.下列计算正确的是( )A .﹣32=9B .C .(﹣8)2=﹣16 D .﹣5﹣(﹣2)=﹣3 【考点】有理数的混合运算.【分析】本题可按照有理数的混合运算法则进行运算,从而选出正确的答案.【解答】解:A 、﹣32=﹣9,故本选项错误;B 、(﹣)÷(﹣4)=,故本选项错误;C 、(﹣8)2=64,故本选项错误;D 、正确.故选D .14.规定向东为正,某人第一次走了+40米,第二次走了﹣30米,第三次又走了﹣40米,则该人实际上( )A .向东走了30米B .向西走了30米C .向东走了110米D .向西走了﹣30米【考点】正数和负数.【分析】根据有理数的加法法则计算,根据正数和负数的意义解答即可.【解答】解:+40+(﹣30)+(﹣40)=﹣30,则该人实际上向西走了30米,故选:B .15.下列说法,不正确的是( )A.数轴上的数,右边的数总比左边的数大B.绝对值最小的有理数是0C.在数轴上,右边的数的绝对值比左边的数的绝对值大D.离原点越远的点,表示的数的绝对值越大【考点】数轴;有理数;绝对值.【分析】根据实数与数轴的对应关系以及实数的意义即可判定选项A、C、D是否正确,0的绝对值是0.【解答】解:A:一般来说,当数轴方向朝右时,右边的数比左边的数大,故此选项正确;B:绝对值最小的有理数是0,故此选项正确;C:﹣3在﹣2的左边,﹣3的绝对值大于﹣2的绝对值,故此选项错误;D:离原点越远的点,表示的数的绝对值越大,故此窜项正确.故选C.16.将6﹣(+3)﹣(﹣7)+(﹣2)写成省略加号的和的形式为()A.﹣6﹣3+7﹣2 B.6﹣3﹣7﹣2 C.6﹣3+7﹣2 D.6+3﹣7﹣2【考点】有理数的加减混合运算.【分析】利用去括号的法则求解即可.【解答】解:6﹣(+3)﹣(﹣7)+(﹣2)=6﹣3+7﹣2,故选:C.17.若ab<0,必有()A.a>0,b<0 B.a<0,b>0 C.a、b同号D.a、b异号【考点】有理数的乘法.【分析】ab>0,则a和b同号,ab<0,则a和b异号,由此可得出答案.【解答】解:根据a和b异号,则ab<0,∴若ab<0,则必有a和b异号.故选D.18.下列说法中,正确的是()A.0是最小的整数B.1是最小的正整数C.1是最小的整数D.一个有理数不是正数就是负数【考点】有理数;正数和负数.【分析】按照有理数的分类做出判断:有理数【解答】解:A、0不是最小的整数,负整数比0小,故本选项错误;B、最小的正整数是1,故本选项正确;C、1不是最小的整数,0也是整数,但是比1小,故本选项错误;D、0是有理数,但它既不是正数,也不是负数,故本选项错误.故选B.19.倒数等于它本身的数有()A.1个B.2个C.3个D.无数个【考点】倒数.【分析】根据倒数的定义可知,±1的倒数等于它本身,所以一共有2个.【解答】解:倒数等于它本身的数是±1,所以有2个.故选B.20.点A为数轴上的表示﹣2的动点,当点A沿数轴移动4个单位长度到点B时,点B所表示的有理数为()A.2 B.﹣6C.2或﹣6 D.不同于以上答案【考点】数轴.【分析】数轴上点的坐标变化和平移规律:左减右加.此题注意考虑两种情况:可以向左移或向右移.【解答】解:∵点A为数轴上的表示﹣2的动点,①当点A沿数轴向左移动4个单位长度时,点B所表示的有理数为﹣2﹣4=﹣6;②当点A沿数轴向右移动4个单位长度时,点B所表示的有理数为﹣2+4=2.故选C.三、简答(共30分)21.填空:在﹣,1,0,8.9,﹣6,,﹣3.2,+108,﹣0.05,28,﹣9这些有理数中,(1)正整数是1,8,9,+108,28 ;(2)负整数是﹣6,﹣9 ;(3)正分数是8.9,,;(4)负分数是﹣,﹣3.2,﹣0.05 .【考点】有理数.【分析】正整数就是除去0以外的自然数;负整数就是除了正整数和0之外的整数;正分数是在有理数的集合中,大于0的分数;负分数是小于0的分数,根据他们的定义填空即可.【解答】解:∵正整数就是除去0以外的自然数,∴正整数有1,+108,28,∵负整数就是除了正整数和0之外的整数,∴负整数有﹣6,﹣9,∵正分数是在有理数的集合中,大于0的分数,∴正分数有8.9,,∵负分数是小于0的分数,∴负分数有﹣,﹣3.2,﹣0.05,故答案为(1,+108,28),(﹣6,﹣9),(8.9,),(﹣,﹣3.2,﹣0.05).22.如图,填空:(1)A点表示的数是2,B点表示的数是0 ,C点表示的数是﹣4 ,D点表示的数是﹣2;(2)A点与原点的距离等于2,B点与原点的距离等于0 ,C点与原点的距离等于4 ,D点与原点的距离等于2;(3) A 与 D 互为相反数.【考点】数轴;相反数;绝对值.【分析】(1)根据题意及数轴的性质即可写出答案;(2)一个点与原点的距离即是其所表示的数的绝对值;(3)根据相反数的定义即可得出答案.【解答】解:(1)由所给图形知:A点表示的数是2,B点表示的数是0,C点表示的数是﹣4,D点表示的数是﹣2;(2)A点与原点的距离等于2,B点与原点的距离等于0,C点与原点的距离等于4,D点与原点的距离等于2;(3A与D互为相反数.故答案为:2,0,﹣4,﹣2;2,0,4,2;A,D.23.画出数轴,在数轴上表示下列各数,并用“<”连接:+5,﹣(﹣3.5),,+(﹣4),0.【考点】有理数大小比较;数轴.【分析】先分别把各数化简为5,3.5,﹣,﹣4,0,再在数轴上找出对应的点,注意在数轴上标数时要用原数,最后比较大小的结果也要用化简的原数.【解答】解:这些数分别为5,3.5,﹣,﹣4,0.在数轴上表示出来如图所示.根据这些点在数轴上的排列顺序,从右至左分别用“>”连接为:+(﹣4)<﹣|﹣|<0<﹣(﹣3.5)<+5.24.直接写出计算结果:(1)(﹣6)+(﹣7)= ﹣13(2)(﹣6)﹣(﹣7)= 1(3)﹣(﹣2)2= ﹣4(4)﹣23+(﹣3)2= 1 .【考点】有理数的混合运算.【分析】根据有理数的混合运算顺序,求出每个算式的值各是多少即可.【解答】解:(1)(﹣6)+(﹣7)=﹣13(2)(﹣6)﹣(﹣7)=1(3)﹣(﹣2)2=﹣4(4)﹣23+(﹣3)2=1.故答案为:﹣13、1、﹣4、1.四、计算题(共30分)25.(1)6﹣(+3)﹣(﹣7)+(﹣2)(2)﹣13﹣3×(﹣1)3(3)(+﹣)÷(﹣)(4)﹣(﹣2)2﹣3÷(﹣1)3+0×(﹣2)3(5)(﹣2)2﹣22﹣|﹣|×(﹣10)2(6).【考点】有理数的混合运算.【分析】根据有理数的混合运算顺序,求出每个算式的值各是多少即可.【解答】解:(1)6﹣(+3)﹣(﹣7)+(﹣2)=6﹣3+7﹣2=3+7﹣2=10﹣2=8(2)﹣13﹣3×(﹣1)3=﹣1﹣3×(﹣1)=﹣1+3=2(3)(+﹣)÷(﹣)=(+﹣)×(﹣60)=×(﹣60)+×(﹣60)﹣×(﹣60)=﹣45﹣35+50=﹣80+50=﹣30(4)﹣(﹣2)2﹣3÷(﹣1)3+0×(﹣2)3 =﹣4﹣3÷(﹣1)+0=﹣4+3=﹣1(5)(﹣2)2﹣22﹣|﹣|×(﹣10)2=4﹣4﹣×100=0﹣25=﹣25(6)=﹣1﹣×[2﹣9]=﹣1﹣×[﹣7]=﹣1+=。
海南省昌江县峨港中学2015-2016学年七年级数学上学期第一次月考试题一、选择题(每小题3分,共36分).1.5的相反数是()A.5 B.﹣5 C.±5D.2.下列说法正确的是()A.零表示什么也没有B.1没有符号C.零即不是正数也负数D.一场比赛赢3个球得+3分,﹣2分表示输了2个球3.向东走﹣800米的意义是()A.向东走800米 B.向西走800米 C.向西走﹣800米D.以上都不对4.某市4月份某天的最高气温是5℃,最低气温是﹣3℃,那么这天的温差(最高气温减最低气温)是()A.﹣2℃B.8℃C.﹣8℃D.2℃5.下面的几个有理数中,最大数是()A.1 B.0.56 C.﹣1 D.﹣56.零上23℃,记作+23℃,零下8℃,可记作()A.8 B.﹣8 C.8℃D.﹣8℃7.下列各组数中,互为相反数的是()A.1和0 B.﹣4和4 C.﹣0.25和﹣4 D.以上都不是8.下列说法中正确的是()A.﹣6既是负数、分数,也是有理数B.0既不是正数、也不是负数,但是整数C.﹣200既是负数、也是整数,但不是有理数D.以上都不正确9.|﹣9|=()A.﹣9 B.﹣3 C.3 D.910.16+(﹣25)+24=()A.15 B.﹣15 C.3 D.﹣311.下列的数是负数的是()A.7 B.﹣6的相反数C.﹣8 D.以上都不正确12.数轴的三要素是()A.原点、方向、单位长度 B.直线、方向、单位长度C.直线、原点、方向 D.直线、单位长度、原点二、填空题(每小题3分,共18分)13.到原点的距离不大于3的整数有个,它们是:.14.化简﹣(﹣5)= .15.一个数的绝对值是14,那么这个数是.16.|﹣0|= ,|﹣35|= .17.计算(﹣0.5)+(+0.7)= .18.3﹣(﹣8)= .三、解答题.(每共66分).19.计算:(1)(+16)+(+8)(2)(+19)+(﹣8)(3)(﹣0.36)+(﹣1.24)(4)(﹣12)+(+6)(5)13﹣(+5)(6)(﹣17)﹣(﹣14)(7)﹣20﹣0(8)(﹣56)+(+23)﹣(+25)﹣(﹣19)(9)|﹣31|+(﹣24)﹣(﹣31)(10)(﹣6)×9(11)(﹣8)×(﹣4)20.李刚身上带13块钱,买了彩笔5块钱,又买了练习册9.5元,不够多少钱?(不够的用负数表示)21.小明去学校为正,回家为负,小明家离学校有362米,中午小明出发去学校,走了有125米时,忘了拿水瓶,又返回家拿,走了58米,现小明离学校多远?2015-2016学年海南省昌江县峨港中学七年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共36分).1.5的相反数是()A.5 B.﹣5 C.±5D.【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:根据相反数的定义有:5的相反数是﹣5.故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.下列说法正确的是()A.零表示什么也没有B.1没有符号C.零即不是正数也负数D.一场比赛赢3个球得+3分,﹣2分表示输了2个球【考点】正数和负数.【分析】根据正数、负数和零的定义判断即可.【解答】解:A、0表示0,错误;B、1的符号是“+”,错误;C、零即不是正数也不是负数,错误;D、一场比赛赢3个球得+3分,﹣2分表示输了2个球,正确;故选D【点评】本题考查的正数和负数问题,都是平时做题时出现的易错点,应在做题过程中加深理解和记忆.3.向东走﹣800米的意义是()A.向东走800米 B.向西走800米 C.向西走﹣800米D.以上都不对【考点】正数和负数.【专题】探究型.【分析】根据向西与向东相反,则可知向东走﹣800米的意义,从而可以解答本题.【解答】解:向东走﹣800米的意义是向西走800米,故选B.【点评】本题考查正数和负数,解题的关键是明确正数和负数在题目中表示的含义.4.某市4月份某天的最高气温是5℃,最低气温是﹣3℃,那么这天的温差(最高气温减最低气温)是()A.﹣2℃B.8℃C.﹣8℃D.2℃【考点】有理数的减法.【专题】应用题.【分析】依题意,这天的温差就是最高气温与最低气温的差,列式计算.【解答】解:这天的温差就是最高气温与最低气温的差,即5﹣(﹣3)=5+3=8℃.故选:B.【点评】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.5.下面的几个有理数中,最大数是()A.1 B.0.56 C.﹣1 D.﹣5【考点】有理数大小比较.【分析】根据正数大于负数,进行比较即可.【解答】解:∵正数大于负数,且1>0.56,∴这四个数字中最大的是1.故选:A.【点评】本题主要考查的是有数大小比较,掌握比较有理数大小的法则是解题的关键.6.零上23℃,记作+23℃,零下8℃,可记作()A.8 B.﹣8 C.8℃D.﹣8℃【考点】正数和负数.【专题】探究型.【分析】根据零上23℃,记作+23℃,可以表示出零下8℃,从而可以解答本题.【解答】解:∵零上23℃,记作+23℃,∴零下8℃记作﹣8℃,故选B.【点评】本题考查正数和负数,解题的关键是明确正数和负数在题目中表示的实际含义.7.下列各组数中,互为相反数的是()A.1和0 B.﹣4和4 C.﹣0.25和﹣4 D.以上都不是【考点】相反数.【分析】依据相反数的定义回答即可.【解答】解:A、1和0不是相反数,故A错误;B、﹣4和4互为相反数,故B正确;C、﹣0.25=﹣,故﹣0.25和﹣4不是相反数,故C错误;D、错误.故选:B.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.8.下列说法中正确的是()A.﹣6既是负数、分数,也是有理数B.0既不是正数、也不是负数,但是整数C.﹣200既是负数、也是整数,但不是有理数D.以上都不正确【考点】有理数.【专题】计算题;实数.【分析】利用正数,负数,有理数的定义判断即可.【解答】解:A、﹣6既是负数,也是有理数,错误;B、﹣既不是正数,也不是负数,但是整数,正确;C、﹣200既是负数,也是整数,还是有理数,错误;D、以上有错误,也有正确,故选B.【点评】此题考查了有理数,熟练掌握有理数的分类方法是解本题的关键.9.|﹣9|=()A.﹣9 B.﹣3 C.3 D.9【考点】绝对值.【分析】负数的绝对值等于它的相反数.【解答】解:|﹣9|=9.故选:D.【点评】本题主要考查的是绝对值,掌握化简绝对值的法则是解题的关键.10.16+(﹣25)+24=()A.15 B.﹣15 C.3 D.﹣3【考点】有理数的加法.【分析】原式结合后,相加即可得到结果.【解答】解:16+(﹣25)+24=24+16﹣25=15.故选A.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.11.下列的数是负数的是()A.7 B.﹣6的相反数C.﹣8 D.以上都不正确【考点】正数和负数.【分析】根据小于零的数是负数,可得答案.【解答】解:A、7是正数,故A错误;B、﹣6的相反数是6,故B错误;C、﹣8是负数,故C正确;D、C正确,故D错误;故选:C.【点评】本题考查了正数和负数,小于零的数是负数,大于零的数是正数.12.数轴的三要素是()A.原点、方向、单位长度 B.直线、方向、单位长度C.直线、原点、方向 D.直线、单位长度、原点【考点】数轴.【分析】根据数轴的意义,必须要有原点,正方向和单位长度进行判断即可.【解答】解:数轴的三个要素是:原点、正方向和单位长度,故选A.【点评】此题主要考察数轴的意义,熟悉数轴的意义是解题的关键.二、填空题(每小题3分,共18分)13.到原点的距离不大于3的整数有7 个,它们是:±1,±2,±3,0 .【考点】数轴.【专题】数形结合.【分析】根据题意得出:到原点的距离不大于3的整数即到原点的距离小于等于3的整数.【解答】解:如图:到原点的距离不大于3的整数:0,±1,±2,±3,共7个.故答案应填7;0,±1,±2,±3.【点评】本题主要考查了在数轴上找点.由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.14.化简﹣(﹣5)= 5 .【考点】相反数.【分析】根据相反数的定义化简即可.【解答】解:﹣(﹣5)=5.故答案为:5.【点评】此题考查了相反数,熟练掌握相反数的定义是解本题的关键.15.一个数的绝对值是14,那么这个数是±14.【考点】绝对值.【分析】直接利用绝对值的定义:数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.【解答】解:∵一个数的绝对值是14,∴这个数是:±14.故答案为:±14.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.16.|﹣0|= 0 ,|﹣35|= 35 .【考点】绝对值.【分析】直接利用绝对值的性质化简求出答案.【解答】解:|﹣0|=0,|﹣35|=35.故答案为:0,35.【点评】此题主要考查了绝对值的性质,正确利用绝对值的性质化简是解题关键.17.计算(﹣0.5)+(+0.7)= 0.2 .【考点】有理数的加法.【分析】原式相加即可得到结果.【解答】解:(﹣0.5)+(+0.7)=0.2.故答案为:0.2.【点评】此题考查了有理数的加减运算,熟练掌握运算法则是解本题的关键.18.3﹣(﹣8)= 11 .【考点】有理数的减法.【分析】根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:3﹣(﹣8)=3+8=11.故答案为:11.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.三、解答题.(每共66分).19.计算:(1)(+16)+(+8)(2)(+19)+(﹣8)(3)(﹣0.36)+(﹣1.24)(4)(﹣12)+(+6)(5)13﹣(+5)(6)(﹣17)﹣(﹣14)(7)﹣20﹣0(8)(﹣56)+(+23)﹣(+25)﹣(﹣19)(9)|﹣31|+(﹣24)﹣(﹣31)(10)(﹣6)×9(11)(﹣8)×(﹣4)【考点】有理数的混合运算.【分析】(1)、(2)、(3)、(4)、(5)、(6)先去括号,再按照有理数的加减法则进行计算即可;(7)根据有理数的减法进行计算即可;(8)先去括号,再从左到右依次计算即可;(9)先去括号及绝对值符号,再从左到右依次计算即可;(10)、(11)先确定积的符号,再把两数的绝对值相乘即可.【解答】解:(1)原式=16+8=24;(2)原式=19﹣8=11;(3)原式=﹣0.36﹣1.24=﹣1.6;(4)原式=﹣12+6=﹣6;(5)原式=13﹣5=8;(6)原式=﹣17+14=﹣3;(7)原式=﹣20;(8)原式=﹣56+23﹣25+19=﹣33﹣25+19=﹣58+19=﹣37;(9)原式=31﹣24+31=38;(10)原式=﹣(6×9)=﹣54;(11)原式=8×4=32,【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解答此题的关键.20.李刚身上带13块钱,买了彩笔5块钱,又买了练习册9.5元,不够多少钱?(不够的用负数表示)【考点】正数和负数.【专题】计算题.【分析】用总钱数减去花的钱数,结果为负,即为不够钱数.【解答】解:13﹣5﹣9.5=﹣1.5元.答:不够1.5元.【点评】题目考查正数和负数的计算,题目整体较为简单.21.小明去学校为正,回家为负,小明家离学校有362米,中午小明出发去学校,走了有125米时,忘了拿水瓶,又返回家拿,走了58米,现小明离学校多远?【考点】正数和负数.【专题】计算题.【分析】去学校为正,回家为负,用正负数表示小明走的路程,【解答】解:∵去学校为正,回家为负,∴+125+(﹣58)=67米,∴362﹣67=295米.答:现小明离学校295米.【点评】题目考查了正负数的运算,通过正负数表示两个相反意义的量,题目较为简单.。
某某市一中2015-2016学年七年级数学11月月考试题一、选择题:(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将各小题所选答案的标号填写在下表的相应位置上.1.计算8x6÷(﹣x3)的结果是()A.﹣8x2B.8x2C.﹣8x3D.8x32.下列图形中,不是轴对称图形的是()A.B.C.D.3.若直角三角形的三边长为偶数,则这三边的边长可能是()A.3,4,5 B.6,8,10 C.7,24,29 D.8,12,204.一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象描述正确的是()A.B.C.D.5.天安门广场的面积约为44万平方米,请你估计一下,它的百万分之一大约相当于()A.教室地面的面积B.黑板面的面积C.课桌面的面积 D.铅笔盒盒面的面积6.把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是()A.B. C.D.7.下列说法错误的是()D.近似数6950精确到千位是7×1038.如图,在△ABC中,AB的垂直平分线DE,AD=6,△AEC的周长为15,那么△ABC的周长为()A.15 B.21 C.27 D.339.“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).小亮同学随机地在大正方形及其内部区域投针,若直角三角形的两条直角边的长分别是2和1,则针扎到小正方形(阴影)区域的概率是()A.B.C.D.10.如图,在Rt△ABC中,∠C=90°,∠A的平分线交BC于D.过C点作CG⊥AB于G,交AD于E.过D点作DF⊥AB于F.下列结论:①∠CED=∠CDE;②S△AEC:S△AEG=AC:AG;③∠ADF=2∠FDB;④CE=DF.其中正确的结论是()A.①②④B.②③④C.只有①③ D.①②③④二、填空题:(本大题共10个小题,每小题3分,共30分)在每个小题中,请将答案直接填写在题后的横线上.11.2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防X、研究表明,甲型H1N1流感球形病毒细胞的直径约为0.00000156m,用科学记数法表示这个数是.12.如图,从镜子中看到一钟表的时针和分针,此时的实际时刻是.13.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=32°,则∠2=度.14.若3m=10,3n=5,则3m﹣n=.15.三根长度分别为3cm,7cm,4cm的木棒能围成三角形的概率是.16.某弹簧的长度与所挂物体质量之间的关系如下表:所挂物体的质量/千克0 1 2 3 4 5 …弹簧的长度/厘米10 12 …如果所挂物体的质量用x表示,弹簧的长度用y表示,则满足y与x关系式为:.17.若a+b=6,ab=5,则a2+b2=.18.如图,△ABC中,AB=AC,∠A=42°,PB=CD,PC=BE,则∠EPD=.19.小明早晨从家骑车到学校,先上坡后下坡,行程情况如图,若返回时上、下坡的速度保持不变,那么小明从学校骑车回家用的时间是分钟.20.如图,在△ABC中,AB=AC=BC,AD是BC边上的中线,且CD2=12,点E是边AC的中点,点F是AD上的动点,则一只蚂蚁从E到F,回到C点的最短路程是.三、解答题:(本大题5个小题,共58分)解答时必须给出必要的演算过程或推理步骤.21.计算:(1)23﹣(π﹣2010)0+()﹣1﹣|﹣2|(2)利用乘法公式计算:997×999﹣9982(3)(x+2)2(x﹣2)2(4)(2a+1)2﹣(2a+1)(﹣1+2a)22.化简求值:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x,其中x=﹣2,y=.23.已知:线段a及∠α、∠β.求作:△ABC,使∠A=∠α,AB=a,∠B=∠β.(要求:用尺规作图,不写作法,保留作图痕迹,并写出结论)24.如图,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,且DB=DC,求证:EB=FC.25.春节期间,某客运站旅客流量不断增大,旅客往往需长时间排队等候购票.经调查发现,每天开始售票时,约有400名旅客排队等候购票,同时又有新的旅客不断进入售票厅排队等候购票.售票时售票厅每分钟新增购票人数4人,每分钟每个售票窗口出售的票数3X,规定每人只购一X票.某天若同时开放两个售票窗口,售票厅排队等候购票的人数y(人)与售票时间x(分)的关系如图所示.(1)售票到第a分钟时,用含a的代数式表示:新增购票人数为人,两个售票窗口售票人数为人,排队等候购票的人数为人;(2)求a的值;(3)若要在开始售票后20分钟内让所有排队购票的旅客都能购到票,以便后来到站的旅客能随到随购,请你帮助计算,至少需同时开放几个售票窗口?四、解答题(本大题2个小题,共22分)解答时必须给出必要的演算过程或推理步骤.26.如图,AB=CB,∠ABC=60°,且∠EAB=∠FCB,∠ABC=∠FBE,∠CEB=30°.(1)求证:BE=BF;(2)若CE=12,BF=9,求线段AE的长.27.请同学们仔细阅读以下内容:数学课上,老师向同学们介绍了直角三角形的性质:直角三角形斜边上的中线等于斜边的一半.如图1,在Rt△ABC中,∠ACB=90°,点D是边AB的中点,则CD=AD=BD=AB.请同学们借助以上知识点探究下面问题:如图2,Rt△ABC≌Rt△EDF,∠ACB=∠F=90°,∠A=∠E=30°.△EDF绕着边AB的中点D旋转,DE,DF分别交线段AC于点M,K.(1)观察:①如图3、图4,当∠CDF=0°或60°时,AM+CKMK(填“>”,“<”或“=”).②如图5,当∠CDF=30° 时,AM+CKMK(只填“>”或“<”).(2)猜想:如图1,当0°<∠CDF<60°时,若点G是点A关于直线DE的对称点,则AM+CKMK,证明你所得到的结论.(3)如果MK2+CK2=AM2,请直接写出∠CDF的度数.2015-2016学年某某一中七年级(上)月考数学试卷(11月份)参考答案与试题解析一、选择题:(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将各小题所选答案的标号填写在下表的相应位置上.1.计算8x6÷(﹣x3)的结果是()A.﹣8x2B.8x2C.﹣8x3D.8x3【考点】整式的除法.【分析】根据单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;同底数幂的除法法则为:底数不变,指数相减,计算即可.【解答】解:8x6÷(﹣x3)=﹣8x6﹣3=﹣8x3.故选C.【点评】本题主要考查单项式的除法,在计算过程中要先确定符号,再根据法则进行运算.2.下列图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.若直角三角形的三边长为偶数,则这三边的边长可能是()A.3,4,5 B.6,8,10 C.7,24,29 D.8,12,20【考点】勾股数.【分析】判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:A、3,4,5都是奇数,选项错误;B、∵62+82=102,∴三角形是直角三角形;C、7,24,29中7和29是奇数,故选项错误;D、∵82+122=208,202=400,∴82+122≠202,∴三角形不是直角三角形.故选B.【点评】本题考查了勾股定理的逆定理,解答此题要用到勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.4.一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象描述正确的是()A.B.C.D.【考点】函数的图象.【分析】先分析题意,把各个时间段内y与x之间的关系分析清楚,本题是分段函数,分为三段.【解答】解:根据题意可知火车进入隧道的时间x与火车在隧道内的长度y之间的关系具体可描述为:当火车开始进入时y逐渐变大,火车完全进入后一段时间内y不变,当火车开始出来时y逐渐变小,因此反映到图象上应选B.故选:B.【点评】本题考查了动点问题的函数图象,主要考查了根据实际问题作出函数图象的能力.解题的关键是要知道本题是分段函数,分情况讨论y与x之间的函数关系.5.天安门广场的面积约为44万平方米,请你估计一下,它的百万分之一大约相当于()A.教室地面的面积B.黑板面的面积C.课桌面的面积 D.铅笔盒盒面的面积【考点】数学常识.【分析】首先算出44万平方米的百万分之一大约是多少,然后与选择项比较即可.【解答】解:44万平方米=440 000平方米,440 000×=0.44平方米,不足半平方米,应是课桌面的面积.故选C.【点评】解决本题的关键是把天安门广场的面积进行合理换算,得到相应的值.6.把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是()A.B. C.D.【考点】剪纸问题.【专题】操作型.【分析】把一个正方形的纸片向上对折,向右对折,向右下方对折,从上部剪去一个等腰直角三角形,展开,看得到的图形为选项中的哪个即可.【解答】解:从折叠的图形中剪去8个等腰直角三角形,易得将从正方形纸片中剪去4个小正方形,故选C.【点评】考查学生的动手操作能力,也可从剪去的图形入手思考.7.下列说法错误的是()D.近似数6950精确到千位是7×103【考点】近似数和有效数字.【分析】一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.【解答】解:A、有效数字有2、3、0、0四个,正确;B、1.6精确到十分位,1.60精确到百分位,正确;C、1.2万精确到千位,不是十分位,错误;D、近似数6 950精确到千位是7×103,正确.故选C.【点评】从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字.最后一位所在的位置就是精确度.8.如图,在△ABC中,AB的垂直平分线DE,AD=6,△AEC的周长为15,那么△ABC的周长为()A.15 B.21 C.27 D.33【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线性质求出AE=BE,AB=2AD=12,根据△AEC的周长为15求出AC+BC=15,即可求出答案.【解答】解:∵AB的垂直平分线DE,AD=6,∴AB=2AD=12,AE=BE,∵△AEC的周长为15,∴AE+EC+AC=15,∴BE+EC+AC=15,∴BC+AC=15,∴△ABC的周长=AC+BC+AB=15+12=27,故选C.【点评】本题考查了线段垂直平分线性质的应用,能运用线段垂直平分线性质进行推理是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等.9.“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).小亮同学随机地在大正方形及其内部区域投针,若直角三角形的两条直角边的长分别是2和1,则针扎到小正方形(阴影)区域的概率是()A.B.C.D.【考点】几何概率.【分析】根据几何概率的意义,求出小正方形的面积,再求出大正方形的面积,算出其比值即可.【解答】解:根据题意分析可得:正方形ABCD边长为=,故面积为5;阴影部分边长为2﹣1=1,面积为1;则针扎到小正方形(阴影)区域的概率是即两部分面积的比值为.故选:C.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.10.如图,在Rt△ABC中,∠C=90°,∠A的平分线交BC于D.过C点作CG⊥AB于G,交AD于E.过D点作DF⊥AB于F.下列结论:①∠CED=∠CDE;②S△AEC:S△AEG=AC:AG;③∠ADF=2∠FDB;④CE=DF.其中正确的结论是()A.①②④B.②③④C.只有①③ D.①②③④【考点】角平分线的性质;直角三角形的性质.【分析】由∠C=90°,CG⊥AB,得∠ACE=∠B,再由外角的性质,得∠CED=∠CDE,得CE=CD;根据角平分线的性质,得CD=DF,则S△AEC:S△AEG=AC:AG;得CE=DF,从而得出答案.【解答】解:∵∠ACE+∠BCG=90°,∠B+∠BCG=90°∴∠ACE=∠B∵∠CED=∠CAE+∠ACE,∠CDE=∠B+∠DAB∴∠CED=∠CDE∴CE=CD又AE平分∠CAB∴CD=DF∴S△AEC:S△AEG=AC:AG;CE=DF无法证明∠ADF=2∠FDB.故选A.【点评】此题主要考查角平分线的性质、直角三角形的性质和三角形的面积计算.二、填空题:(本大题共10个小题,每小题3分,共30分)在每个小题中,请将答案直接填写在题后的横线上.11.2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防X、研究表明,甲型H1N1流感球形病毒细胞的直径约为0.00000156m,用科学记数法表示这个数是 1.56×10﹣6.【考点】科学记数法—表示较小的数.【专题】应用题.【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10﹣n,与绝对值大于1数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 001 56=1.56×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.如图,从镜子中看到一钟表的时针和分针,此时的实际时刻是9:30 .【考点】镜面对称.【分析】镜子中的时间和实际时间关于钟表上过6和12的直线对称,作出相应图形,即可得到准确时间.【解答】解:由图中可以看出,此时的时间为9:30.【点评】解决本题的关键是找到相应的对称轴;难点是作出相应的对称图形.13.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=32°,则∠2=58 度.【考点】平行线的性质.【专题】计算题.【分析】根据直角三角形的性质及直尺的两边相互平行解答即可.【解答】解:如图,∵AB∥CD,∴∠2=∠3,∵∠1+∠3=90°,∠1=32°,∴∠2=∠3=90°﹣32°=58°.【点评】本题重点考查了平行线及直角板的性质,是一道较为简单的题目.14.若3m=10,3n=5,则3m﹣n= 2 .【考点】同底数幂的除法.【分析】直接利用同底数幂的除法运算法则化简求出答案.【解答】解:∵3m=10,3n=5,∴3m﹣n=3m÷3n=10÷5=2.故答案为:2.【点评】此题主要考查了同底数幂的除法运算,正确掌握运算法则是解题关键.15.三根长度分别为3cm,7cm,4cm的木棒能围成三角形的概率是0 .【考点】概率公式;三角形三边关系.【分析】根据三角形的三边关系得出三根木棒不能围成三角形,再根据概率公式即可得出答案.【解答】解:∵3+4=7,∴根据三角形的三边关系,知三根木棒不能围成三角形,∴长度分别为3cm,7cm,4cm的木棒能围成三角形的概率是0.故答案为:0.【点评】此题考查了概率公式,用到的知识点为:组成三角形的两条较小的边的和应大于最大的边和概率=所求情况数与总情况数之比.16.某弹簧的长度与所挂物体质量之间的关系如下表:所挂物体的质量/千克0 1 2 3 4 5 …弹簧的长度/厘米10 12 …如果所挂物体的质量用x表示,弹簧的长度用y表示,则满足y与x关系式为:y=0.4x+10 .【考点】根据实际问题列一次函数关系式.【分析】观察即可得规律:弹簧称所挂重物质量x与弹簧长度y之间是一次函数关系,然后由待定系数法求解即可【解答】解:∵弹簧称所挂重物质量x(g)与弹簧长度y(cm)之间是一次函数关系,∴设y=kx+b,取点(0,10)与(1,10.4),则,解得:,∴y与x之间的关系式为:y=0.4x+10.故答案为:y=0.4x+10.【点评】此题考查了根据实际问题列一次函数解析式,解题的关键是掌握待定系数求一次函数解析式.17.若a+b=6,ab=5,则a2+b2= 26 .【考点】完全平方公式.【专题】计算题.【分析】原式利用完全平方公式变形,将已知等式代入计算即可求出值.【解答】解:∵a+b=6,ab=5,∴原式=(a+b)2﹣2ab=36﹣10=26,故答案为:26【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.18.如图,△ABC中,AB=AC,∠A=42°,PB=CD,PC=BE,则∠EPD=69°.【考点】等腰三角形的性质.【分析】根据等腰三角形的性质得到∠B=∠C=69°,推出△PBE≌△PCD,由全等三角形的性质得到∠BEP=∠CPD,根据等式的性质即可得到结论.【解答】解:∵AB=AC,∠A=42°,∴∠B=∠C=69°,在△PBE与△PCD中,,∴△PBE≌△PCD,∴∠BEP=∠CPD,∵∠BEP+∠BPE=180°﹣∠B,∠BPE+∠CPD=180°﹣∠EPD,∴180°﹣∠B=180°﹣∠EPD,∴∠EPD=∠B=69°.故答案为:69°.【点评】本题考查了等腰三角形的性质,全等三角形的判定和性质,熟练掌握等腰三角形的性质是解题的关键.19.小明早晨从家骑车到学校,先上坡后下坡,行程情况如图,若返回时上、下坡的速度保持不变,那么小明从学校骑车回家用的时间是37.2 分钟.【考点】函数的图象.【专题】行程问题;压轴题.【分析】根据图表可计算出上坡的速度以及下坡的速度.又已知返回途中的上、下坡的路程正好相反,故可计算出共用的时间.【解答】解:由图中可以看出:上坡速度为: =2百米/分,下坡速度为: =5百米/分,返回途中,上下坡的路程正好相反,所用时间为: +=7.2+30=37.2分.故答案为:37.2.【点评】本题考查利用函数的图象解决实际问题,应先求出上坡速度和下坡速度,注意往返路程上下坡路程的转化.20.如图,在△ABC中,AB=AC=BC,AD是BC边上的中线,且CD2=12,点E是边AC的中点,点F是AD上的动点,则一只蚂蚁从E到F,回到C点的最短路程是 6 .【考点】轴对称-最短路线问题.【分析】作E关于AD的对称点M,连接CM交AD于F,连接EF,则一只蚂蚁从E到F,回到C点的最短路程是CM的长度,根据等边三角形的性质得到AD⊥BC,CD=BD,根据已知条件得到BC=4,根据等边三角形的性质得到CM⊥AB,∠BCM=ACB=30°,即可得到结论.【解答】解:作E关于AD的对称点M,连接CM交AD于F,连接EF,则一只蚂蚁从E到F,回到C点的最短路程是CM的长度,∵AB=AC=BC,AD是BC边上的中线,∴AD⊥BC,CD=BD,∵CD2=12,∴CD=2,∴BC=4,∵E是边AC的中点,∴CM⊥AB,∠BCM=ACB=30°,∴CM=BC=6.∴一只蚂蚁从E到F,回到C点的最短路程是6.故答案为:6.【点评】本题考查了平面展开﹣最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.三、解答题:(本大题5个小题,共58分)解答时必须给出必要的演算过程或推理步骤.21.计算:(1)23﹣(π﹣2010)0+()﹣1﹣|﹣2|(2)利用乘法公式计算:997×999﹣9982(3)(x+2)2(x﹣2)2(4)(2a+1)2﹣(2a+1)(﹣1+2a)【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)根据有理数的乘方,零指数幂,负整数指数幂分别求出每一部分的值,再代入求出即可;(2)先变形,再根据平方差公式进行计算,最后合并即可;(3)先根据积的乘方变形,根据平方差公式进行计算,最后根据完全平方公式进行计算即可;(4)先算乘法,再合并即可.【解答】解:(1)原式=8﹣1+(﹣3)﹣2=2;(2)原式=(998﹣1)×(998+1)﹣9982=9982﹣1﹣9982=﹣1;(3)原式=[(x+2)(x﹣2)]2=(x2﹣4)2=x4﹣8x2+16;(4)原式=4a2+4a+1﹣(4a2﹣1)=4a+2.【点评】本题考查了零指数幂,负整数指数幂,整式的混合运算和实数的运算的应用,能正确根据运算法则进行计算和化简是解此题的关键,注意:运算顺序.22.化简求值:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x,其中x=﹣2,y=.【考点】整式的混合运算—化简求值.【专题】压轴题.【分析】根据完全平方公式,多项式乘多项式的法则,多项式除单项式的法则化简,然后再代入数据计算求解.【解答】解:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x=(x2+4xy+4y2﹣3x2﹣2xy+y2﹣5y2)÷2x=(﹣2x2+2xy)÷2x=y﹣x,当x=﹣2,y=时,原式=﹣(﹣2)=.【点评】本题考查了完全平方公式,多项式乘多项式,多项式除单项式,去括号要注意符号的正确处理.23.已知:线段a及∠α、∠β.求作:△ABC,使∠A=∠α,AB=a,∠B=∠β.(要求:用尺规作图,不写作法,保留作图痕迹,并写出结论)【考点】作图—复杂作图.【分析】首先作射线进而截取AB=a,再分别以A,B为端点,作∠A=∠α,∠B=∠β,进而得出答案.【解答】解:如图所示:△ABC即为所求.【点评】此题主要考查了复杂作图,正确掌握作一角等于已知角的方法是解题关键.24.如图,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,且DB=DC,求证:EB=FC.【考点】直角三角形全等的判定;全等三角形的性质;角平分线的性质.【专题】证明题.【分析】先根据角平分线上的点到两边的距离相等证得DE=DF,再利用HL判定,Rt△DBE≌Rt△DCF,从而得到EB=FC.【解答】证明:∵AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,∴DE=DF;∵DE⊥AB于E,DF⊥AC于F.∴在Rt△DBE和Rt△DCF中∴Rt△DBE≌Rt△DCF(HL);∴EB=FC.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、HL (在直角三角形中).注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.25.春节期间,某客运站旅客流量不断增大,旅客往往需长时间排队等候购票.经调查发现,每天开始售票时,约有400名旅客排队等候购票,同时又有新的旅客不断进入售票厅排队等候购票.售票时售票厅每分钟新增购票人数4人,每分钟每个售票窗口出售的票数3X,规定每人只购一X票.某天若同时开放两个售票窗口,售票厅排队等候购票的人数y(人)与售票时间x(分)的关系如图所示.(1)售票到第a分钟时,用含a的代数式表示:新增购票人数为4a 人,两个售票窗口售票人数为6a 人,排队等候购票的人数为(400﹣2a)人;(2)求a的值;(3)若要在开始售票后20分钟内让所有排队购票的旅客都能购到票,以便后来到站的旅客能随到随购,请你帮助计算,至少需同时开放几个售票窗口?【考点】一次函数的应用.【专题】应用题.【分析】(1)利用每分钟新增购票人数4人,每分钟每个售票窗口出售的票数3X可得售票到第a分钟时,新增购票人数和两个售票窗口售票人数,然后用400与4a的和减去6a即可得到排队等候购票的人数;(2)由(1)中排队等候购票的人数等于320可列方程400+4a﹣6a=320,然后解方程即可;(3)设同时开放x个窗口,根据题意列不等式3•20•x≥400+4×2,然后解不等式即可得到最少需同时开放的售票窗口数.【解答】解:(1)新增购票人数为4a人,两个售票窗口售票人数为6a人,排队等候购票的人数为400+6a﹣4a=(400﹣2a)人;故答案为4a,6a,400﹣2a;(2)400+4a﹣6a=320,解得a=40;(3)设同时开放x个窗口,则3•20•x≥400+4×2,解得x≥8,所以至少需同时开放8个售票窗口.【点评】本题考查了一次函数的应用:建立一次函数函数模型,应用一次函数的性质解决问题.四、解答题(本大题2个小题,共22分)解答时必须给出必要的演算过程或推理步骤.26.如图,AB=CB,∠ABC=60°,且∠EAB=∠FCB,∠ABC=∠FBE,∠CEB=30°.(1)求证:BE=BF;(2)若CE=12,BF=9,求线段AE的长.【考点】全等三角形的判定与性质.【分析】(1)根据ASA证明△ABE≌△CBF,再利用全等三角形的性质解答即可;(2)根据等边三角形的性质和勾股定理进行解答即可.【解答】(1)证明:∵∠ABC=∠FBE,∴∠ABE=∠CBF,在△ABE和△CBF中,∴△ABE≌△CBF,∴BE=BF;(2)∵∠ABC=∠FBE,∠ABC=60°,∴∠FBE=60°,∵由(1)知BE=BF,∴△EBF为等边三角形,∴∠BEF=60°,EF=BF,∵∠CEB=30°,∴∠CEF=90°,∴在Rt△CEF中,CF2=CE2+EF2=CE2+BF2,∵CE=12,BF=9,∴CF=15,又∵由(1)△ABE≌△CBF知,AE=CF,∴AE=15.【点评】此题考查全等三角形的判定和性质,关键是根据ASA证明△ABE≌△CBF.27.请同学们仔细阅读以下内容:数学课上,老师向同学们介绍了直角三角形的性质:直角三角形斜边上的中线等于斜边的一半.如图1,在Rt△ABC中,∠ACB=90°,点D是边AB的中点,则CD=AD=BD=AB.请同学们借助以上知识点探究下面问题:如图2,Rt△ABC≌Rt△EDF,∠ACB=∠F=90°,∠A=∠E=30°.△EDF绕着边AB的中点D旋转,DE,DF分别交线段AC于点M,K.(1)观察:①如图3、图4,当∠CDF=0°或60°时,AM+CK = MK(填“>”,“<”或“=”).②如图5,当∠CDF=30° 时,AM+CK >MK(只填“>”或“<”).(2)猜想:如图1,当0°<∠CDF<60°时,若点G是点A关于直线DE的对称点,则AM+CK >MK,证明你所得到的结论.(3)如果MK2+CK2=AM2,请直接写出∠CDF的度数.【考点】全等三角形的判定与性质;含30度角的直角三角形;轴对称的性质.【分析】(1)先证明△CDA是等腰三角形,再根据等腰三角形的性质证明AM+CK=MK;在△MKD中,AM+CK>MK(两边之和大于第三边);(2)作点C关于FD的对称点G,连接GK,GM,GD.证明△ADM≌△GDM后,根据全等三角形的性质可得GM=AM,GM+GK>MK,从而得到AM+CK>MK;(3)根据勾股定理的逆定理求得∠GKM=90°,又由点C关于FD的对称点G,得到∠CKG=90°,∠FKC=∠CKG=45°,根据三角形的外角定理,就可以求得∠CDF=15°.【解答】解:(1)①在Rt△ABC中,D是AB的中点,∴AD=BD=C D=AB,∠B=∠BDC=60°又∵∠A=30°,∴∠ACD=60°﹣30°=30°,又∵∠CDE=60°,或∠CDF=60°时,∴∠CKD=90°,∴在△CDA中,AM(K)=CM(K),即AM(K)=KM(C)(等腰三角形底边上的垂线与中线重合),∵CK=0,或AM=0,∴AM+CK=MK;②由①,得∠ACD=30°,∠CDB=60°,又∵∠A=30°,∠CDF=30°,∠EDF=60°,∴∠ADM=30°,∴AM=MD,CK=KD,∴AM+CK=MD+KD,∴在△MKD中,AM+CK>MK(两边之和大于第三边),故答案为:①=;②>;(2)>,证明:连接GK,∵点G是点A关于直线DE的对称点∴AD=GD,GM=AM,∠GDM=∠ADM,∵Rt△ABC 中,D是AB的中点,∴AD=CD=GD.∵∠A=∠E=30°,∴∠CDA=120°,∠EDF=60°,∴∠GDM+∠GDK=60°,∠ADM+∠CDK=60°,∴∠GDK=∠CDK,在△GDK和△CDK中,,∴△GDK≌△CDK,∴GK=CK,∵GM+GK>MK,∴AM+CK>MK;(3)∠CDF=15°,由(2),得GM=AM,GK=CK,∵MK2+CK2=AM2,∴MK2+GK2=GM2,∴∠GKM=90°,又∵点C关于FD的对称点G,∴∠CKG=90°,∠FKC=∠CKG=45°,又∵由(1),得∠A=∠ACD=30°,∴∠FKC=∠CDF+∠ACD,∴∠CDF=∠FKC﹣∠ACD=15°.【点评】本题综合考查了全等三角形的判定、全等三角形的性质、轴对称图形的性质以及三角形的两边之和大于第三边的性质.。
2015-2016学年江苏省扬州市江都二中七年级(上)第一次月考数学试卷一、选择题(每小题3分,共24分)1.平方等于16的数是()A.4 B.﹣4 C.±4 D.(±4)22.有四包真空小包装火腿,每包以标准克数(450克)为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是()A.+2 B.﹣3 C.+3 D.+43.下列运算正确的是()A.﹣24=16 B.﹣(﹣2)2=﹣4 C.(﹣)2=﹣1 D.(﹣2)3=84.讲究卫生要勤洗手,人的一只手上大约有28 000万个看不见的细菌,用科学记数法表示两只手上约有()个细菌.A.2.8×104B.5.6×104C.2.8×108D.5.6×1085.在有理数中,一个数的立方等于这个数本身,这种数的个数为()A.1 B.2 C.3 D.无数个6.计算(﹣0.25)2007×(﹣4)2008等于()A.﹣1 B.1 C.﹣4 D.47.设a为最小的正整数,b是最大的负整数,c是绝对值最小的数,d是倒数等于自身的有理数,则a﹣b+c﹣d的值为()A.1 B.3 C.1或3 D.2或﹣18.古希腊著名的毕达哥拉斯派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和,下列等式中,符合这一规律的是()A.36=15+21 B.49=18+31 C.25=9+16 D.13=3+10二、填空题(本大题共10个小题,每小题3分,共30分.)9.﹣|﹣2|的相反数是.10.比较大小:(填“>”或“<”)11.绝对值大于1不大于4的整数的和为.12.如果数轴上的点A对应有理数为﹣2,那么与A点相距3个单位长度的点所对应的有理数为.13.定义一种新运算:a※b=a+b﹣ab,如2※(﹣2)=2+(﹣2)﹣2×(﹣2)=4,那么(﹣1)※(﹣4)=.14.若|a+1|+(b﹣2)2=0,则(a+b)2013+a2014=.15.某冷冻库房的温度是﹣3℃,如果每小时降温4℃,那么降到﹣23℃需要小时.16.某班5名学生在一次数学测验中的成绩以90分为标准,超过的分数记为正数,不足的分数记为负数,记录如下:﹣4,+9,0,﹣1,+6,则他们的平均成绩是分.17.如图所示是计算机程序计算,若开始输入x=﹣1,则最后输出的结果是.18.将正整数按如图所示的规律排列下去,若用有序数对(m,n)表示第m排,从右到左第n个数,如(3,2)表示整数5,则(10,4)表示整数是.三、解答题(96分)19.在数轴上把下列各数表示出来,并用“<”连接各数.2,﹣|﹣1|,1,0,﹣(﹣3.5)20.(20分)(2015秋•江都市校级月考)计算:①(﹣5.2)﹣(+4.8)+(﹣3.2)﹣(﹣2.3)②③﹣2×(﹣1)÷(﹣7)×④﹣14﹣(1﹣0.5)×[2﹣(﹣3)2].21.(12分)(2015秋•江都市校级月考)简便计算(1)(﹣48)×0.125+48×+(﹣48)×(2)()×(﹣36)22.已知:|a|=3,|b|=2,且a<b,求(a+b)2的值.23.已知a、b互为倒数,c、d互为相反数,且m的绝对值为1,求:的值.24.阅读下题解答:计算:.分析:利用倒数的意义,先求出原式的倒数,再得原式的值.解:×(﹣24)=﹣16+18﹣21=﹣19.所以原式=﹣.根据阅读材料提供的方法,完成下面的计算:.25.(10分)(2014秋•招远市期中)十一黄金周期间,花果山7天中每天旅游人数的变化情况如下表(正数表示比9月30日多的人数,负数表示比9月30日少的人数):日期1日2日3日4日5日6日7日人数变化/万人+0.5 +0.7 +0.8 ﹣0.4 ﹣0.6 +0.2 ﹣0.1(1)请判断7天内游客人数量最多和最少的各是哪一天?它们相差多少万人?(2)如果9月30日旅游人数为2万人,平均每人消费300元,请问风景区在此7天内总收入为多少万元?26.(12分)(2015秋•江都市校级月考)高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为0.09升/千米,则这次养护共耗油多少升?27.(12分)(2014秋•张家港市校级期中)阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是【A,B】的好点.例如,如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的好点,但点D是【B,A】的好点.知识运用:如图2,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.(1)数所表示的点是【M,N】的好点;(2)如图3,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的好点?2015-2016学年江苏省扬州市江都二中七年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.平方等于16的数是()A.4 B.﹣4 C.±4 D.(±4)2考点:有理数的乘方.分析:分别求出4、﹣4和(±4)2的平方,根据结果选择即可.解答:解:∵42=16,(﹣4)2=16,∴(±4)2=16,而[(±4)2]2=256,∴选项A、B、D错误,只有选项C正确,故选C.点评:本题考查了有理数的乘方,主要考查学生的计算能力和辨析能力,题目比较好.2.有四包真空小包装火腿,每包以标准克数(450克)为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是()A.+2 B.﹣3 C.+3 D.+4考点:正数和负数.分析:实际克数最接近标准克数的是绝对值最小的那个数.解答:解:A、+2的绝对值是2;B、﹣3的绝对值是3;C、+3的绝对值是3;D、+4的绝对值是4.A选项的绝对值最小.故选A.点评:本题主要考查正负数的绝对值的大小比较.3.下列运算正确的是()A.﹣24=16 B.﹣(﹣2)2=﹣4 C.(﹣)2=﹣1 D.(﹣2)3=8考点:有理数的乘方.专题:计算题.分析:原式各项计算得到结果,即可做出判断.解答:解:A、原式=﹣16,错误;B、原式=﹣4,正确;C、原式=,错误;D、原式=﹣8,错误,故选B点评:此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.4.讲究卫生要勤洗手,人的一只手上大约有28 000万个看不见的细菌,用科学记数法表示两只手上约有()个细菌.A.2.8×104B.5.6×104C.2.8×108D.5.6×108考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将28000万用科学记数法表示为2.8×108.故选C.点评:本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.在有理数中,一个数的立方等于这个数本身,这种数的个数为()A.1 B.2 C.3 D.无数个考点:有理数的乘方.专题:计算题.分析:设这个数为x,根据题意列出关于x的方程,求出方程的解即可得到x的值.解答:解:设这个数为x,根据题意得:x3=x,变形得:x(x+1)(x﹣1)=0,解得:x=0或﹣1或1,共3个.故选:C.点评:此题考查了有理数的乘方,熟练掌握运算法则是解本题的关键.6.计算(﹣0.25)2007×(﹣4)2008等于()A.﹣1 B.1 C.﹣4 D.4考点:有理数的乘方.专题:计算题.分析:原式利用同底数幂的乘法,以及积的乘方逆运算法则变形,计算即可得到结果.解答:解:原式=(0.25×4)2007×(﹣4)=﹣4.故选:C.点评:此题考查了有理数的乘方,熟练掌握运算法则是解本题的关键.7.设a为最小的正整数,b是最大的负整数,c是绝对值最小的数,d是倒数等于自身的有理数,则a﹣b+c﹣d的值为()A.1 B.3 C.1或3 D.2或﹣1考点:倒数;有理数;绝对值.专题:计算题.分析:根据最小的正整数是1,最大的负整数是﹣1,绝对值最小的数是0,倒数等于自身的有理数±1,分别求出a,b,c及d的值,由d的值有两解,故分两种情况代入所求式子,即可求出值.解答:解:∵设a为最小的正整数,∴a=1;∵b是最大的负整数,∴b=﹣1;∵c是绝对值最小的数,∴c=0;∵d是倒数等于自身的有理数,∴d=±1.∴当d=1时,a﹣b+c﹣d=1﹣(﹣1)+0﹣1=1+1﹣1=1;当d=﹣1时,a﹣b+c﹣d=1﹣(﹣1)+0﹣(﹣1)=1+1+1=3,则a﹣b+c﹣d的值1或3.故选C.点评:此题的关键是弄清:最小的正整数是1,最大的负整数是﹣1,绝对值最小的数是0,倒数等于自身的有理数±1.这些知识是初中数学的基础,同时也是中考常考的内容.8.古希腊著名的毕达哥拉斯派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和,下列等式中,符合这一规律的是()A.36=15+21 B.49=18+31 C.25=9+16 D.13=3+10考点:规律型:数字的变化类;规律型:图形的变化类.分析:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为n(n+1)和(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值.解答:解:根据规律:正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为n(n+1)和(n+1)(n+2),只有A、36=15+21符合.故选:A.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律,解决问题.二、填空题(本大题共10个小题,每小题3分,共30分.)9.﹣|﹣2|的相反数是2.考点:相反数;绝对值.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:﹣|﹣2|的相反数是2,故答案为:2.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.10.比较大小:>(填“>”或“<”)考点:有理数大小比较.专题:探究型.分析:先把各数化为小数的形式,再根据负数比较大小的法则进行比较即可.解答:解:∵﹣=﹣0.75<0,﹣=﹣0.8<0,∵|﹣0.75|=0.75,|﹣0.8|=0.8,0.75<0.8,∴﹣0.75>﹣0.8,∴﹣>﹣.故答案为:>.点评:本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.11.绝对值大于1不大于4的整数的和为0.考点:有理数大小比较;绝对值;有理数的加法.分析:列举出符合条件的整数,再求出其和即可.解答:解:∵绝对值大于1不大于4的整数为:2,3,4,﹣2,﹣3,﹣4,∴2+3+4﹣2﹣3﹣4=0.故答案为:0.点评:本题考查的是有理数的大小比较,熟知有理数比较大小的法则及绝对值的性质是解答此题的关键.12.如果数轴上的点A对应有理数为﹣2,那么与A点相距3个单位长度的点所对应的有理数为1或﹣5.考点:数轴.分析:此题注意考虑两种情况:当点在已知点的左侧;当点在已知点的右侧.根据题意先画出数轴,便可直观解答.解答:解:如图所示:与A点相距3个单位长度的点所对应的有理数为1或﹣5.点评:由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.13.定义一种新运算:a※b=a+b﹣ab,如2※(﹣2)=2+(﹣2)﹣2×(﹣2)=4,那么(﹣1)※(﹣4)=﹣9.考点:有理数的混合运算.专题:新定义.分析:根据运算法则a※b=a+b﹣ab,先转化成学过的运算,再计算即可.解答:解:(﹣1)※(﹣4)=(﹣1)+(﹣4)﹣(﹣1)×(﹣4)=(﹣1)+(﹣4)﹣4=﹣9,故答案为﹣9.点评:本题考查了有理数的混合运算,解题的关键是写出算式.14.若|a+1|+(b﹣2)2=0,则(a+b)2013+a2014=2.考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.解答:解:由题意得,a+1=0,b﹣2=0,解得a=﹣1,b=2,所以,(a+b)2013+a2014=(﹣1+2)2013+(﹣1)2014=1+1=2.故答案为:2.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.15.某冷冻库房的温度是﹣3℃,如果每小时降温4℃,那么降到﹣23℃需要5小时.考点:有理数的混合运算.专题:计算题.分析:根据题意列出算式,计算即可得到结果.解答:解:根据题意得:(﹣3+23)÷4=20÷4=5(小时),则降到﹣23℃需要5小时.故答案为:5.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.某班5名学生在一次数学测验中的成绩以90分为标准,超过的分数记为正数,不足的分数记为负数,记录如下:﹣4,+9,0,﹣1,+6,则他们的平均成绩是92分.考点:正数和负数.专题:计算题.分析:先求得这组新数的平均数,然后再加上90,即为他们的平均成绩.解答:解:∵(﹣4+9+0﹣1+6)÷5=2,∴他们的平均成绩=2+90=92(分),故答案为:92.点评:主要考查了平均数的求法.当数据都比较大,并且接近某一个数时,就可把数据都减去这个数,求出新数据的平均数,然后加上这个数就是原数据的平均数.17.如图所示是计算机程序计算,若开始输入x=﹣1,则最后输出的结果是﹣11.考点:代数式求值.专题:图表型.分析:首先要理解该计算机程序的顺序,即计算顺序,观察可以看出当输入﹣(﹣1)时可能会有两种结果,一种是当结果>﹣5,此时就需要将结果返回重新计算,直到结果<﹣5才能输出结果;另一种是结果<﹣5,此时可以直接输出结果.解答:解:将x=﹣1代入代数式4x﹣(﹣1)得,结果为﹣3,∵﹣3>﹣5,∴要将﹣3代入代数式4x﹣(﹣1)继续计算,此时得出结果为﹣11,结果<﹣5,所以可以直接输出结果﹣11.点评:此题的关键是明确计算机程序的计算顺序.18.将正整数按如图所示的规律排列下去,若用有序数对(m,n)表示第m排,从右到左第n个数,如(3,2)表示整数5,则(10,4)表示整数是52.考点:规律型:数字的变化类.分析:根据(3,2)表示整数5,对图中给出的有序数对进行分析,可以发现:对所有数对(m,n)[n≤m]有:(m,n)=(1+2+3+…+m)﹣n+1=m(m+1)﹣n+1;由此方法解决问题即可.解答:解:若用有序数对(m,n)表示从上到下第m排,从左到右第n个数,对如图中给出的有序数对和(3,2)表示整数5可得,(3,2)=×3×4﹣2+1=5;(3,1)=×3×4﹣1+1=6;(4,4)=×4×5﹣4+1=7;…,由此可以发现,对所有数对(m,n)[n≤m]有:(m,n)=(1+2+3+…+m)﹣n+1=m(m+1)﹣n+1.所以(10,4)=×10×11﹣4+1=52.故答案为:52.点评:此题主要考查学生对数字变化类知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形、数值、数列等已知条件,认真分析,找出规律,解决问题.三、解答题(96分)19.在数轴上把下列各数表示出来,并用“<”连接各数.2,﹣|﹣1|,1,0,﹣(﹣3.5)考点:有理数大小比较;数轴.分析:根据数轴上的点与实数是一一对应的关系,数轴上的点比较大小的方法是左边的数总是小于右边的数,即可得出答案.解答:解:﹣|﹣1|=﹣1,﹣(﹣3.5)=3.5,如图所示:用“<”连结为:﹣|﹣1|<0<1<2<﹣(﹣3.5).点评:本题考查了有理数大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.20.(20分)(2015秋•江都市校级月考)计算:①(﹣5.2)﹣(+4.8)+(﹣3.2)﹣(﹣2.3)②③﹣2×(﹣1)÷(﹣7)×④﹣14﹣(1﹣0.5)×[2﹣(﹣3)2].考点:有理数的混合运算.分析:①、②根据加法结合律进行计算即可;③从左到右依次计算即可;④先算括号里面的,再算乘方,最后算乘法即可.解答:解:①原式=(﹣5.2﹣4.8)+(﹣3.2+2.3)=﹣10﹣0.9=﹣10.9;②原式=(﹣+)+(﹣)=+0=﹣;③原式=﹣×(﹣)×(﹣)×=×(﹣)×=﹣;④原式=﹣4﹣0.5××(2﹣9)=﹣4﹣×(﹣7)=﹣4+=﹣.点评:本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解答此题的关键.21.(12分)(2015秋•江都市校级月考)简便计算(1)(﹣48)×0.125+48×+(﹣48)×(2)()×(﹣36)考点:有理数的乘法.分析:(1)整理成含有因数(﹣48)的形式,然后逆运用乘法分配律进行计算即可得解;(2)利用乘法分配律进行计算即可得解.解答:解:(1)原式=(﹣48)×(0.125﹣+)=(﹣48)×=﹣60;(2)原式=×(﹣36)﹣×(﹣36)+×(﹣36)=﹣20+27﹣2=5.点评:此题考查有理数的混合运算,掌握运算顺序与计算方法是解决问题的关键.22.已知:|a|=3,|b|=2,且a<b,求(a+b)2的值.考点:有理数的乘方;绝对值.分析:根据绝对值的性质求出a、b,然后确定出a、b的对应情况并代入代数式,再根据有理数的乘方运算进行计算即可得解.解答:解:∵|a|=3,|b|=2,∴a=±3,b=±2,∵a<b,∴a=﹣3,b=±2,∴(a+b)2=(﹣3+2)2=1,或(a+b)2=(﹣3﹣2)2=25,综上所述,(a+b)2的值为1或25.点评:本题考查了有理数的乘方,绝对值的性质,难点在于确定出a、b的对应情况.23.已知a、b互为倒数,c、d互为相反数,且m的绝对值为1,求:的值.考点:代数式求值;相反数;绝对值;倒数.专题:计算题.分析:根据相反数、绝对值和倒数的定义得到ab=1,c+d=0,m=±1,把m=1或﹣1分别代入进行计算即可.解答:解:根据题意得ab=1,c+d=0,m=±1,当m=1时,原式=2×1﹣12﹣=1;当m=﹣1时,原式=2×1﹣(﹣1)2﹣=1,所以的值为1.点评:本题考查了代数式求值:先根据已知条件得到字母的值,然后把字母的值代入代数式进行计算得到对应的代数式的值.也考查了相反数、绝对值和倒数.24.阅读下题解答:计算:.分析:利用倒数的意义,先求出原式的倒数,再得原式的值.解:×(﹣24)=﹣16+18﹣21=﹣19.所以原式=﹣.根据阅读材料提供的方法,完成下面的计算:.考点:有理数的除法;倒数.专题:阅读型.分析:原式根据阅读材料中的计算方法变形,计算即可即可得到结果.解答:解:根据题意得:[﹣++(﹣)2×(﹣6)]÷(﹣)=[﹣++×(﹣6)]×(﹣42)=﹣×(﹣42)=75,则原式=.点评:此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.25.(10分)(2014秋•招远市期中)十一黄金周期间,花果山7天中每天旅游人数的变化情况如下表(正数表示比9月30日多的人数,负数表示比9月30日少的人数):日期1日2日3日4日5日6日7日人数变化/万人+0.5 +0.7 +0.8 ﹣0.4 ﹣0.6 +0.2 ﹣0.1(1)请判断7天内游客人数量最多和最少的各是哪一天?它们相差多少万人?(2)如果9月30日旅游人数为2万人,平均每人消费300元,请问风景区在此7天内总收入为多少万元?考点:正数和负数.分析:(1)比较统计表中的数据,即可得出旅游人数最多的是哪天,最少的是哪天,以及它们相差多少万人;(2)算出黄金周期间的总人数,再乘以60就是总收入.最多一天有出游人数3万人,即:a+2.8=3万,可得出a的值.解答:解:(1)游客人数量最多的是3日,最少的是5日,相差1.4万人;(2)0.5+0.7+0.8﹣0.4﹣0.6+0.2﹣0.1=1.1(万人),300×(7×2+1.1)=4530(万元).即风景区在此7天内总收入为4530万元.点评:考查了正数和负数,解题关键是要读懂题目的意思,根据题目给出的条件,列式计算,注意单位的统一.26.(12分)(2015秋•江都市校级月考)高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为0.09升/千米,则这次养护共耗油多少升?考点:正数和负数.分析:(1)求出这一组数的和,结果是正数则在出发点的东边,是负数则在出发点的西侧;(2)求出每个记录点得记录数据,绝对值最大的数对应的点就是所求的点;(3)所走的路程是这组数据的绝对值的和,然后乘以0.09,即可求得耗油量.解答:解:(1)17﹣9+7﹣15﹣3+11﹣6﹣8+5+16=+15千米.则在出发点的东边15千米的地方;(2)最远处离出发点有17千米;(3)(17+9+7+15+3+11+6+8+5+16)×0.09=8.73(升).答:这次养护共耗油8.73升.点评:本题考查了有理数的加减运算,以及正负数表示一对具有相反意义的量.27.(12分)(2014秋•张家港市校级期中)阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是【A,B】的好点.例如,如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的好点,但点D是【B,A】的好点.知识运用:如图2,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.(1)数2所表示的点是【M,N】的好点;(2)如图3,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的好点?考点:一元一次方程的应用;数轴.专题:阅读型.分析:(1)设所求数为x,根据好点的定义列出方程x﹣(﹣2)=2(4﹣x),解方程即可;(2)根据好点的定义可知分两种情况:①P为【A,B】的好点;②P为【B,A】的好点.设点P表示的数为y,根据好点的定义列出方程,进而得出t的值.解答:解:(1)设所求数为x,由题意得x﹣(﹣2)=2(4﹣x),解得x=2;(2)设点P表示的数为y,分两种情况:①P为【A,B】的好点.由题意,得y﹣(﹣20)=2(40﹣y),解得y=20,t=(40﹣20)÷2=10(秒);②P为【B,A】的好点.由题意,得40﹣y=2[y﹣(﹣20)],解得y=0,t=(40﹣0)÷2=20(秒);综上可知,当t为10秒或20秒时,P、A和B中恰有一个点为其余两点的好点.点评:本题考查了一元一次方程的应用及数轴,解题关键是要读懂题目的意思,理解好点的定义,找出合适的等量关系列出方程,再求解.。
2015-2016学年上学期第一次月考 七年级数学
一.选择题(24分)
1.已知两个有理数的和比其中任何一个加数都小 ,那么一定是 ( ) A .这两个有理数同为正数 B. 这两个有理数同为负数
C. 这两个有理数异号
D. 这两个有理数中有一个为零
2.某大米包装袋上标注着“净含量10㎏±150g ”,小华从商店买了2袋大米,这两袋大米相差的克数不可能是 ( ) A. 100g B. 150g C. 300g D. 400g
3.下列说法中错误的说法个数是 ( ) (1)有理数可分为整数和分数.(2)没有绝对值最小的数.(3)最小的非负整数是1. (4)相反数等于它本身的数只有0.(5)绝对值等于它本身的数是正数. (6)如果两个数的绝对值相等,那么这两个数一定相等。
A. 2个
B. 3个
C. 4个
D.5个
4. A 点在数轴上表示-1,点B 在数轴上距离点A3个单位,则点B 所表示的实数为 ( ) A .3 B .2 C .-4 D .2或-4
5.在数轴上不小于-2.3且不大于3.2的整数的个数是 ( ) A .4 B .5 C .6 D .7
6. 将一圆形纸片对折后再对折,得到一个扇形如右图,然后沿着虚线剪去一个直角三角形,剩余部分展开后的平面图形是 ( )
7.下列现象中,可以用“线动成面”的知识来解释的是 ( ) A.投掷篮球,篮球运动的轨迹; B.将一根木棒绕一个端点旋转一周形成圆面;
C.飞机拉烟表演;
D.把一个硬币竖立起来用手拨动使其旋转,成了一个球. 8. 小丽制作了一个如下左图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是 ( )
二.填空题(21分) 9. -2的相反数是_______.
10.巴黎与北京的时差为7-h (负号表示同一时刻巴黎时间比北京晚),小明与爸爸在巴黎乘坐上午 10:00(巴黎本地时间)的飞机约11小时达到北京,那么到达的北京时间是 . 11.a 、b 是有理数,且0<+b a ,b a >,那么把a ,-a ,b ,-b 按照从小到大的顺序排列是:
_____________________
12.用大小相同的小立方块搭成一个几何体,主视图和左视图如右图,那么搭成它最少要________个小立方块.
13.直角三角形的两条直角边长分别为3cm 和4cm ,将它绕着一条直角边旋转一周形成一个几何体,从上面看是圆,那么从左面看到的图形的面积是_____________.
14.如图是老年活动中心门口放着的一个招牌,这个招牌是由三个特大号的骰子摞在一起而成的,每个骰子的六个面的点数分别是1到6,其中可看到7个面,其余11个面是看不见的,则看不见的面上的点数总和是________.
15.如图,观察由棱长为1的小立方体摆成的图形,寻找规律: 如图①中,共有1个小 立方体,其中1个看得见,0个看不见;如
图②中,共有8个小立方体,其中7个看得见,1个看不见;如图③中,共有27个小立方体,其中19个看得见,8个看不见;……,则第⑥个图中,看得见的小立方体有________个. 三.解答题
16.计算(每小题5分,共20分)
⑴ ()()()()48594736-+-+++- ⑵ ()3.5-+()2.3-()5.2--()8.4+- ⑶ 21742)213(73+----
⑷ 4.3325523322+-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝
⎛
-
17.(8分)(1)把下列各数分别表示在数轴上,并用“<”号把它们连接起来: 0.5-,0,4,3
4
-
,2.5,-5 (2)求上面各数的绝对值,并用“>”号把它们连接起来.
18.(10分)把下列各数填在相应的大括号内:
15,21-
,4
.1 ,-3,41,π,0,-3.14,7
22,-(-1),5.2-- 正整数集合{ …} 负整数集合{ …} 负分数集合{ …} 负数集合 { …} 非负有理数集合{ …}
19.(6分)如图,7个同样大小的小立方块摆成如下几何体,请画出它的三种视图
20.(7分)李老师从学校出发,向东走了3.5千米到了图书馆,又向东继续走了1千米到了超市,然后向西走了8.5千米到了博物馆,又继续向西走了1.5千米到了动物园,最后又回到学校.
⑴请用数轴表示图书馆、超市、博物馆和学校的相对位置,并指出博物馆离图书馆多远?
⑵李老师共走了多少千米?
21.(8分)某部队新兵入伍时,对新兵进行“引体向上”测试,以50次为标准,超过50次用正数表示,不足50次用负数表示,第二小队的10名新兵的成绩如下表:
(1
(2)求第二小队的平均成绩。
22.(8分)如图是一个几何体从三个方向看所得到的形状图.
(1)这个几何体的名称是____________________
(2)画出它的一种表面展开图;
(3)若从正面看的高为3 cm,从上面看三角形的边长为2 cm,求这个几何体的侧面积.
23.(8分)下列图形中,图(a)是正方体木块,把它切去一块,得到如图(b)(c)(d)(e)的木块.
(1)图(e)的形状的名称是____________.
(2)我们知道,图(a)的正方体木块有8个顶点、12条棱、6个面,请你将图(b)、(c)、(d)、(e)中木块的顶点数、棱数、面数填入表右表:
(3)、上表中各种木块的顶点数、棱数、面数之间的数量关系可以归纳出一定的规律,请你试写出顶点数x、棱数y、面数z之间的数量关系式.。