7.3 位错的运动
- 格式:ppt
- 大小:7.16 MB
- 文档页数:20
3.1位错的滑移⑴刃型位错的滑移⑵螺型位错的滑移⑶理论强度与实际强度产生差异的原因①位错处原子能量高→滑移能垒小→所需外力小②位错滑移仅需打断位错线附近少数原子的键合,因此所需的外加剪应力将大大降低。
③混合位错的滑移位错线沿各点的法线方向在滑移面上运动,滑动方向垂直于位错线方向,与柏氏矢量有夹角。
⑷位错滑移面与滑移方向①位错的滑移面:b与位错线所组成的面。
注:位错的滑移面与晶体的滑移面不是一回事。
②位错的滑移方向晶体滑移方向:与外力方向、柏氏矢量方向一致位错滑移方向:位错线的法向⑸判断晶体滑移方向的右手定则3.2 位错的攀移位错的攀移:刃型位错在垂直于滑移面方向上的运动⑴正攀移:在刃位错处的一排原子可因热运动而移去,成为填隙原子或者吸收空位,使位错向上移到另一个滑移面攀移伴随原子的迁移,需要空位的扩散,需要热激话,比滑移需更大能量。
⑵攀移的阻力对抗攀移阻力所作的功=产生点缺陷所需能量。
⑶攀移的动力Ⅰ化学攀移力①过饱和空位(或间隙原子),向位错线附近渗透而聚集在位错线上,促使正刃位错向上攀移,好像有力沿攀移方向作用在位错上,这种力称为渗透力 ②温度越高并存在过饱和空位时,刃型位错易于攀移。
Ⅱ弹性攀移力作用于半原子面上的正应力分量作用下,刃位错所受的力F y应力的作用:(半原子面侧)压应力有利于正攀移,拉应力有利于负攀移 3.3 位错的交滑移①交滑移:螺型位错在原滑移面上运动受阻时,有可能从原滑移面转移到与之相交的另一滑移面上去继续滑移。
②双交滑移:交滑移后的位错再转回和原滑移面平行的滑移面上继续运动3.4位错的密度⑴①位错的密度(定义):单位体积中包含位错线的总长度。
②位错密度(计算):垂直于位错线的平面上单位面积内的位错露头数,即单位观察表面内的蚀坑数(蚀坑法)⑵位错密度和晶体的强度位错密度较低时,τ随ρ的增加而减小;位错密度较高时,τ随ρ的增加而增大⑶提高晶体强度途径①尽量减小位错密度:晶须——极细的丝状单晶体,直径只有几个微米,基本不含位错,强度比块状材料高几个数量级。
位错总结一. 位错概念1.晶体的滑移与位错2. 位错模型● 刃型位错: 正负刃型位错, ※位错是已滑移区与未滑移区的边界※位错线必须是连续的-位错线不能中止在晶体内部。
∴ 起止与晶体表面(或晶界)或在晶体内形成封闭回路或三维网络● 螺型位错: 左螺旋位错,右螺旋位错 ● 混合位错3.位错密度 单位元体积位错线总长度,3/m m或单位面积位位错露头数,2m4. 位错的柏氏矢量 (Burgers Vector )● 确定方法: 柏氏回路 ●意义:1) 柏氏矢量代表晶体滑移方向(平行或反平行)和大小 2) 位错引起的晶格畸变的大小 3)决定位错的性质(类型)刃型位错 b ┴位错线 螺型位错 b//位错线混合位错 位错线与b斜交s e b b b+→,sin θb b e= θcos b b s=4)柏氏矢量的表示]110[2a b = 或 ]110[21=b●柏氏矢量的性质1)柏氏矢量的守恒性-流入节点的柏氏矢量之和等于流出节点的柏氏矢量之和2)一条为错只有一个柏氏矢量二.位错的运动1.位错的运动方式●刃型位错滑移―――滑移面:b l⨯,唯一确定的滑移面滑移方向:l v b v⊥,//滑移应力: 滑移面上的切应力-沿b 或b-攀移――攀移面: 附加半原子面攀移方向:)(b l v⨯⊥攀移应力:攀移面上的正应力; 拉应力-负攀移 压应力-正攀移 攀移伴随原子扩散,是非守恒运动,在高温下才能发生 ● 螺型位错滑移―――滑移面:包含位错线的任何平面滑移方向:l v b v⊥⊥,滑移应力 滑移面上的切应力-沿b 或b-交滑移―――同上●混合位错滑移(守恒运动)――同刃型位错非守恒运动 ――在非滑移面上运动-刃型分量的攀移和螺型分量的滑移的合成运动2.位错运动与晶体变形的关系1)滑移面两边晶体运动方向 V右手定则――以位错运动面为界, )(b l⨯所指的那部分晶体向b方向运动位错运动相关量:V v b l j i,,,,σb l⇔ : 确定位错的性质V j i⇒σ: 确定晶体相对运动V v l⇔⇔b ⇒确定位错运动方向或晶体运动方向上述规则对位错的任何运动方式均使用2)位错运动与晶体变形的定量关系v b ρε=, v b ρε= 3) 位错增殖Frank-Read 源 LGbL Gb ≈=ατ2 L 型增殖 双交滑移4)位错的交割刃-刃交割――21//b b 21b b ⊥刃-螺交割 螺-螺交割三.实际晶体的位错 (FCC ) 1.全位错的分解2. 堆垛层错内禀层错―――滑移型, 抽出型 A B C A B C A B C A B C↓↓↓↓↓↓ B C A B C A A B C A B C ∣B C A B C A外禀层错―――插入型C A B C A C B C A B C A3.分位错――完整晶体和层错的边界● Shockley 分位错 :特点: 1) ><=11261b 滑移型层错的边界2) 只能滑移,刃型不能攀移,螺型不能交滑移● Frank 分位错特点: 1) ><=11131b插入型或抽出型层错与完整晶体的边界2)只能攀移不能滑移4.扩展位错特点: 扩展宽度 πγπγ2422210Ga b b G d =⋅=只能滑移,不能交滑移;但束集后可交滑移5.位错反应● 位错反应的条件1) 几何条件: ∑∑='iib b2)能量条件:∑∑≤'22)()(iib b● Thompson 记号 ●形成扩展位错的反应 ●形成压杆位错的反应。
知识点058. 位错的运动滑移攀移位错的运动刃位错的运动螺位错的运动 滑移攀移 滑移刃位错的滑移有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)刃位错的滑移注意:晶体不同部分的相对滑移形成了位错,而位错的滑移是实现塑性变形的机制。
要区别晶体的滑移与位错的滑移。
此例中晶体滑移方向与位错滑移方向相同(相互平行)。
刃位错滑移方向与外力及伯氏矢量平行正、负刃位错滑移方向相反螺位错的滑移注意:晶体不同部分的相对滑移造成位错,而位错的滑移是实现塑性变形的机制。
要注意区别晶体的滑移与位错的滑移。
此例中晶体滑移方向与位错滑移方向不同(相互垂直)。
螺位错滑移方向与外力及伯氏矢量垂直左、右螺位错滑移方向相反混合位错的滑移注意:晶体不同部分的相对滑移造成位错,位错的滑移是实现塑性变形的机制。
要区别晶体的滑移与位错滑移。
此例中晶体滑移方向与位错滑移方向部分相同,部分不相同。
混合位错滑移方向与外力及伯氏矢量成一定角度(沿位错线法线方向滑移)刃位错和螺位错滑移的比较晶体的滑移方向与外力及位错的伯氏矢量相一致但并不一定与位错的滑移方向相同。
位错类型柏氏矢量位错线运动方向晶体滑移方向切应力方向刃位错垂直于位错线垂直于位错线与伯氏矢量方向一致与伯氏矢量方向一致螺位错平行于位错线垂直于位错线与伯氏矢量方向一致与伯氏矢量方向一致混合位错与位错线成角度垂直于位错线与柏氏矢量方向一致与伯氏矢量方向一致有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)位错的攀移定义:分类:正攀移负攀移攀移的特点及与滑移的不同:有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)随堂练习:答:。
位错的运动和分解
位错的运动主要包括滑移和攀移两种基本方式,并且位错还可以发生分解。
1. 滑移:这是位错运动的主要方式之一。
当外部施加的切应力克服了位错运动所受的阻力时,位错将沿着特定的原子面(即滑移面)移动。
这种运动会导致晶体的一部分相对于另一部分滑动,从而引起塑性变形。
2. 攀移:攀移是刃型位错特有的运动方式。
在晶体内,刃型位错可以沿着垂直于滑移面的方向上进行移动。
攀移通常需要点缺陷的存在,例如空位或间隙原子,因为位错通过吸收或排放这些点缺陷来改变其位置。
3. 位错分解:在复杂的晶体结构中,全位错可以分解为不全位错。
不全位错之间的区域称为堆垛层错。
这种分解通常发生在低能层错能的材料中,并且这种分解会影响材料的力学性能。
位错的运动和分解是材料科学中非常重要的概念,它们对材料的塑性变形和力学性能有着决定性的影响。
了解位错的这些行为对于材料的设计和应用至关重要。
位错的运动条件1. 位错要运动啊,那得有足够的能量才行呢,就像人要跑步,得吃饱饭有力气呀。
我有个朋友研究金属材料,他发现那些加热后的金属,里面的位错就开始活跃起来,为啥呢?因为加热给了位错能量呀,就像给汽车加满油,它就能跑起来啦。
2. 位错想运动呀,应力可是个关键因素哦。
这应力就好比是推一把位错的手。
你看建筑工地上那些钢梁,承受压力的时候,钢梁里的位错就会根据应力的情况开始运动啦。
要是没有应力,位错就像个懒虫,动都不想动呢。
3. 位错的运动也得看周围的环境呀,就像鱼在水里游,水的情况很重要。
我认识一个搞科研的同学,他做实验发现,在纯净的晶体环境里,位错运动就比较顺畅,就像在清澈的水里游泳的鱼。
可要是晶体里杂质多了,位错运动就会磕磕绊绊的,就像鱼在满是水草的水里游。
4. 位错运动还跟晶体结构有关呢。
这晶体结构就像是位错运动的轨道。
我听一个专家说,在简单立方晶体里,位错运动的路径就比较规则,就像火车在笔直的铁轨上跑。
而在一些复杂晶体结构里,位错运动就像走迷宫,得费好大劲儿呢。
5. 温度对位错运动也有很大影响啊。
温度高的时候,位错就像被注入了活力剂一样。
就拿做陶瓷的师傅来说,他们在烧制陶瓷时,高温下陶瓷材料里的位错就活跃起来了,要是温度低了,位错就像被冻住了,动都动不了,真让人着急啊。
6. 位错的运动离不开原子的活动,原子就像位错的小伙伴。
我在书上看到一个例子,在一些金属合金里,原子排列方式一变,位错运动也跟着变。
就好像小伙伴们改变了排队方式,那原本一起行动的位错也得跟着调整自己的运动路线,是不是很有趣呢?7. 位错运动还和外力的方向有关系呢。
这外力方向就像指挥棒,指挥着位错往哪运动。
我同事做材料拉伸实验的时候发现,沿着某个方向拉材料,位错就朝着拉力的方向运动,要是外力方向变了,位错就像听话的小兵,马上调整自己的运动方向。
8. 晶体内部的缺陷有时候也会影响位错运动。
这些缺陷就像路障一样。
我和一个材料工程师聊天,他说在有些晶体里有孔洞或者其他缺陷,位错运动到那儿就可能被挡住,就像汽车在路上遇到石头,得想办法绕过去或者把它移开才能继续前进。