橡胶的硫化体系介绍
- 格式:doc
- 大小:614.50 KB
- 文档页数:23
橡胶的硫化体系橡胶是一种高分子化合物,通常由天然橡胶或合成橡胶组成,其应用范围非常广泛。
但是,橡胶具有高度的粘性和变形性,在高温下易于熔化,这些特性使得橡胶在运输和储存过程中变得非常困难。
为了克服这些问题,橡胶制造业采用了许多方法,其中最常见的方法是橡胶的硫化。
橡胶的硫化历史可以追溯到19世纪末,当时化学家发现橡胶可以通过将其与硫或硫化物混合,然后在高温下进行处理,从而获得一种经过硫化的新材料。
这种新材料具有更高的强度、耐磨性和化学稳定性,逐渐取代了纯天然橡胶。
然而,它仍然存在着一些局限性,例如:硫化时间长,生产效率低;活化空间小,不利于大规模生产等等问题。
随着科技的不断发展,人们对橡胶的硫化体系进行了不断探索和研究,并提出了许多新的改进方案和方法。
橡胶硫化的过程可以通过化学反应方程式来表示:硫化前橡胶+ Caucas 橡胶+ Caucas硫化后橡胶+ Caucas 橡胶- Caucas - 橡胶(其中,Caucas 是用于促进反应的硫化促进剂。
)橡胶的硫化分为自然硫化和人工硫化。
自然硫化是指橡胶在自然条件下,如阳光、温度和湿度等影响下,慢慢发生硫化反应。
人工硫化则是将促进剂和硫化剂添加到橡胶中,然后进行加热处理,从而更快地发生化学反应,使橡胶硫化。
橡胶硫化的体系可以分为多种,其中经典的体系是硫氧化物体系。
这种体系基于硫和氧的反应,利用硫化促进剂、硫化剂和杂原料等组成。
在这种体系中,硫化剂与促进剂的比例非常重要,控制好比例可以在橡胶硫化的过程中获得更好的效果。
当然,还有许多其他的硫化体系,如酚酞氧化物的硫化体系、过氧化氢的硫化体系等等。
在橡胶的硫化过程中,促进剂的作用非常关键,它可以加速反应速度,降低硫化温度,并提高硫化效率。
在经典的硫氧化物体系中,常用的促进剂有苯胺类促进剂、吡啶类促进剂、咪唑类促进剂等。
不同种类的促进剂具有不同的作用机理和反应速率,因此在橡胶硫化过程中的选择和使用非常重要。
另一个重要的组分是杂原料。
橡胶的硫化体系介绍橡胶是一种天然或合成的高分子化合物,具有特殊的弹性和可塑性。
它广泛应用于轮胎、橡胶鞋、管道、密封件等领域。
然而,未经处理的橡胶易老化、自然硬化、热塑性差等缺陷,限制了其使用寿命和性能。
为了克服这些缺陷,橡胶必须进行硫化处理,即向其中引入硫化剂将橡胶分子交联成网状结构,从而增强其硬度、强度、耐磨性和耐化学性等方面的性能。
本文将介绍橡胶硫化体系的基本知识和应用。
1.橡胶的硫化橡胶的硫化是指在适当的温度和压力下,将橡胶与硫化剂反应生成交联链的过程。
硫化剂的作用是将橡胶分子链上的双键和硫醇基之间形成新的硫化键,使其形成硫化链。
随着硫化时间的延长,硫化链交联成网状结构,从而增强了橡胶的强度和硬度。
常见的硫化剂有硫化石灰、含硫羟化合物、代硫酰化合物等。
2.硫化剂的选择选择合适的硫化剂是橡胶硫化体系设计的重要环节。
硫化剂的性质影响着硫化过程的速率和特性。
一般来说,硫化剂的选择应该考虑以下因素:(1) 橡胶的种类和用途。
不同类型的橡胶对硫化剂的适应性不同,在选择硫化剂时应该考虑橡胶本身的特性和使用要求。
(2) 硬度和硫化速率。
硫化剂的种类、含量和硫化条件等因素都会影响硬度和硫化速率,因此选择硫化剂时应该考虑硬度和硫化速率的平衡。
(3) 压力和温度。
硫化剂的选择还应该考虑硫化过程的温度和压力等因素。
(4) 环保和成本。
在选择硫化剂时,还应考虑其环保性和成本因素。
3.橡胶硫化体系的分类橡胶硫化体系主要分为硫磺法和非硫磺法两种。
硫磺法是指使用硫磺作为硫化剂,形成交联链的过程。
硫磺硫化可以在常温下进行,对环境污染小,但硫化速率慢,需要使用促进剂和加热加压等条件来促进硫化。
非硫磺法是指使用非硫磺硫化剂来进行橡胶硫化,如含硫异氰酸酯、含硫醚化合物、含硫羟化合物、代硫酰化合物等。
这些硫化剂可在温和条件下发生反应,硫化速率快,不需要特殊的加热和加压条件,且可降低环境污染。
4.硫化介质的种类硫化介质是指用来促进硫化反应的介质,可以提高反应速率和控制反应条件。
橡胶硫化体系介绍橡胶硫化体系是指通过加入硫化剂、促进剂和助磺剂等物质,使橡胶分子间发生化学交联反应,形成弹性体的过程。
这个体系在橡胶制品的生产过程中起到了至关重要的作用。
本文将对橡胶硫化体系进行全面、详细、完整且深入地探讨。
硫化剂的作用硫化剂是橡胶硫化体系的核心组成部分,它能够引发橡胶分子间的交联反应。
硫化剂的主要作用有: 1. 引发剂作用:硫化剂能够分解,产生自由基或电离态硫,进而引发橡胶分子的交联反应。
2. 网络形成:硫化剂引发的交联反应使橡胶分子间形成网络结构,增加了橡胶的物理性能,如弹性、耐磨性等。
3. 促进界面反应:硫化剂可以提高橡胶与填料、助剂等其他物质之间的反应活性,增强它们之间的相互作用。
促进剂的作用促进剂常与硫化剂一同使用,它对硫化系统有着重要的调节作用。
促进剂的主要作用有: 1. 提高硫化速度:促进剂能够加快硫化反应的进行,缩短橡胶制品的硫化时间。
2. 改善硫化性能:促进剂能够改善橡胶硫化后的物理性能,如强度、硬度、耐磨性等,使制品具有更好的综合性能。
3. 调节硫化体系:促进剂能够调节硫化体系的活性、稳定性和选择性,提高其适应性和可控性。
助磺剂的作用助磺剂是橡胶硫化体系中的辅助物质,它对硫化反应起到协助作用。
助磺剂的作用主要有: 1. 促进硫化反应:助磺剂与硫化剂共同作用,加速硫化反应的进行,提高交联密度,增强橡胶硫化的效果。
2. 改善反应性能:助磺剂能够调节硫化体系的反应速度、温度敏感性和耐老化性,改善橡胶硫化的性能和稳定性。
硫化体系的选择在实际应用中,选择合适的硫化体系对于橡胶制品的质量和性能至关重要。
硫化体系的选择需要考虑以下几个因素: 1. 橡胶种类:不同种类的橡胶对硫化剂的反应性和选择性有所差异,需要根据橡胶材料的特点进行选择。
2. 硬度要求:不同硫化体系对制品硬度的影响不同,根据制品要求选择合适的硫化体系。
3. 工艺条件:硫化体系的选择还需考虑工艺条件,如硫化温度、硫化时间等。
硫化是胶料通过生胶分子间交联,形成三维网络结构,制备硫化胶的基本过程。
不同的硫化体系适用于不同的生胶。
橡胶硫化的研究一直在深入持久地进行,研究的目的主要是改进硫化胶的力学性能及其它性能,简化及完善工艺过程,降低硫化时有害物质的释放等等。
下面有针对性地简述当前使用的硫化体系。
不饱和橡胶通常使用如下几类硫化体系。
1.以硫黄,有机二硫化物及多硫化物、噻唑类、二苯胍类,氧化锌及硬脂酸为主的硫化剂。
这是最通用的硫化体系。
但所制得的硫化胶的耐热氧老化性能不高。
2.烷基酚醛树脂。
3.多卤化物(如用于聚丁二烯橡胶、丁苯橡胶及丁腈橡胶的六氯乙烷)、六氯-对二甲苯。
4.双官能试剂[如醌类、二胺类、偶氮及苯基偶氮衍生物(用于丁基橡胶及乙丙橡胶)等。
5.双马来酰亚胺,双丙烯酸酯。
两价金属的丙烯酸酯(甲基丙烯酸酯)、预聚醚丙烯酸酯。
6.用于硫化饱和橡胶的有机过氧化物。
饱和橡胶硫化不同种类的饱和橡胶时,可使用不同的硫化体系。
例如,硫化三元乙丙橡胶时,使用有机过氧化物与不饱和交联试剂,如三烯丙基异氰脲酸酯(硫化剂TAIC)。
硫化硅橡胶时也可使用有机过氧化物。
乙烯基硅橡胶硫化时可在催化剂(Pt)参与条件下进行。
含卤原子橡胶或含功能性基团的橡胶。
聚氯丁二烯橡胶、氯磺化聚乙烯及氯化丁基橡胶等是最常用的含氯橡胶。
硫化氯丁橡胶通常采用ZnO与MgO的并用物,以乙撑硫脲(NA-22)、二硫化秋兰姆、二-邻-甲苯基二胍(促进剂BG)及硫黄作硫化促进剂。
硫化氯磺化聚乙烯时可使用如下硫化体系。
1.氧化铝、氧化铅和氧化镁的并用物,以及氧化镁和季戊四醇酯,以四硫化双五甲撑秋兰姆(促进剂TRA)及促进剂DM作硫化促进剂。
2.六次甲基四胺与己二酸及癸二酸盐及氧化镁。
3.有机胺与环氧化物作用的产物。
以下体系可用于氯化丁基橡胶硫化:1.氧化锌与硬脂酸、氧化镁、秋兰姆及苯并噻唑二硫化物等的并用物;2.乙烯基二硫脲与氧化锌及氧化镁的并用物。
3.多羟基甲基酚醛树脂与氧化锌的并用物。
丁基橡胶硫化体系摘要:1.丁基橡胶硫化体系的概述2.丁基橡胶硫化体系的组成3.丁基橡胶硫化体系的作用4.丁基橡胶硫化体系的发展趋势正文:一、丁基橡胶硫化体系的概述丁基橡胶硫化体系是指在制备丁基橡胶过程中,通过加入硫化剂和其他辅助材料,使丁基橡胶具有良好的韧性、强度、耐磨性和耐高温性能的一种技术。
硫化体系对于丁基橡胶的性能至关重要,直接影响到丁基橡胶制品的使用寿命和可靠性。
二、丁基橡胶硫化体系的组成丁基橡胶硫化体系主要由以下几部分组成:1.丁基橡胶:丁基橡胶是一种合成橡胶,具有优良的耐热性、耐老化性和耐化学品性能。
2.硫化剂:硫化剂是丁基橡胶硫化体系中最关键的部分,它能够使丁基橡胶分子间产生交联,提高橡胶的韧性和强度。
常用的硫化剂有硫磺、加速剂和促进剂等。
3.填充剂:填充剂可以改善丁基橡胶的加工性能和制品的性能,如增加硬度、耐磨性和耐高温性能等。
常用的填充剂有碳黑、硅烷等。
4.增塑剂:增塑剂能够提高丁基橡胶的柔韧性和可塑性,使其更容易加工成各种形状。
常用的增塑剂有酯类、醚类等。
5.防老剂:防老剂能够延缓丁基橡胶制品的老化过程,延长使用寿命。
常用的防老剂有抗氧化剂、紫外线吸收剂等。
三、丁基橡胶硫化体系的作用丁基橡胶硫化体系的主要作用有以下几点:1.提高丁基橡胶的韧性和强度:通过硫化剂的作用,使丁基橡胶分子间产生交联,形成稳定的三维结构,从而提高韧性和强度。
2.改善丁基橡胶的加工性能:通过添加填充剂、增塑剂等辅助材料,改善丁基橡胶的加工性能,使其更容易加工成各种形状和尺寸的制品。
3.提高丁基橡胶制品的耐热性、耐磨性和耐老化性:通过选择合适的硫化剂、填充剂等材料,提高丁基橡胶制品在使用过程中的耐热性、耐磨性和耐老化性。
四、丁基橡胶硫化体系的发展趋势随着科技的不断发展,丁基橡胶硫化体系也在不断改进和优化,主要发展趋势有以下几点:1.硫化剂的环保化:随着人们对环境保护意识的增强,硫化剂的环保化成为丁基橡胶硫化体系发展的重要方向,如采用无硫硫化剂或低硫硫化剂等。
橡胶中dcp硫化体系的作用解释说明以及概述1. 引言1.1 概述橡胶作为一种重要的材料,在工程和日常生活中有广泛的应用。
为了提高橡胶的性能和满足特定需求,研究人员一直在寻找适当的添加剂和新的硫化体系。
dcp (二苯基二异丙基氧化锆)硫化体系是近年来在橡胶领域中受到广泛关注的一种。
它被证明可以有效改善橡胶的物理性能、耐热性和耐老化性等方面。
1.2 文章结构本文将对橡胶中dcp硫化体系的作用进行详细解释和说明。
首先,我们将简要介绍dcp硫化体系的基本原理和作用机理。
然后,我们将论述该硫化体系在橡胶材料中的具体应用,并分析其对橡胶物理性能改善的影响。
最后,我们将探讨该硫化体系对橡胶耐热性、耐老化性等方面的影响,并总结其在橡胶领域中的作用和意义。
1.3 目的本文旨在全面了解并解释橡胶中dcp硫化体系的作用,并阐述其在橡胶领域中的应用前景和发展方向。
通过对该硫化体系的深入研究,我们可以更好地理解它对橡胶性能的影响,为橡胶工业提供技术支持和指导。
同时,通过展望未来的研究方向和应用前景,我们可以为相关领域的科学家和工程师提供一些建议和启示。
2. 橡胶中dcp硫化体系的作用2.1 dcp硫化体系简介橡胶是一种重要的弹性材料,用于制造各种制品,例如轮胎、密封件和鞋底等。
而硫化是橡胶加工中常用的一种方法,其中dcp(二氧化二己基三苯基膦硫酸钼)是一种广泛使用的硫化剂。
dcp硫化体系由dcp硫化剂及其辅助物质组成,能够在适当的温度和时间下促使橡胶分子间形成交联结构,从而提高橡胶制品的物理性能。
2.2 dcp硫化体系的作用机制dcp硫化剂在橡胶中起到催化剂的作用。
它能够通过与橡胶中的双键进行反应,将双键之间形成交联结构。
当dcp加入到橡胶中后,在适当的温度下发生热分解,生成自由基,并与橡胶中存在的双键进行反应。
这些自由基会引发链式反应,将相邻分子连接起来形成交联网状结构,从而增加了橡胶材料的强度和硬度。
此外,dcp硫化剂还可以通过氧化作用,将部分橡胶链上的疏松结构形成更为紧密的网络结构,从而提高橡胶制品的耐磨性、耐油性和耐老化性。
三元乙丙橡胶三大硫化体系如何选择三元乙丙橡胶(EPDM)是一种常见的合成橡胶,具有优异的耐热性、耐候性和耐化学品性能。
它广泛应用于汽车、建筑、电气、塑料和橡胶制品等领域。
选择合适的硫化体系对于获取良好的性能至关重要。
EPDM具有三个主要的硫化体系:硫化剂硫化、过氧化物硫化和有机过硫酸盐硫化。
本文将对EPDM的三个硫化体系进行详细介绍,并提供选择的指导。
1.硫化剂硫化:硫化剂硫化是最常用的EPDM硫化体系。
在硫化剂硫化体系中,常用的硫化剂有硫醇类、硫酚类、双官能团硫醇类等。
这些硫化剂在高温条件下会释放出硫酸,与EPDM的双键发生反应,形成交联网状结构。
硫醇类硫化剂有二硫醚(OT)和二硫醇(DT),硫酚类硫化剂有硫酚醚类(DPG)和硫酚(MBT),双官能团硫醇类有甲基丙烯酸酯(DPTT)等。
硫化剂硫化体系可通过选择不同的硫化剂来改变硫化速率和硫化程度,调整EPDM的物理性能。
硫化剂硫化体系适合要求耐热性和耐久性的应用,如汽车制造业、建筑行业、电气设备制造业等。
硫化剂硫化体系具有硬度大、耐油性好、耐化学品性能较好的特点。
硫化剂硫化可以分为常规硫化和快速硫化两种类型。
常规硫化需要加入活性剂或促进剂来增加反应活性,适用于静态硫化过程。
而快速硫化不需要活性剂,适用于动态硫化过程。
2.过氧化物硫化:过氧化物硫化是EPDM的另一种硫化体系。
在过氧化物硫化体系中,过氧化物作为硫化剂,通过释放氧自身消耗,从而引起EPDM的硫化。
常用的过氧化物硫化剂有二(4-丁基过氧基)丙烷(DIP)和双过氧化苯酚(BPO)。
过氧化物硫化体系具有硫化温度低,速度快,成型过程简单等优点。
过氧化物硫化适合要求硬度低、柔软性好的应用,如密封圈、套管和软管等。
过氧化物硫化还可以与其他硫化体系混合使用,以获得更好的性能。
但是,过氧化物硫化体系也存在一些缺点,如曲率半径过小、灵敏度较高、硫化温度高等。
3.有机过硫酸盐硫化:有机过硫酸盐硫化是一种新兴的硫化体系。
橡胶过氧化物硫化体系
橡胶过氧化物硫化体系是一种橡胶硫化体系,其中过氧化物是起硫化剂作用的物质。
橡胶过氧化物硫化体系主要由以下成分组成:
1. 橡胶:最常用的橡胶是天然橡胶和合成橡胶,如丁苯橡胶、丁腈橡胶、氯丁橡胶等。
2. 过氧化物:过氧化物是一种含有氧气和氧键的物质,能够释放活性氧,并促进橡胶的硫化反应。
常用的过氧化物有过氧化苯钠、过氧化二异丙苯。
3. 其他添加剂:除了橡胶和过氧化物外,还可以添加一些辅助剂和助剂,如硫化促进剂、抗氧剂、塑化剂等,以调节橡胶硫化的速度和性能。
橡胶过氧化物硫化体系的硫化过程大致分为两步:首先,过氧化物释放活性氧,在橡胶分子链上引发自由基反应;然后,自由基与硫化活性物质或橡胶分子链发生反应,形成硫化键,使橡胶分子链交联成网状结构,增强其力学性能和耐热性能。
橡胶过氧化物硫化体系具有硫化速度快、硫化温度低、硫化产物无臭味等优点,但也存在一些问题,如储藏稳定性差、硫化剂残留、助剂活性降低等。
因此,在实际应用中需要选择合适的过氧化物和添加剂,以优化橡胶硫化的性能和稳定性。
橡胶硫化体系设计方案橡胶硫化体系是橡胶加工过程中非常重要的一步,可以使橡胶具有良好的弹性、耐磨性和耐老化性。
下面是一份橡胶硫化体系设计方案,共700字。
橡胶硫化体系设计方案一、背景介绍橡胶硫化是指将橡胶与硫化剂进行反应,引发交联反应,从而增加橡胶分子链之间的交联点数量,提高橡胶的物理力学性能。
针对不同的橡胶材料和应用要求,需要设计合适的硫化体系。
二、目标设计一个能够满足特定橡胶材料硫化要求的硫化体系。
通过合理选择硫化剂、促进剂和助剂,达到硫化反应的最佳条件,提高橡胶的性能。
三、硫化剂的选择根据橡胶材料的种类和硫化要求,选择适合的硫化剂,如硫、过氧化物、亚硝基化合物等。
硫是常用的硫化剂,适用于大多数橡胶材料。
通过调节硫的用量,可以控制交联程度。
四、促进剂的选择促进剂是加速硫化反应的化学物质,可以缩短硫化时间,提高硫化效率。
根据橡胶材料的特性,选择适合的促进剂。
常用的促进剂有硫化活性剂、金属氧化物、硫醇等。
例如,对于天然橡胶,常使用过氧化物作为促进剂。
五、助剂的选择助剂是在硫化过程中起辅助作用的化学物质,可以调节硫化反应的速度和性能。
根据橡胶材料的特性,选择适合的助剂。
常用的助剂有活性剂、塑化剂、抗老化剂等。
例如,为了提高橡胶的耐热性和耐老化性,可以选择合适的抗老化剂。
六、反应条件控制在硫化过程中,合理的反应条件对于交联反应的进行至关重要。
温度是控制硫化反应速率和交联程度的重要参数。
根据橡胶材料的硫化温度要求和促进剂的特性,确定合适的硫化温度范围。
同时,硫化时间也需要根据硫化剂的反应速率和橡胶材料的特性进行合理控制。
七、试验验证在设计硫化体系后,需要进行试验验证。
通过在实验室中制备样品,进行硫化反应,并对硫化后的橡胶进行性能测试。
根据测试结果,对硫化体系进行调整和改进,以达到预期的硫化效果。
八、结论通过合理选择硫化剂、促进剂和助剂,并控制硫化反应的条件,可以设计出适合特定橡胶材料的硫化体系。
这将有助于提高橡胶的性能和应用价值。
不同硫化体系对天然橡胶动静态性能的影响常见的硫化体系有硫黄-硫化酚(S-S)、硫黄-硫代二苯酚(S-T)、硫黄-苯硫酚醛树脂(S-TF)、硫黄-速硫化剂等。
这些硫化体系对天然橡胶的动静态性能有着不同的影响,具体表现在以下几个方面:
1.力学性能:硫黄-硫化酚体系所硫化的天然橡胶具有较高的强度和硬度,适用于制造胎帘、胎侧胶等需要较高机械强度的橡胶制品;而硫黄-硫代二苯酚体系所硫化的天然橡胶则具有较好的弹性和抗撕裂性能,适用于制造橡胶管、橡胶垫等需要较好弹性的橡胶制品。
2.硬度:硫黄-硫化酚体系所硫化的天然橡胶硬度较高,适用于制造车胎、输送带等对硬度要求较高的橡胶制品;而硫黄-硫代二苯酚体系所硫化的天然橡胶硬度较低,适用于制造汽车密封条、电缆保护管等对硬度和柔软性要求较高的橡胶制品。
3.耐磨性:硫黄-硫化酚体系所硫化的天然橡胶耐磨性较好,适用于制造轮胎、橡胶刷子等需要具有较好耐磨性的橡胶制品;而硫黄-硫代二苯酚体系所硫化的天然橡胶耐磨性较差,适用于制造软管、密封件等对磨损要求不高的橡胶制品。
总之,不同硫化体系对天然橡胶的动静态性能有着不同的影响,通过合理选择硫化体系可以调节天然橡胶的力学性能、硬度和耐磨性,以满足不同橡胶制品的需求。
需要根据具体的应用要求和制品性能来选择适合的硫化体系,以获得最佳的性能。
橡胶硫化工艺介绍
硫化橡胶工艺是指将橡胶加工成制品的工艺。
硫化工艺又称为硫化反应,是橡胶加工中的一个重要环节。
硫化过程是一个化学过程,由各种因素如温度、时间和压力等控制,以获得所要求的制品性能。
在橡胶制品中,通常将含有其他助剂的聚合物制成的橡胶制品,经过一定时间后,可将其内部化学结构中的自由氨基转化为不饱和氨基,同时释放出一种称为“硫化剂”的化学物质。
经硫化后,该聚合物内的自由氨基被限制在分子内,形成分子内交联网络,从而使橡胶具有良好的弹性、耐磨性、耐屈挠性和抗老化性能等。
硫化胶生产中所使用的硫化剂主要有两种:一是含硫化合物(如硫磺、硫黄等);二是不含硫化合物(如白炭黑)。
不含硫化合物一般为其在硫化过程中提供硫源,而含硫化合物则在硫化过程中提供了交联网络所需的能量。
由于硫化剂可以通过加热使其分子中的自由氨基发生交联反应,因此在硫化过程中产生大量热和自由基,这不仅可提高硫化速度,而且能使橡胶制品具有良好的性能。
—— 1 —1 —。
橡胶硫化体系
橡胶是一种非常重要的高分子材料,具有高弹性、抗磨耗、耐酸
碱等优良性能。
然而,橡胶的使用寿命受到了许多因素的影响,如氧化、老化、高温等。
为了提高橡胶的性能,人们引入了硫化体系技术。
橡胶硫化体系,简单地说,就是将硫磺和辅助药剂添加到橡胶中,通过热或光能量,使硫磺和橡胶分子发生化学反应,形成交联结构,
从而使橡胶变得更加紧密坚硬、更具弹性、更耐磨耐老化。
橡胶硫化体系主要包括硫磺、加快剂、活性剂、防老剂、增容剂等。
其中,硫磺是必不可少的元素,在硫化过程中起到至关重要的作用,它能够在不同温度下与橡胶分子发生反应,形成交联结构。
加快
剂的作用是加速硫化反应速度,降低硫化温度,提高硫化效率。
活性
剂能够促进交联反应的形成,增加交联密度,提高橡胶的强度和耐磨性。
防老剂则能阻止氧气、紫外线等对橡胶的氧化、老化,从而延长
橡胶使用寿命。
增容剂可以改善橡胶与其他物质的相容性,提高橡胶
的加工性能。
在橡胶硫化体系的过程中,控制硫化的时间、温度和硫磺添加量
非常重要。
过短的硫化时间和低温度会导致橡胶硫化不完全,性能不佳;过长的硫化时间和过高的温度则会导致橡胶过度硫化,性能下降。
因此,需要根据具体的情况来调整硫化体系的参数。
总体来看,橡胶硫化体系是提高橡胶性能的重要技术,能够使橡
胶具有更高的强度、硬度、耐磨性、耐老化性等优良性能,满足不同
领域的需求。
在实际应用中,需要根据需要选择不同的硫化体系,进行适量添加,从而得到更加优质的橡胶材料。
橡胶的硫化体系
硫化是橡胶制品加工的主要工艺过程之一,也是橡胶制品生产中的最后一个加工工序。
在这个工序中,橡胶要经历一系列复杂的化学变化,由塑性的混炼胶变为高弹性的交联橡胶,从而获得更完善的物理机械性能和化学性能,提高和拓宽了橡胶材料的使用价值和应用范围。
因此,硫化对橡胶及其制品的制造和应用具有十分重要的意义。
本章要求:
1.掌握硫化概念、硫化参数(焦烧、诱导期、正硫化、硫化返原)、喷霜等专业术语。
2.掌握硫化历程、各种硫化剂、促进剂的特性;
3.掌握硫化体系与硫化胶结构与性能的关系、硫化条件的选取与确定。
4.了解各种硫化体系的硫化机理、硫化工艺及方法。
本章主要参考书:
橡胶化学(王梦蛟译)、橡胶化学与物理、橡胶工业手册(2、3分册)
§1 绪论
一.硫化发展概况
1839年,美国人CharlesGoodyear发现橡胶和硫黄一起加热可得到硫化胶;
1844年,Goodyear又发现无机金属氧化物(如CaO、MgO、PbO)与硫黄并用能够加速橡胶的硫化,缩短硫化时间;
1906年,使用了有机促进剂苯胺。
Oenslager发现在硫化性能最差的野生橡胶中添加苯胺后,可使其性能接近最好的巴拉塔胶。
NR+S+PbO+苯胺——→硫化速度大大加快,且改善硫化胶性能;
1906-1914年,确定了橡胶硫化理论,认为硫化主要是在分子间生成了硫化物;
1920年,Bayer发现碱性物有促进硫化作用;
NR+S+ZnO+苯胺——→
1921年,NR+S+ZnO+硬脂酸+苯胺——→
同年又发现了噻唑类、秋兰姆类促进剂,并逐渐认识到促进剂的作用,用于橡胶的硫化中。
在此之后又陆续发现了各种硫化促进剂。
硫黄并非是唯一的硫化剂。
1846年,Parkes发现SCl的溶液或蒸汽在室温下也能硫化橡胶,称为“冷硫化法”;
1915年,发现了过氧化物硫化;
1918年,发现了硒、碲等元素的硫化;
1930年,发现了低硫硫化方法;
1940年,相继发现了树脂硫化和醌肟硫化;
1943年,发现了硫黄给予体硫化;
二战以后又出现了新型硫化体系,如50年代发现辐射硫化;70年代脲烷硫化体系;80年代提
出了平衡硫化体系。
二.硫化的定义
线性的高分子在物理或化学作用下,形成三维网状体型结构的过程。
实际上就是把塑性的胶料转变成具有高弹性橡胶的过程。
三.硫化历程及硫化参数
(一)硫化历程
硫化历程是橡胶大分子链发生化学交联反应的过程,包括橡胶分子与硫化剂及其他配合剂之间发生的一系列化学反应以及在形成网状结构时伴随发生的各种副反应。
可分为三个阶段:
1.诱导阶段硫化剂、活性剂、促进剂之间的反应,生成活性中间化合物,然后进一步引发橡
胶分子链,产生可交联的自由基或离子。
2.交联反应阶段可交联的自由基或离子与橡胶分子链之间产生连锁反应,生成交联键。
3.网构形成阶段交联键的重排、短化,主链改性、裂解。
(二)硫化历程图
图2-1 硫化历程图
根据硫化历程分析,可将硫化曲线分成四个阶段,即焦烧阶段、热硫化阶段、平坦硫化阶段和过硫化阶段。
1.焦烧阶段
2.热硫化阶段
3.平坦硫化阶段
4.过硫化阶段
胶料硫化在过硫化阶段,可能出现三种形式:
(三)硫化参数
1.T10:胶料从加热开始至转矩上升到最大转矩的10%所需要的时间。
M10=M L+(M H-M L)×10%
2.诱导期(焦烧期):从胶料放入模具至出现轻微硫化的整个过程所需要的时间叫硫化诱导期,又称为焦烧时间。
诱导期反应了胶料的加工安全性。
诱导期短,加工安全性差;诱导期太长,会降低生产效率。
3.焦烧:胶料在存放和加工过程中出现的早期硫化现象。
4.工艺正硫化时间:胶料从加热开始,至转矩上升到最大转矩的90%时所需要的时间。
M90=ML+(MH-ML)×90%
5.理论正硫化时间:交联密度达到最大程度时所需要的时间。