八年级数学上册第13章三角形中的边角关系命题与证明知识点总结沪科版.doc
- 格式:doc
- 大小:58.50 KB
- 文档页数:2
第13章 三角形中的边角关系、命题与证明一、三角形(一)、三角形概念1、不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号“Δ”表示。
组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。
2、顶点是A 、B 、C 的三角形,记作“ΔABC”,读作“三角形ABC”。
3、组成三角形的三条线段叫做三角形的边,即边AB 、BC 、AC ,有时也用a ,b ,c 来表示,顶点A 所对的边BC 用a 表示,边AC 、AB 分别用b ,c 来表示;4、∠A 、∠B 、∠C 为ΔABC 的三个内角。
(二)、三角形中三边的关系1、三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。
用字母可表示为a+b>c,a+c>b,b+c>a ;a -b<c,a -c<b,b -c<a 。
2、判断三条线段a,b,c 能否组成三角形:(1)当a+b>c,a+c>b,b+c>a 同时成立时,能组成三角形;(2)当两条较短线段之和大于最长线段时,则可以组成三角形。
3、确定第三边(未知边)的取值范围时,它的取值范围为大于两边的差而小于两边的和,即.4、作用:∠判断三条已知线段能否组成三角形;∠当已知两边时,可确定第三边的范围;∠证明线段不等关系。
(三)、三角形中三角的关系1、三角形内角和定理:三角形的三个内角的和等于1800。
2、三角形按内角的大小可分为三类:(1)锐角三角形,即三角形的三个内角都是锐角的三角形;(2)直角三角形,即有一个内角是直角的三角形,我们通常用“RtΔ”表示“直角三角形”,其中直角∠C 所对的边AB 称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边。
注:直角三角形的性质:直角三角形的两个锐角互余。
(3)钝角三角形,即有一个内角是钝角的三角形。
3、判定一个三角形的形状主要看三角形中最大角的度数。
第13章,三角形的边角关系,命题与证明基础知识总结三角形的边角关系,命题与证明基础知识总结三角形作为几何学中的重要概念,其边角关系及命题与证明是我们学习几何的基础知识之一。
在这一章节中,我们将总结三角形的边角关系以及相关的命题和证明方法。
1. 三角形的基本概念在开始讨论三角形的边角关系之前,我们先来回顾一下三角形的基本概念。
三角形是由三条线段组成的闭合图形,其中三条线段被称为三角形的边,而通过边连接的角则是三角形的内角。
三角形的内角和为180度。
2. 三角形的边角关系在三角形中,有一些重要的边角关系需要我们掌握。
首先是三角形的内角和定理,即三角形的三个内角之和为180度。
这个定理应用广泛,可以帮助我们推导出其他三角形的性质。
另外一个重要的边角关系是三角形的对角线和比例定理。
根据该定理,如果在两个三角形中,三个角分别相等,那么三个边的比例也应该相等。
这个定理可以用来解决一些三角形的相似性问题。
3. 三角形的命题与证明在几何学中,命题与证明是必不可少的。
在三角形中,我们可以通过命题来表达一些三角形的性质,然后通过证明来证明这些性质的真实性。
举个例子,假设我们有一个三角形ABC,命题可以是“三角形ABC 的两边之和大于第三边”。
然后我们可以通过构造具体的图形以及运用基础几何性质来进行证明。
具体的证明过程可以通过构造辅助线、利用三角形的内角和等性质等方法来进行。
此外,还有一些常见的三角形命题,比如角平分线定理、垂直平分线定理等。
通过学习这些命题并能够熟练地进行证明,有助于我们进一步掌握三角形的性质和理解几何推理的过程。
总结:三角形的边角关系、命题与证明是几何学中的基础知识。
我们需要掌握三角形的内角和定理、对角线和比例定理等重要的边角关系,并且能够应用这些关系解决三角形的相似性问题。
同时,我们还需要学会通过命题来表达三角形的性质,并能够通过证明来验证这些性质的真实性。
通过不断的练习和应用,我们可以更好地掌握三角形的边角关系以及命题与证明的基础知识,为学习更高级的几何学知识奠定坚实的基础。
第十三章三角形中的边角关系
一、三角形的分类
1、按边分类:
2、按角分类:
不等边三角形直角三角形
三角形三角形锐角三角形等腰三角形(等边三角形是特例)斜三角形
钝角三角形
二、三角形的边角性质
1、三角形的三边关系:
三角形中任何两边的和大于第三边;任何两边的差小于第三边。
2、三角形的三角关系:
三角形内角和定理:三角形的三个内角的和等于180°。
三角形外角和定理:三角形的三个外角的和等于360°。
3、三角形的外角性质
(1)三角形的一个外角等于与它不相邻的两个内角的和;(2)三角形的一个外角大于与它不相邻的任何一个内角。
三、三角形的角平分线、中线和高
(说明:三角形的角平分线、中线和高都是线段)
四、命题
1、命题:凡是可以判断出真(正确)、假(错误)的语句叫做命题.
2、命题分类
真命题:正确的命题
命题
假命题:错误的命题
3、互逆命题
4、反例:符合命题条件,但不满足命题结论的例子
原命题:如果p,那么q;
逆命题:如果q,那么p。
称为反例。
(说明:交换一个命题的条件和结论就是它的逆命题。
)。
第1单元知识点一:三角形的概念【知识要点】1、如图,由不在的三条线段首尾依次相接所组成的封闭图形叫做三角形,用符号表示为:读作:A点叫做这个三角形的顶点;线段叫做这个三角形的边有时三边用它所对角的相应小写字母表示,如边AB记作: B叫做这个三角形的内角,简称知识点二:三角形中边的关系【知识要点】1、三角形中任何两边的和第三边2、三角形中任何两边的差第三边3、三角形第三边的取值范围是: 两边之差<第三边<两边之和【典型例题】1、下列长度的三条线段能组成三角形的是( )(A) 5cm 6cm 13cm (B)1cm 3cm 4cm(C)4cm 5cm 6cm (D) 1cm 2cm 3cm2、三角形的三边分别为4cm、6cm、acm,第三边a 的取值范围为知识点三:三角形中角的关系【知识要点】三角形的三个内角和等于【典型例题】已知:如图,△ABC中,BD⊥AC,垂足为D。
∠ABD=54°,∠DBC=18°.求∠A和∠C的度数。
知识点四:三角形的分类【知识要点】1.按边分类不等边三角形等边三角形()()()如图:三角形按边长关系,可分为:、2.按角分类 (1) 叫做锐角三角形。
(2) 叫做直角三角形。
(3) 叫做钝角三角形。
(4) 叫做直角边,叫做斜边。
(5)直角三角形ABC 可以写成三角形按角分类,可分为 , ,【典型例题】 1、等腰三角形中,周长为18cm 。
(1)如果腰长是底边长的2倍,求各边长;(2)如果一边长为4cm ,求另两边长。
2、在△ABC 中,∠A ︰∠B ︰∠C=1︰2︰3,那么这个三角形是什么样的三角形呢?知识点五:认识并会画三角形的高线【知识要点】1、作出下列三角形三边上的高:2、上面第1图中,AD 是△ABC 的边BC 上的高,则∠ADC=∠ = °3、由作图可得出如下结论:(1)三角形的三条高线所在的直线相交于 点;(2)锐角三角形的三条高相交于三角形的 ;(3)钝角三角形的三条高所在直线相交于三角形的 ;(4)直角三角形的三条高相交三角形的 ;(5)三角形三条高所在直线相交于一点,这点叫做三角形的垂心。
第十三章三角形中的边角关系
一、三角形的分类
1、按边分类:
2、按角分类:
不等边三角形直角三角形
三角形三角形锐角三角形等腰三角形(等边三角形是特例)斜三角形
钝角三角形
二、三角形的边角性质
1、三角形的三边关系:
三角形中任何两边的和大于第三边;任何两边的差小于第三边。
2、三角形的三角关系:
三角形内角和定理:三角形的三个内角的和等于180°。
三角形外角和定理:三角形的三个外角的和等于360°。
3、三角形的外角性质
(1)三角形的一个外角等于与它不相邻的两个内角的和;
(2)三角形的一个外角大于与它不相邻的任何一个内角。
三、三角形的角平分线、中线和高
(说明:三角形的角平分线、中线和高都是线段)
四、命题
1、命题:凡是可以判断出真(正确)、假(错误)的语句叫做命题。
2、命题分类
真命题:正确的命题
命题
假命题:错误的命题
3、互逆命题
4、反例:符合命题条件,但不满足命题结论的例子
原命题:如果p,那么q;
逆命题:如果q,那么p。
称为反例。
(说明:交换一个命题的条件和结论就是它的逆命题。
)。