三角函数、反三角函数整理表
- 格式:doc
- 大小:46.00 KB
- 文档页数:2
常⽤反三⾓函数公式表(完整资料).doc 此⽂档下载后即可编辑
反三⾓函数公式
arc sin x + arc sin y = arc sin x – arc sin y = arc cos x + arc cos y = arc cos x – arc cos y = arc tan x + arc tan y = arc tan x – arc tan y = 2 arc sin x = 2 arc cos x =
2 arc tanx = cos (n arc cos x) =
反三⾓函数图像与特征
反正弦曲线图像与特征反余弦曲线图像与特征
拐点(同曲线对称中⼼):,该点切线斜率为1
拐点(同曲线对称中⼼):
,该点切线斜率为-1 反正切曲线图像与特征反余切曲线图像与特征拐点(同曲线对称中⼼):,该点切线斜率为1 拐点:
,该点切线斜率为-1
渐近线:
渐近线:
名称反正割曲线反余割曲线
⽅程
图像
顶点
渐近线
反三⾓函数的定义域与主值范围
函数主值记号定义域主值范围
反正弦若,则
反余弦若,则
反正切若,则
反余切若,则
反正割若,则
反余割若,则
式中n为任意整数.。
反三角函数公式arc sin x + arc sin y =arc sin x–arc sin y = arc cos x + arc cos y =arc cos x–arc cos y = arc tan x + arc tan y =arc tan x–arc tan y = 2 arc sin x = 2 arc cos x =2 arc tanx =cos (n arc cos x) =反三角函数图像与特点反正弦曲线图像与特点反余弦曲线图像与特点拐点 ( 同曲线对称中心 ) :拐点 ( 同曲线对称中心 ) :,该点切线斜率为 1,该点切线斜率为- 1 反正切曲线图像与特点反余切曲线图像与特点拐点:拐点 ( 同曲线对称中心 ) :,该点切线斜率为 1,该点切线斜率为- 1渐近线:渐近线:名称反正割曲线反余割曲线方程图像极点渐近线反三角函数的定义域与主值范围函数主值记号定义域主值范围反正弦若,则反余弦若,则反正切若,则反余切若,则反正割若,则反余割若,则一般反三角函数与主值的关系为式中 n 为随意整数 .反三角函数的互相关系arc sin x =arc cos x =arc tan x =arc cot x =sin x = x-x3/3!+ x5/5!-...(-1)k-1* x2k-1/(2k-1)!+... (- ∞<x<∞)cos x = 1- x2/2!+ x4/4!-...(-1)k* x2k/(2k)!+... (- ∞<x<∞)arcsin x = x + 1/2* x3/3 + 1*3/(2*4)*x5/5 + ... (| x|<1)arccos x = π- ( x + 1/2* x3/3 + 1*3/(2*4)* x5/5 + ... ) (| x|<1)arctan x = x - x^3/3 + x^5/5 - ... ( x≤1)ArcSin(x)函数功能:返回一个指定数的反正弦值,以弧度表示,返回种类为Double。
特殊三角函数值对照表(特殊角的三角函数值)《特殊角的三角函数值》是人教版数学九年级下册第二十八章的内容,特殊三角函数值一般指在0,30°,45°,60°,90°,180°角下的正余弦值。
这些角度的三角函数值是经常用到的。
并且利用两角和与差的三角函数公式,可以求出一些其他角度的三角函数值。
具体的三角函数值如下表:扩展资料:黄金三角函数介绍:α=18°(π/10) sinα=(√5-1)/4 cosα=√(10+2√5)/4tαnα=√(25-10√5)/5cscα=√5+1 secα=√(50-10√5)/5 cotα=√(5+2√5)α=36°(π/5) sinα=√(10-2√5)/4 cosα=(√5+1)/4tαnα=√(5-2√5)cscα=√(50+10√5)/5 secα=√5-1 cotα=√(25+10√5)/5α=54°(3π/10) sinα=(√5+1)/4 cosα=√(10-2√5)/4 tαnα=√(25+10√5)/5是数学中属于初等函数中的超越函数的一类函数。
它们的本质是任意角的集合与一个比值的集合的变量之间的映射。
通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。
另一种定义是在直角三角形中,但并不完全。
扩展资料:三角函数在复数中有重要的应用。
三角函数也是物理学中的常用工具。
它有六种基本函数函数名正弦余弦正切余切正割余割符号 sin cos tan cot sec csc正弦函数sin(A)=a/c余弦函数cos(A)=b/c正切函数tan(A)=a/b余切函数cot(A)=b/a其中a为对边,b为邻边,c为斜边特殊角的值如下表:在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A 的正弦,记作sinA(由英语sine一词简写得来),即sinA=∠A的对边/斜边。
扩展资料:sinα = tanα × cosα(即sinα / cosα = tanα )cosα = cotα × sinα (即cosα / sinα = cotα)tanα = sinα × secα (即tanα / sinα = secα)sin ( α ± β ) = sinα · cosβ ± cosα · sinβsin ( α + β + γ ) = sinα · cosβ · cosγ +cosα · sinβ · cosγ + cosα · cosβ · sinγ - sinα · sinβ · sinγcos ( α ± β ) = cosα cosβ ∓ sinβ sinαtan ( α ± β ) = ( tanα ± tanβ ) / ( 1 ∓ tanα tanβ )完整初中三角函数值表如下图所示:常见的三角函数有正弦函数、余弦函数和正切函数。
三角函数反函数特殊值表三角函数,又称为角函数,是一种常用的数学函数,也是大家最熟悉的数学函数之一。
它们主要由正弦函数,余弦函数和正切函数组成,它们的反函数也是同样的常用函数,也被称为反三角函数。
三角函数反函数是根据以下三个基本函数定义的:1.正弦函数:正弦函数定义为底角入口参数x和左闭值[-π/2,π/2]之间的正弦值y的函数,即:y=sin x。
2.余弦函数:余弦函数定义为底角入口参数x和左闭值的[-π/2,π/2]之间的余弦值y的函数,即:y=cos x。
3.正切函数:正切函数定义为底角入口参数x和左闭值的[-π/2,π/2]之间的正切值y的函数,即:y=tan x。
三角函数的反函数具有很多特殊值,这些值对于精确计算非常重要。
下表列出了三角函数反函数特殊值:【反正弦函数特殊值】xtsin xtarccos x0t0tπ/2π/6t1/2tπ/3π/4t√2/2tπ/4π/3t√3/2tπ/6π/2t1t0【反余弦函数特殊值】xtcos xtarccos x0t1t0π/6t√3/2tπ/3π/4t√2/2tπ/4π/3t1/2tπ/6π/2t0tπ/2【反正切函数特殊值】xttan xtarctan x0t0t0π/6t1/√3tπ/6π/4t1tπ/4π/3t√3tπ/3π/2t无穷大tπ/2由上可以看出,三角函数反函数具有很多特殊值,熟悉这些特殊值,对以后学习和使用三角函数反函数非常有帮助。
通常,我们使用下列公式来求解三角函数反函数:1.正弦函数: arcsin x=sin-1 x2.余弦函数: arccos x=cos-1 x3.正切函数: arctan x=tan-1 x其中,“-1”表示反函数。
另外,我们还可以使用下列公式来求解三角函数反函数:1.正弦函数: arcsin x=π/2-arccos x2.余弦函数: arccos x=π/2-arcsin x3.正切函数: arctan x=π/2-arctan (1/x)计算三角函数反函数时,可以根据以上公式和特殊值表来计算。
常用反三角函数公式表在数学的广袤领域中,反三角函数是一个重要的概念,它们在解决各种数学问题和实际应用中都发挥着关键作用。
反三角函数包括反正弦函数(arcsin)、反余弦函数(arccos)、反正切函数(arctan)等。
为了更好地理解和运用这些函数,我们需要熟悉一些常用的反三角函数公式。
一、反正弦函数(arcsin)公式1、 arcsin(x) = arcsinx这个公式表明,反正弦函数是一个奇函数,即其函数值的正负与自变量的正负相反。
2、 sin(arcsinx) = x ,其中-1 ≤x ≤ 1这是反正弦函数的定义式,意味着对一个在-1, 1范围内的数 x ,其反正弦函数的正弦值就是 x 本身。
3、 arcsinx + arcsin(x) = 0 ,其中-1 ≤ x ≤ 1这个公式进一步说明了反正弦函数的奇偶性。
二、反余弦函数(arccos)公式1、 arccos(x) =π arccosx反余弦函数不是奇函数,而是满足上述关系。
2、 cos(arccosx) = x ,其中-1 ≤ x ≤ 1与反正弦函数类似,这是反余弦函数的定义式。
3、 arccosx + arccos(x) =π ,其中-1 ≤ x ≤ 1体现了反余弦函数的特殊性质。
三、反正切函数(arctan)公式1、 arctan(x) = arctanx反正切函数是奇函数。
2、 tan(arctanx) = x ,x 为实数这是反正切函数的定义式。
3、 arctanx + arctan(1/x) =π/2 ,其中 x > 0这个公式在一些计算和证明中经常用到。
四、反三角函数的和差公式1、 arcsinx + arcsiny=arcsin(x√(1 y²) +y√(1 x²)),其中-1 ≤ x ≤ 1 ,-1 ≤ y ≤ 1 2、 arcsinx arcsiny=arcsin(x√(1 y²) y√(1 x²)),其中-1 ≤ x ≤ 1 ,-1 ≤ y ≤ 1 3、 arccosx + arccosy=arccos(xy √(1 x²)√(1 y²)),其中-1 ≤ x ≤ 1 ,-1 ≤ y ≤ 14、 arccosx arccosy= arccos(xy +√(1 x²)√(1 y²)),其中-1 ≤ x≤ 1 ,-1 ≤ y ≤ 15、 arctanx + arctany= arctan((x + y)/(1 xy)),其中xy ≠ 16、 arctanx arctany= arctan((x y)/(1 + xy)),其中xy ≠ -1五、反三角函数的倍角公式1、arcsin(2x√(1 x²))= 2arcsinx ,其中-1/√2 ≤ x ≤ 1/√22、 arccos(2x² 1) = 2arccosx ,其中0 ≤ x ≤ 13、 arctan(2x/(1 x²))= 2arctanx ,其中-1 < x < 1六、反三角函数的半角公式1、arcsin(√((1 x)/2))=(1/2)arcsinx ,其中0 ≤ x ≤ 12、arccos(√((1 + x)/2))=(1/2)arccosx ,其中-1 ≤ x ≤ 13、arctan(√((1 x)/(1 + x)))=(1/2)arctanx ,其中-1 <x < 1七、反三角函数的万能公式1、 arcsin(2tan(x/2)/(1 + tan²(x/2)))= x ,其中π/2 ≤ x ≤ π/22、 arccos((1 tan²(x/2))/(1 + tan²(x/2)))= x ,其中0 ≤ x ≤ π3、 arctan(2tan(x/2)/(1 tan²(x/2)))= x ,其中π/2 < x <π/2掌握这些常用的反三角函数公式,对于解决涉及三角函数和反三角函数的问题非常有帮助。
三角和反三角函数图像+公式
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(三角和反三角函数图像+公式)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为三角和反三角函数图像+公式的全部内容。
三角、反三角函数图像
六个三角函数值在每个象限的符号:
sinα·cscα cosα·secα tanα·cotα三角函数的图像和性质:。
反三角函数:
arcsinx arccosx
1,1])。
三角函数常用公式表格三角函数是数学中一个重要的分支,在几何、物理、工程等领域都有广泛的应用。
为了更好地理解和运用三角函数,我们需要熟悉一些常用的公式。
下面为大家整理了一份三角函数常用公式表格。
|公式名称|公式表达式|说明||||||基本关系|$\sin^2\alpha +\cos^2\alpha = 1$ |这是三角函数中最基本的关系式之一,表示正弦的平方与余弦的平方之和为1。
|||$\tan\alpha =\frac{\sin\alpha}{\cos\alpha}$|正切等于正弦除以余弦。
|||$\cot\alpha =\frac{\cos\alpha}{\sin\alpha}$|余切等于余弦除以正弦。
||诱导公式|$\sin(\pi +\alpha) =\sin\alpha$ |对于角度加上π的情况,正弦值变为其相反数。
|||$\sin(\pi \alpha) =\sin\alpha$ |角度减去π,正弦值不变。
|||$\cos(\pi +\alpha) =\cos\alpha$ |角度加上π,余弦值变为其相反数。
|||$\cos(\pi \alpha) =\cos\alpha$ |角度减去π,余弦值变为其相反数。
|||$\sin(\alpha) =\sin\alpha$ |负角度的正弦值为其相反数。
|||$\cos(\alpha) =\cos\alpha$ |负角度的余弦值不变。
||和差公式|$\sin(\alpha +\beta) =\sin\alpha\cos\beta +\cos\alpha\sin\beta$ |用于计算两个角之和的正弦值。
|||$\sin(\alpha \beta) =\sin\alpha\cos\beta \cos\alpha\sin\beta$ |计算两个角之差的正弦值。
|||$\cos(\alpha +\beta) =\cos\alpha\cos\beta \sin\alpha\sin\beta$ |两个角之和的余弦值。
初等函数的图形幂函数的图形指数函数的图形各三角函数值在各象限的符号sinα·cscαcosα·secαtanα·cotα反三角函数的图形设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα三角函数公式证明(全部)公式表达式乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角正切定理[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r >0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h。