一道导数调研试题的解法探究
- 格式:pdf
- 大小:101.93 KB
- 文档页数:2
专题03 导数及其应用1.【2019年高考全国Ⅲ卷理数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==,D .1e a -=,1b =-【答案】D【解析】∵e ln 1,x y a x '=++∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D .【名师点睛】本题求解的关键是利用导数的几何意义和点在曲线上得到含有a ,b 的等式,从而求解,属于常考题型.2.【2019年高考天津理数】已知a ∈R ,设函数222,1,()ln ,1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为 A .[]0,1 B .[]0,2 C .[]0,eD .[]1,e【答案】C【解析】当1x =时,(1)12210f a a =-+=>恒成立;当1x <时,22()22021x f x x ax a a x =-+≥⇔≥-恒成立,令2()1x g x x =-,则222(11)(1)2(1)1()111x x x x g x x x x -----+=-=-=----112201x x ⎛⎫⎛⎫=--+-≤-= ⎪ ⎪ ⎪-⎝⎭⎝⎭,当111x x-=-,即0x =时取等号, ∴max 2()0a g x ≥=,则0a >.当1x >时,()ln 0f x x a x =-≥,即ln xa x≤恒成立, 令()ln xh x x=,则2ln 1()(ln )x h x x -'=,当e x >时,()0h x '>,函数()h x 单调递增, 当0e x <<时,()0h x '<,函数()h x 单调递减, 则e x =时,()h x 取得最小值(e)e h =, ∴min ()e a h x ≤=,综上可知,a 的取值范围是[0,e]. 故选C.【名师点睛】本题考查分段函数的最值问题,分别利用基本不等式和求导的方法研究函数的最值,然后解决恒成立问题.3.(2019浙江)已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则 A .a <–1,b <0 B .a <–1,b >0 C .a >–1,b <0 D .a >–1,b >0【答案】C【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x =b1−a , 则y =f (x )﹣ax ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣b =13x 3−12(a +1)x 2+ax ﹣ax ﹣b =13x 3−12(a +1)x 2﹣b ,2(1)y x a x =+-',当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增, 则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意;当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增,令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点⇔函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:∴b1−a <0且{−b >013(a +1)3−12(a +1)(a +1)2−b <0, 解得b <0,1﹣a >0,b >−16(a +1)3,则a >–1,b <0. 故选C .【名师点睛】本题考查函数与方程,导数的应用.当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣b =13x 3−12(a +1)x 2﹣b ,利用导数研究函数的单调性,根据单调性画出函数的草图,从而结合题意可列不等式组求解.4.【2019年高考全国Ⅰ卷理数】曲线23()e xy x x =+在点(0)0,处的切线方程为____________. 【答案】30x y -=【解析】223(21)e 3()e 3(31)e ,x x x y x x x x x '=+++=++ 所以切线的斜率0|3x k y ='==,则曲线23()e x y x x =+在点(0,0)处的切线方程为3y x =,即30x y -=.【名师点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,而导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.5.【2019年高考江苏】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是 ▲ . 【答案】4 【解析】由4(0)y x x x =+>,得241y x'=-, 设斜率为1-的直线与曲线4(0)y x x x=+>切于0004(,)x x x +,由20411x -=-得0x =0x =, ∴曲线4(0)y x x x=+>上,点P 到直线0x y +=4=.故答案为4.【名师点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法,利用数形结合和转化与化归思想解题.6.【2019年高考江苏】在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 ▲ . 【答案】(e, 1)【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标. 设点()00,A x y ,则00ln y x =. 又1y x'=, 当0x x =时,01y x '=, 则曲线ln y x =在点A 处的切线为0001()y y x x x -=-, 即00ln 1xy x x -=-, 将点()e,1--代入,得00e1ln 1x x ---=-,即00ln e x x =,考察函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >, 且()ln 1H x x '=+,当1x >时,()()0,H x H x '>单调递增, 注意到()e e H =,故00ln e x x =存在唯一的实数根0e x =, 此时01y =, 故点A 的坐标为()e,1.【名师点睛】导数运算及切线的理解应注意的问题:一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.7.【2019年高考北京理数】设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】(]1,0--∞【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e xxf x a -=+为奇函数,则()(),f x f x -=-即()ee e e xx x x a a --+=-+,即()()1e e0x xa -++=对任意的x 恒成立, 则10a +=,得1a =-.若函数()e e xxf x a -=+是R 上的增函数,则() e e 0x x f x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立, 又2e 0x >,则0a ≤,即实数a 的取值范围是(],0-∞.【名师点睛】本题考查函数的奇偶性、单调性、利用单调性确定参数的范围.解答过程中,需利用转化与化归思想,转化成恒成立问题.注重重点知识、基础知识、基本运算能力的考查.8.【2019年高考全国Ⅰ卷理数】已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点; (2)()f x 有且仅有2个零点. 【答案】(1)见解析;(2)见解析.【解析】(1)设()()g x f 'x =,则1()cos 1g x x x =-+,21sin ())(1x 'x g x =-++. 当1,2x π⎛⎫∈- ⎪⎝⎭时,()g'x 单调递减,而(0)0,()02g'g'π><,可得()g'x 在1,2π⎛⎫- ⎪⎝⎭有唯一零点,设为α.则当(1,)x α∈-时,()0g'x >;当,2x α⎛π⎫∈ ⎪⎝⎭时,()0g'x <. 所以()g x 在(1,)α-单调递增,在,2απ⎛⎫ ⎪⎝⎭单调递减,故()g x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点,即()f 'x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点. (2)()f x 的定义域为(1,)-+∞.(i )当(1,0]x ∈-时,由(1)知,()f 'x 在(1,0)-单调递增,而(0)0f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点.(ii )当0,2x ⎛π⎤∈ ⎥⎝⎦时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ⎛⎫ ⎪⎝⎭单调递减,而(0)=0f ',02f 'π⎛⎫< ⎪⎝⎭,所以存在,2βαπ⎛⎫∈ ⎪⎝⎭,使得()0f 'β=,且当(0,)x β∈时,()0f 'x >;当,2x βπ⎛⎫∈ ⎪⎝⎭时,()0f 'x <.故()f x 在(0,)β单调递增,在,2βπ⎛⎫⎪⎝⎭单调递减.又(0)=0f ,1ln 1022f ππ⎛⎫⎛⎫=-+> ⎪ ⎪⎝⎭⎝⎭,所以当0,2x ⎛π⎤∈ ⎥⎝⎦时,()0f x >.从而,()f x 在0,2⎛⎤⎥⎝⎦π没有零点. (iii )当,2x π⎛⎤∈π⎥⎝⎦时,()0f 'x <,所以()f x 在,2π⎛⎫π ⎪⎝⎭单调递减.而02f π⎛⎫> ⎪⎝⎭,()0f π<,所以()f x 在,2π⎛⎤π⎥⎝⎦有唯一零点. (iv )当(,)x ∈π+∞时,ln(1)1x +>,所以()f x <0,从而()f x 在(,)π+∞没有零点. 综上,()f x 有且仅有2个零点.【名师点睛】本题考查导数与函数极值之间的关系、利用导数解决函数零点个数的问题.解决零点问题的关键一方面是利用零点存在性定理或最值点来说明存在零点,另一方面是利用函数的单调性说明在区间内零点的唯一性,二者缺一不可.9.【2019年高考全国Ⅱ卷理数】已知函数()11ln x f x x x -=-+.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线e x y =的切线. 【答案】(1)函数()f x 在(0,1)和(1,)+∞上是单调增函数,证明见解析; (2)见解析.【解析】(1)f (x )的定义域为(0,1)(1,+∞).因为212()0(1)f 'x x x =+>-,所以()f x 在(0,1),(1,+∞)单调递增. 因为f (e )=e 110e 1+-<-,22222e 1e 3(e )20e 1e 1f +-=-=>--,所以f (x )在(1,+∞)有唯一零点x 1,即f (x 1)=0.又1101x <<,1111111()ln ()01x f x f x x x +=-+=-=-,故f (x )在(0,1)有唯一零点11x .综上,f (x )有且仅有两个零点. (2)因为0ln 01e x x -=,故点B (–ln x 0,01x )在曲线y =e x 上.由题设知0()0f x =,即0001ln 1x x x +=-,故直线AB 的斜率0000000000111ln 111ln 1x x x x x k x x x x x x +---===+-----. 曲线y =e x 在点001(ln ,)B x x -处切线的斜率是01x ,曲线ln y x =在点00(,ln )A x x 处切线的斜率也是01x , 所以曲线ln y x =在点00(,ln )A x x 处的切线也是曲线y =e x 的切线.【名师点睛】本题考查了利用导数求已知函数的单调性、考查了曲线的切线方程,考查了数学运算能力. 10.【2019年高考全国Ⅲ卷理数】已知函数32()2f x x ax b =-+.(1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1若存在,求出,a b 的所有值;若不存在,说明理由. 【答案】(1)见解析;(2)01a b =⎧⎨=-⎩或41a b =⎧⎨=⎩. 【解析】(1)2()622(3)f x x ax x x a '=-=-. 令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增;若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫ ⎪⎝⎭单调递减.(2)满足题设条件的a ,b 存在.(i )当a ≤0时,由(1)知,()f x 在[0,1]单调递增,所以()f x 在区间[0,l]的最小值为(0)=f b ,最大值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当1b =-,21a b -+=,即a =0,1b =-.(ii )当a ≥3时,由(1)知,()f x 在[0,1]单调递减,所以()f x 在区间[0,1]的最大值为(0)=f b ,最小值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当21a b -+=-,b =1,即a =4,b =1.(iii )当0<a <3时,由(1)知,()f x 在[0,1]的最小值为3327a a f b ⎛⎫=-+ ⎪⎝⎭,最大值为b 或2a b -+.若3127a b -+=-,b =1,则a =0<a <3矛盾.若3127a b -+=-,21a b -+=,则a =a =-a =0,与0<a <3矛盾. 综上,当且仅当a =0,1b =-或a =4,b =1时,()f x 在[0,1]的最小值为-1,最大值为1.【名师点睛】这是一道常规的函数导数和不等式的综合题,题目难度比往年降低了不少,考查函数的单调性、最大值、最小值这种基本量的计算. 11.【2019年高考北京理数】已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(Ⅲ)设()|()()|()F x f x x a a =-+∈R ,记()F x 在区间[2,4]-上的最大值为M (a ).当M (a )最小时,求a 的值.【答案】(Ⅰ)y x =与6427y x =-;(Ⅱ)见解析;(Ⅲ)3a =-. 【解析】(Ⅰ)由321()4f x x x x =-+得23()214f x x x '=-+.令()1f x '=,即232114x x -+=,得0x =或83x =.又(0)0f =,88()327f =,所以曲线()y f x =的斜率为1的切线方程是y x =与88273y x -=-, 即y x =与6427y x =-.(Ⅱ)令()(),[2,4]g x f x x x =-∈-. 由321()4g x x x =-得23()24g'x x x =-.令()0g'x =得0x =或83x =. (),()g'x g x 的情况如下:所以()g x 的最小值为6-,最大值为0. 故6()0g x -≤≤,即6()x f x x -≤≤. (Ⅲ)由(Ⅱ)知,当3a <-时,()(0)|(0)|3M F g a a a ≥=-=->; 当3a >-时,()(2)|(2)|63M F a g a a ≥-=--=+>; 当3a =-时,()3M a =. 综上,当()M a 最小时,3a =-.【名师点睛】本题主要考查利用导函数研究函数的切线方程,利用导函数证明不等式,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力. 12.【2019年高考天津理数】设函数()e cos ,()xf x xg x =为()f x 的导函数.(Ⅰ)求()f x 的单调区间;(Ⅱ)当,42x ππ⎡⎤∈⎢⎥⎣⎦时,证明()()02f x g x x π⎛⎫+-≥ ⎪⎝⎭;(Ⅲ)设n x 为函数()()1u x f x =-在区间2,242n n ππ⎛⎫π+π+ ⎪⎝⎭内的零点,其中n ∈N ,证明20022sin c s e o n n n x x x -πππ+-<-. 【答案】(Ⅰ)()f x 的单调递增区间为3ππ2π,2π(),()44k k k f x ⎡⎤-+∈⎢⎥⎣⎦Z 的单调递减区间为π5π2π,2π()44k k k ⎡⎤++∈⎢⎥⎣⎦Z .(Ⅱ)见解析;(Ⅲ)见解析. 【解析】(Ⅰ)由已知,有()e (cos sin )x f 'x x x =-.因此,当52,244x k k ππ⎛⎫∈π+π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x >,得()0f 'x <,则()f x 单调递减;当32,244x k k ππ⎛⎫∈π-π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x <,得()0f 'x >,则()f x 单调递增.所以,()f x 的单调递增区间为32,2(),()44k k k f x ππ⎡⎤π-π+∈⎢⎥⎣⎦Z 的单调递减区间为52,2()44k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z . (Ⅱ)证明:记()()()2h x f x g x x π⎛⎫=+-⎪⎝⎭.依题意及(Ⅰ),有()e (cos sin )x g x x x =-,从而()2e sin x g'x x =-.当,42x ππ⎛⎫∈ ⎪⎝⎭时,0()g'x <,故()()()()(1)()022h'x f 'x g'x x g x g'x x ππ⎛⎫⎛⎫=+-+-=-< ⎪ ⎪⎝⎭⎝⎭.因此,()h x 在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递减,进而()022h x h f ππ⎛⎫⎛⎫≥== ⎪ ⎪⎝⎭⎝⎭. 所以,当,42x ππ⎡⎤∈⎢⎥⎣⎦时,()()02f x g x x π⎛⎫+-≥ ⎪⎝⎭.(Ⅲ)证明:依题意,()()10n n u x f x =-=,即cos e 1n x n x =.记2n n y x n =-π,则,42n y ππ⎛⎫∈ ⎪⎝⎭,且()()()22e cos ecos 2e n n yx n n n n n f y y x n n π--π==-π=∈N .由()()20e1n n f y f y -π==≤及(Ⅰ),得0n y y ≥.由(Ⅱ)知,当,42x ππ⎛⎫∈ ⎪⎝⎭时,()0g'x <,所以()g x 在,42ππ⎡⎤⎢⎥⎣⎦上为减函数,因此()()004n g y g y g π⎛⎫≤<= ⎪⎝⎭.又由(Ⅱ)知,()()02n n n f y g y y π⎛⎫+-≥ ⎪⎝⎭,故()()()()()022*******2sin cos sin c e e e e os e n n n n n n y n n f y y g y g y g y y y x x -π-π-π-ππ--=-≤=--≤<. 所以,20022sin c s e o n n n x x x -πππ+-<-.【名师点睛】本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法.考查函数思想和化归与转化思想.考查抽象概括能力、综合分析问题和解决问题的能力. 13.【2019年高考浙江】已知实数0a ≠,设函数()=ln 0.f x a x x >(1)当34a =-时,求函数()f x 的单调区间; (2)对任意21[,)e x ∈+∞均有()2f x a≤ 求a 的取值范围. 注:e=…为自然对数的底数.【答案】(1)()f x 的单调递增区间是()3,+∞,单调递减区间是()0,3;(2)0,4⎛ ⎝⎦. 【解析】(1)当34a =-时,3()ln 04f x x x =-+>.3()4f 'x x =-+=所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a ≤,得0a <≤.当0a <≤()f x ≤2ln 0x -≥. 令1t a=,则t ≥.设()22ln ,g t t x t =≥则2()2ln g t t x =.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x =-==.故所以,()(1)0p x p ≥=.因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,1()1g t g x ⎛+= ⎝.令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x =+>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫⎪⎝⎭.由(i )得,11(1)077q p p ⎛⎫⎛⎫=<= ⎪ ⎪⎝⎭⎝⎭. 所以,()<0q x .因此1()10g t g x ⎛+=> ⎝.由(i )(ii )知对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞, 即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2xf x a .综上所述,所求a 的取值范围是⎛⎝⎦. 【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.14.【2019年高考江苏】设函数()()()(),,,f x x a x b x c a b c =---∈R 、()f 'x 为f (x )的导函数.(1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值;(3)若0,01,1a b c =<=,且f (x )的极大值为M ,求证:M ≤427. 【答案】(1)2a =;(2)见解析;(3)见解析.【解析】(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-.因为(4)8f =,所以3(4)8a -=,解得2a =.(2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-, 从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x b =或23a b x +=. 因为2,,3a ba b +都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a ba b +===-. 此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-. 令()0f 'x =,得3x =-或1x =.列表如下:所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>, 则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得12x x ==. 列表如下:所以()f x 的极大值()1M f x =. 解法一:()321111(1)M f x x b x bx ==-++()221111211(1)[32(1)]3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭()2321(1)(1)227927b b b b b --+++=++23(1)2(1)(1)2272727b b b b +-+=-+(1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭. 令()0g'x =,得1x =.列表如下:所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭. 所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 【名师点睛】本题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.15.【河北省武邑中学2019届高三第二次调研考试数学】函数f(x)=x 2−2lnx 的单调减区间是A .(0,1]B .[1,+∞)C .(−∞,−1]∪(0,1]D .[−1,0)∪(0,1]【答案】A【解析】f′(x)=2x −2x =2x 2−2x(x >0),令f′(x)≤0,解得:0<x ≤1. 故选A .【名师点睛】本题考查了函数的单调性,考查导数的应用,是一道基础题.16.【江西省南昌市2019届高三模拟考试数学】已知f(x)在R 上连续可导,f ′(x)为其导函数,且f(x)=e x +e −x −f ′(1)x ⋅(e x −e −x ),则f ′(2)+f ′(−2)−f ′(0)f ′(1)= A .4e 2+4e −2 B .4e 2−4e −2 C .0D .4e 2【答案】C【解析】∵()e e (1)()(e e ()x x x x f x f x f x --'-=+=---), ∴()f x 是偶函数,两边对x 求导,得()()f x f x -'-=',即()()f x f x '-=-', 则()f x '是R 上的奇函数,则(0)0f '=,(2)(2)f f '-=-',即(2)(2)0f f '+'-=,则(2)(2)(0)(1)0f f f f ''''+--=. 故选C .【名师点睛】本题主要考查函数导数值的计算,根据条件判断函数的奇偶性是解决本题的关键,是中档题.17.【江西省新八校2019届高三第二次联考数学】若3()3()21f x f x x x +-=++对x ∈R 恒成立,则曲线()y f x =在点()()1,1f 处的切线方程为A .5250x y +-=B .10450x y +-=C .540x y +=D .204150x y --=【答案】B 【解析】()()3321f x f x x x +-=++……①,()()3321f x f x x x ∴-+=--+……②,联立①②,解得()31124f x x x =--+,则()2312f x x '=--, ()11511244f ∴=--+=-,()351122f '=--=-,∴切线方程为:()55142y x +=--,即10450x y +-=. 故选B.【名师点睛】本题考查利用导数的几何意义求解在某一点处的切线方程,关键是能够利用构造方程组的方式求得函数的解析式.18.【云南省玉溪市第一中学2019届高三第二次调研考试数学】函数2l ()n f x x x =的最小值为A .1e -B .1eC .12e-D .12e【答案】C【解析】由题得(0,)x ∈+∞,()2ln (2ln 1)f x x x x x x '=+=+, 令2ln 10x +=,解得12ex -=,则当12(0,e )x -∈时,()f x 为减函数,当12(e ,)x -∈+∞时,()f x 为增函数, 所以12e x -=处的函数值为最小值,且121(e )2ef -=-. 故选C.【名师点睛】本题考查用导数求函数最值,解此类题首先确定函数的定义域,其次判断函数的单调性,确定最值点,最后代回原函数求得最值.19.【四川省内江市2019届高三第三次模拟考试数学】若函数f(x)=12ax 2+xlnx −x 存在单调递增区间,则a 的取值范围是 A .1,1e ⎛⎫- ⎪⎝⎭B .1,e ⎛⎫-+∞ ⎪⎝⎭C .()1,-+∞D .1,e ⎛⎫-∞ ⎪⎝⎭【答案】B【解析】()ln f x ax x '=+, ∴()0f x '>在x ∈()0+∞,上成立, 即ax+ln x >0在x ∈()0+∞,上成立,即a ln xx->在x ∈()0+∞,上成立. 令g (x )ln x x =-,则g ′(x )21ln xx -=-, ∴g (x )ln xx =-在(0,e )上单调递减,在(e ,+∞)上单调递增,∴g (x )ln x x =-的最小值为g (e )=1e-,∴a >1e-. 故选B .【名师点睛】本题考查学生利用导数研究函数的单调性及转化化归思想的运用,属中档题.20.【山西省太原市2019届高三模拟试题(一)数学】已知定义在(0,+∞)上的函数f(x)满足xf ′(x)−f(x)<0,且f(2)=2,则f (e x )−e x >0的解集是 A .(−∞,ln2) B .(ln2,+∞) C .(0,e 2)D .(e 2,+∞)【答案】A 【解析】令g (x )=f (x )x,g ′(x )=xf ′(x )−f (x )x 2<0,∴g(x)在(0,+∞)上单调递减,且g (2)=f (2)2=1,故f (e x )−e x >0等价为f (e x )e x>f (2)2,即g (e x )>g (2),故e x <2,即x <ln2, 则所求的解集为(−∞,ln2). 故选A.【名师点睛】本题考查导数与单调性的应用,构造函数的思想,考查分析推理能力,是中档题. 21.【河南省焦作市2019届高三第四次模拟考试数学】已知a =ln √33,b =e −1,c =3ln28,则a,b,c 的大小关系为 A .b <c <a B .a >c >b C .a >b >cD .b >a >c【答案】D【解析】依题意,得ln33a ==,1lne e e b -==,3ln2ln888c ==.令f (x )=ln x x,所以f ′(x )=1−ln x x 2.所以函数f (x )在(0,e )上单调递增,在(e,+∞)上单调递减, 所以[f (x )]max =f (e )=1e =b ,且f (3)>f (8),即a >c , 所以b >a >c . 故选D.【名师点睛】本题主要考查了利用导数判断函数的单调性,构造出函数()ln xf x x=是解题的关键,属于中档题.22.【安徽省毛坦厂中学2019届高三校区4月联考数学】已知f (x )=lnx +1−ae x ,若关于x 的不等式f (x )<0恒成立,则实数a 的取值范围是 A .1,e ⎛⎫-∞ ⎪⎝⎭B .(),0-∞C .1,e⎡⎫+∞⎪⎢⎣⎭D .1,e ⎛⎫+∞ ⎪⎝⎭【答案】D【解析】由()0f x <恒成立得ln 1ex x a +>恒成立, 设()ln 1e x x h x +=,则()1ln 1e xx x h x -='-. 设()1ln 1g x x x =--,则()2110g x x x'=--<恒成立,∴g (x )在(0,+∞)上单调递减,又∵g (1)=0,∴当0<x <1时,g (x )>g (1)=0,即ℎ′(x )>0; 当x >1时,g (x )<g (1)=0,即ℎ′(x )<0, ∴ℎ(x )在(0,1)上单调递增,在(1,+∞)上单调递减, ∴ℎ(x)max =ℎ(1)=1e ,∴a >1e . 故选D.【名师点睛】本题考查利用导数求函数的最值,不等式恒成立问题,分离参数是常见的方法,属于中档题.23.【辽宁省丹东市2019届高三总复习质量测试】若1x =是函数()3221()(1)33f x x a x a a x =++-+-的极值点,则a 的值为 A .-2 B .3 C .-2或3D .-3或2【答案】B 【解析】()()()()32222113(3)(132)f x x a x a a f x x x a x a a '=++-=++-+-⇒+-,由题意可知(1)0f '=,即()212(1)303a a a a +-=+⇒-=+或2a =-,当3a =时,()222()2(1)389(9)(1)f x x a x a a x x x x +-'=++-=+-=+-,当1x >或9x <-时,()0f x '>,函数单调递增;当91x -<<时,()0f x '<,函数单调递减, 显然1x =是函数()f x 的极值点;当2a =-时,()2222()232(111))(0a a f x x a x x x x +-=-++=-=+-≥',所以函数()f x 是R 上的单调递增函数,没有极值,不符合题意,舍去. 故3a =. 故选B .【名师点睛】本题考查了已知函数的极值,求参数的问题.本题易错的地方是求出a 的值,没有通过单调性来验证1x =是不是函数的极值点,也就是说使得导函数为零的自变量的值,不一定是极值点. 24.【黑龙江省大庆市第一中学2019届高三下学期第四次模拟(最后一卷)考试】已知奇函数()f x 是定义在R 上的可导函数,其导函数为()f x ',当0x >时,有()()22f x xf x x '>+,则不等式()()()22018+2018420x f x f +-<+的解集为A .(),2016-∞-B .()2016,2012--C .(),2018-∞-D .()2016,0-【答案】A【解析】设()()2g x x f x =,因为()f x 为R 上的奇函数,所以()()()()22g x x f x x f x -=--=-,即()g x 为R 上的奇函数对()g x 求导,得()()()2f g f x x x x x '=+'⎡⎤⎣⎦, 而当0x >时,有()()220f x xf x x '>+≥,故0x >时,()0g x '>,即()g x 单调递增,所以()g x 在R 上单调递增,则不等式()()()22018+2018420x f x f +-<+即()()()22018+201842x f x f +<--, 即()()()22018+201842x f x f +<, 即()()20182g x g +<,所以20182x +<,解得2016x <-. 故选A.【名师点睛】本题考查构造函数解不等式,利用导数求函数的单调性,函数的奇偶性,题目较综合,有一定的技巧性,属于中档题.25.【重庆西南大学附属中学校2019届高三第十次月考数学】曲线21()ln 2f x x x x =+在点(1(1))f ,处的切线与直线10ax y --=垂直,则a =________. 【答案】12-【解析】因为21()ln 2f x x x x =+,所以()ln 1f x x x '=++, 因此,曲线21()ln 2f x x x x =+在点(1(1))f ,处的切线斜率为(1)112k f '==+=, 又该切线与直线10ax y --=垂直,所以12a =-. 故答案为12-. 【名师点睛】本题主要考查导数在某点处的切线斜率问题,熟记导数的几何意义即可求解,属于常考题型.26.【广东省深圳市高级中学2019届高三适应性考试(6月)数学】已知函数22,0,()e ,0,x x x f x x ⎧≤=⎨>⎩若方程2[()]f x a =恰有两个不同的实数根12,x x ,则12x x +的最大值是______.【答案】3ln 22-【解析】作出函数()f x 的图象如图所示,由()2f x a =⎡⎤⎣⎦,可得()1f x =>, 即1a >,不妨设12x x < ,则2212e x x =(1)t t =>,则12ln x x t ==,12ln x x t ∴+=令()ln g t t =()g t '= ∴当18t <<时,()0g t '>,g t 在()1,8上单调递增;当8t时,()0g t '<,g t 在()8,+∞上单调递减,∴当8t =时,g t 取得最大值,为(8)ln823ln22g =-=-.故答案为3ln 22-.【名师点睛】本题主要考查方程的根与图象交点的关系,考查了利用导数判断函数的单调性以及求函数的极值与最值,属于难题.求函数()f x 的极值与最值的步骤:(1)确定函数的定义域;(2)求导数()f x ';(3)解方程()0,f x '=求出函数定义域内的所有根;(4)判断()f x '在()0f x '=的根0x 左右两侧值的符号,如果左正右负(左增右减),那么()f x 在0x 处取极大值,如果左负右正(左减右增),那么()f x 在0x 处取极小值.(5)如果只有一个极值点,则在该点处取得极值也是最值;(6)如果求闭区间上的最值还需要比较端点处的函数值与极值的大小.27.【山东省烟台市2019届高三3月诊断性测试(一模)数学】已知函数4211()42f x x ax =-,a ∈R . (1)当1a =时,求曲线()f x 在点(2,(2))f 处的切线方程;(2)设函数2()(22)e e ()x g x x x a f x =-+--,其中e 2.71828...=是自然对数的底数,讨论()g x 的单调性并判断有无极值,有极值时求出极值. 【答案】(1)6100x y --=;(2)当0a ≤时,()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,()g x 在(,-∞和)+∞单调递增,在(单调递减,极大值为2e(2)e4g a =+,极小值为2e (4g a =-+. 【解析】(1)由题意3()f x x ax '=-,所以当1a =时,(2)2f =,(2)6f '=, 因此曲线()y f x =在点(2,(2))f 处的切线方程是26(2)y x -=-, 即6100x y --=.(2)因为2()(22)e e ()x g x x x a f x =-+--, 所以2()(22)e (22)e e '()x x g x x x x a f x '=-+-+--232()e e()()(e e )x x x a x ax x a x =---=--,令()e e x h x x =-,则()e e x h x '=-, 令()0h x '=得1x =,当(,1)x ∈-∞时,()0h x '<,()h x 单调递减, 当(1,)x ∈+∞时,()0h x '>,()h x 单调递增, 所以当1x =时,min ()(1)0h x h ==, 也就说,对于x ∀∈R 恒有()0h x ≥. 当0a ≤时,2()()()0g x x a h x '=-≥,()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,令()0g x '=,可得x =当x <x >2()()()0g x x a h x '=-≥,()g x 单调递增,当x <<()0g x '<,()g x 单调递减,因此,当x =()g x 取得极大值2e(2)e4g a =+;当x =()g x 取得极小值2e (4g a =-+. 综上所述:当0a ≤时,()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,()g x 在(,-∞和)+∞上单调递增,在(上单调递减, 函数既有极大值,又有极小值,极大值为2e(2)e4g a =+,极小值为2e (4g a =-+. 【名师点睛】本题考查了函数的单调性,极值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.28.【陕西省2019届高三第三次联考数学】已知函数f(x)=lnx −ax ,g(x)=x 2,a ∈R .(1)求函数f(x)的极值点;(2)若f(x)≤g(x)恒成立,求a 的取值范围.【答案】(1)极大值点为1a ,无极小值点.(2)a ≥−1.【解析】(1)()ln f x x ax =-的定义域为(0,+∞),f ′(x )=1x −a , 当a ≤0时,f ′(x )=1x −a >0,所以f (x )在(0,+∞)上单调递增,无极值点;当a >0时,解f ′(x )=1x −a >0得0<x <1a ,解f ′(x )=1x −a <0得x >1a , 所以f (x )在(0,1a )上单调递增,在(1a ,+∞)上单调递减,所以函数f (x )有极大值点,为1a ,无极小值点. (2)由条件可得ln x −x 2−ax ≤0(x >0)恒成立, 则当x >0时,a ≥ln x x−x 恒成立,令ℎ(x )=ln x x−x(x >0),则ℎ′(x )=1−x 2−ln xx 2,令k (x )=1−x 2−ln x(x >0),则当x >0时,k ′(x )=−2x −1x <0,所以k (x )在(0,+∞)上为减函数. 又k (1)=0,所以在(0,1)上,ℎ′(x )>0;在(1,+∞)上,ℎ′(x )<0. 所以ℎ(x )在(0,1)上为增函数,在(1,+∞)上为减函数, 所以ℎ(x )max =ℎ(1)=−1,所以a ≥−1.【名师点睛】对于函数恒成立或者有解求参的问题,常用方法有:变量分离,参变分离,转化为函数最值问题;或者直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数.29.【山东省济宁市2019届高三二模数学】已知函数f(x)=lnx −xe x +ax(a ∈R).(1)若函数f(x)在[1,+∞)上单调递减,求实数a 的取值范围; (2)若a =1,求f(x)的最大值.【答案】(1)a ≤2e −1;(2)f(x)max =−1.【解析】(1)由题意知,f′(x)=1x −(e x +xe x )+a =1x −(x +1)e x +a ≤0在[1,+∞)上恒成立, 所以a ≤(x +1)e x −1x 在[1,+∞)上恒成立. 令g(x)=(x +1)e x −1x ,则g′(x)=(x +2)e x +1x 2>0,所以g(x)在[1,+∞)上单调递增,所以g(x)min =g(1)=2e −1, 所以a ≤2e −1.(2)当a =1时,f(x)=lnx −xe x +x(x >0). 则f′(x)=1x−(x +1)e x +1=(x +1)(1x−e x ),令m(x)=1x −e x ,则m′(x)=−1x 2−e x <0, 所以m(x)在(0,+∞)上单调递减.由于m(12)>0,m(1)<0,所以存在x 0>0满足m(x 0)=0,即e x 0=1x 0.当x ∈(0,x 0)时,m(x)>0,f′(x)>0;当x ∈(x 0,+∞)时,m(x)<0,f′(x)<0. 所以f(x)在(0,x 0)上单调递增,在(x 0,+∞)上单调递减. 所以f(x)max =f (x 0)=lnx 0−x 0e x 0+x 0, 因为e x 0=1x 0,所以x 0=−lnx 0,所以f(x 0)=−x 0−1+x 0=−1, 所以f(x)max =−1.【名师点睛】本题主要考查利用导数研究函数的单调性,最值,零点存在性定理及其应用,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.30.【福建省龙岩市2019届高三5月月考数学】今年3月5日,国务院总理李克强作的政府工作报告中,提到要“惩戒学术不端,力戒学术不端,力戒浮躁之风”.教育部日前公布的《教育部2019年部门预算》中透露,2019年教育部拟抽检博士学位论文约6000篇,预算为800万元.国务院学位委员会、教育部2014年印发的《博士硕士学位论文抽检办法》通知中规定:每篇抽检的学位论文送3位同行专家进行评议,3位专家中有2位以上(含2位)专家评议意见为“不合格”的学位论文,将认定为“存在问题学位论文”.有且只有1位专家评议意见为“不合格”的学位论文,将再送2位同行专家进行复评,2位复评专家中有1位以上(含1位)专家评议意见为“不合格”的学位论文,将认定为“存在问题学位论文”.设每篇学位论文被每位专家评议为“不合格”的概率均为(01)p p <<,且各篇学位论文是否被评议为“不合格”相互独立.(1)记一篇抽检的学位论文被认定为“存在问题学位论文”的概率为()f p ,求()f p ;(2)若拟定每篇抽检论文不需要复评的评审费用为900元,需要复评的评审费用为1500元;除评审费外,其它费用总计为100万元.现以此方案实施,且抽检论文为6000篇,问是否会超过预算并说明理由.【答案】(1)−3p 5+12p 4−17p 3+9p 2;(2)若以此方案实施,不会超过预算.【解析】(1)因为一篇学位论文初评被认定为“存在问题学位论文”的概率为C 32p 2(1−p )+C 33p 3, 一篇学位论文复评被认定为“存在问题学位论文”的概率为C 31p (1−p )2[1−(1−p )2],所以一篇学位论文被认定为“存在问题学位论文”的概率为f (p )=C 32p 2(1−p )+C 33p 3+C 31p (1−p )2[1−(1−p )2]=3p 2(1−p )+p 3+3p (1−p )2[1−(1−p )2] =−3p 5+12p 4−17p 3+9p 2.(2)设每篇学位论文的评审费为X 元,则X 的可能取值为900,1500.P (X =1500)=C 31p (1−p )2, P (X =900)=1−C 31p (1−p )2, 所以E (X )=900×[1−C 31p (1−p )2]+1500×C 31p (1−p )2=900+1800p (1−p )2. 令g (p )=p (1−p )2,p ∈(0,1),g ′(p )=(1−p )2−2p (1−p )=(3p −1)(p −1). 当p ∈(0,13)时,g ′(p )>0,g (p )在(0,13)上单调递增;当p ∈(13,1)时,g ′(p )<0,g (p )在(13,1)上单调递减,所以g (p )的最大值为g (13)=427.所以实施此方案,最高费用为100+6000×(900+1800×427)×10−4=800(万元). 综上,若以此方案实施,不会超过预算.【名师点睛】本题主要考查互斥事件的概率和独立重复试验的概率的求法,考查随机变量的期望的求法,考查利用导数求函数的最大值,意在考查学生对这些知识的理解掌握水平和分析推理能力. 31.【北京市西城区2019届高三4月统一测试(一模)数学】设函数f(x)=m e x −x 2+3,其中m ∈R .(1)当f(x)为偶函数时,求函数ℎ(x)=xf(x)的极值;(2)若函数f(x)在区间[−2 , 4]上有两个零点,求m 的取值范围. 【答案】(1)极小值ℎ(−1)=−2,极大值ℎ(1)=2;(2)−2e <m <13e 4或m =6e 3.【解析】(1)由函数f(x)是偶函数,得f(−x)=f(x), 即m e −x −(−x)2+3=m e x −x 2+3对于任意实数x 都成立, 所以m =0. 此时ℎ(x)=xf(x)=−x 3+3x ,则ℎ′(x)=−3x 2+3. 由ℎ′(x)=0,解得x =±1. 当x 变化时,ℎ′(x)与ℎ(x)的变化情况如下表所示:所以ℎ(x)在(−∞,−1),(1,+∞)上单调递减,在(−1,1)上单调递增. 所以ℎ(x)有极小值ℎ(−1)=−2,极大值ℎ(1)=2. (2)由f(x)=m e x −x 2+3=0,得m =x 2−3e x.所以“f(x)在区间[−2 , 4]上有两个零点”等价于“直线y =m 与曲线g(x)=x 2−3e x,x ∈[−2 , 4]有且只有两个公共点”.对函数g(x)求导,得g ′(x)=−x 2+2x+3e x.由g ′(x)=0,解得x 1=−1,x 2=3. 当x 变化时,g ′(x)与g(x)的变化情况如下表所示:所以g(x)在(−2,−1),(3,4)上单调递减,在(−1,3)上单调递增. 又因为g(−2)=e 2,g(−1)=−2e ,g(3)=6e 3<g(−2),g(4)=13e 4>g(−1),所以当−2e <m <13e4或m =6e3时,直线y =m 与曲线g(x)=x 2−3e x,x ∈[−2 , 4]有且只有两个公共点.即当−2e <m <13e 4或m =6e3时,函数f(x)在区间[−2 , 4]上有两个零点.【名师点睛】利用函数零点的情况求参数值或取值范围的方法: (1)利用零点存在的判定定理构建不等式求解. (2)分离参数后转化为函数的值域(最值)问题求解. (3)转化为两熟悉的函数图象问题,从而构建不等式求解.。
一道三角函数与导数结合的试题解法初探许顺龙(福建省漳州市台商投资区角美中学ꎬ福建漳州363107)摘㊀要:近年来高考导数命题的一个新亮点就是以三角函数为背景ꎬ考查导数的综合应用.借助导数来研究有关三角函数型的问题ꎬ能更充分考查学生的数学思想方法㊁数学运算求解能力以及综合应变能力ꎬ彰显学生数学思维的灵活性㊁多样性及创新性.关键词:导函数ꎻ三角函数ꎻ切线放缩ꎻ必要性探路中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)25-0081-04收稿日期:2023-06-05作者简介:许顺龙(1983.2-)ꎬ男ꎬ本科ꎬ中学一级教师ꎬ从事高中数学教学研究.基金项目:2021年度漳州市基础教育课程教学研究课题 新高考背景下的高中数学项目式学习的策略研究 以漳州台商投资区角美中学为例 (项目编号:ZJKTY21086)㊀㊀题目㊀(泉州市2022届高中毕业班质量监测五第22题)已知函数fx()=ex-a-2cosx(a>0).(1)证明:fx()在区间0ꎬπ2æèçöø÷内有唯一零点x0ꎬ且fᶄ(x0)ɤ2ꎻ(2)当xȡ-π时ꎬfx()ȡ2sinx-π4æèçöø÷ꎬ求实数a的取值范围.1试题分析本题是一道导数与三角函数㊁指数函数结合的综合性问题ꎬ第(1)问是利用导数方法证明不等式恒成立ꎬ考查在三角函数背景下运用导数判断函数的单调性㊁求函数的最值㊁零点存在定理等知识ꎻ第(2)问是以三角函数和指数函数交汇作为研究的主体ꎬ打破了常规ꎬ考虑直接用数形结合方法很难解答出来ꎬ进而尝试求导ꎬ由于求导会出现含三角函数的表达式ꎬ使用常规方法处理后续问题变得困难.本题主要考查学生对函数的隐零点的掌握以及根据切线放缩㊁端点效应等方式来解决问题的能力ꎻ对学生的抽象概括㊁推理论证㊁运算求解等核心素养能力要求较高ꎻ考查函数与方程㊁化归与转化㊁分类与整合㊁数形结合等数学思想ꎻ体现综合性㊁应用性与创新性.2试题解析解法1㊀(1)fᶄ(x)=ex-a+2sinx(a>0).当0<x<π2时ꎬ2sinx>0ꎬex-a>0ꎬ所以fᶄ(x)>0ꎬ此时fx()单调递增.又f0()=e-a-2<e0-2<0ꎬfπ2æèçöø÷=eπ2-a>0ꎬ所以fx()在0ꎬπ2æèçöø÷内有唯一零点x0.因为ex0-a=2cosx0ꎬ所以fᶄ(x0)=ex0-a+2sinx0=2cosx0+2sinx0=2sinx0+π4æèçöø÷.因为x0ɪ0ꎬπ2æèçöø÷ꎬ所以2sinx0+π4æèçöø÷ɤ2.即fᶄx0()ɤ2ꎬ当x0=π4时ꎬ等号成立.综上ꎬfx()在0ꎬπ2æèçöø÷有唯一零点x0[1]ꎬ且fᶄx0()ɤ2.(2)由fx()ȡ2sinx-π4æèçöø÷ꎬ得ex-a-2sinxȡ0.令gx()=ex-a-2sinxxȡ-π()ꎬ则gᶄx()=ex-a-2cosxxȡ-π()ꎬgx()ȡ0.(ⅰ)当-πɤxɤ0时ꎬ-2sinxȡ0ꎬex-a>0ꎬ对于a>0ꎬ均有gx()>0.(ⅱ)当0<x<π时ꎬ由(1)知fᶄ(x)=ex-a+2sinx>0ꎬfx()单调递增ꎬ即gᶄx()单调递增.又由(1)知ꎬ对于唯一零点x0[2]ꎬgᶄx0()=0ꎬ且当x0<x<π时ꎬgᶄx()>0ꎬgx()单调递增ꎬ当0<x<x0时ꎬgᶄx()<0ꎬgx()单调递减.所以gx()min=gx0()=ex0-a-2sinx0.又gᶄx0()=0ꎬ即ex0-a=2cosx0.所以gx()min=2cosx0-2sinx0=2cosx0+π4æèçöø÷.因为gx()ȡ0ꎬ所以2cosx0+π4æèçöø÷ȡ0.又因为0<x0<π2ꎬ所以0<x0ɤπ4.由ex0-a=2cosx0ꎬ得a=x0-ln2cosx0().又因为φx()=x-ln2cosx()在区间0ꎬπ4æèçöø÷内单调递增ꎬ且φ0()=-ln2ꎬφπ4æèçöø÷=π4ꎬ所以-ln2<aɤπ4.由已知a>0ꎬ故0<aɤπ4.(ⅲ)当xȡπꎬ且0<aɤπ4时ꎬgx()ȡeπ-a-2sinxȡeπ-a-2ȡe3π4-2>0ꎬ符合题意.综上所述ꎬa的取值范围是0ꎬπ4æèç].解法2㊀(1)令p(x)=ex-aꎬq(x)=2cosxꎬp(x)在0ꎬπ2[]单调递增ꎬq(x)在0ꎬπ2[]单调递减ꎬp(0)=e-a<1(a>0)ꎬq(0)=2>1ꎬp(π2)=eπ2-a>0ꎬq(π2)=0ꎬ即p(0)<q(0)ꎬp(π2)>q(π2).所以p(x)与q(x)在0ꎬπ2æèçöø÷的图象只有唯一一个交点.所以f(x)在区间0ꎬπ2æèçöø÷内有唯一零点x0.因为fᶄ(x)=ex-a+2sinx(a>0)ꎬex0-a=2cosx0.所以fᶄ(x0)=ex0-a+2sinx0=e2(x0-a)+21-e2(x0-a)2=e2(x0-a)+2-e2(x0-a)ɤ2(e2(x0-a)+2-e2(x0-a))=2ꎬ即fᶄx0()ɤ2.注:此解法利用到不等式aȡ0ꎬbȡ0ꎬa+bɤ2(a+b).(2)由f(x)ȡ2sin(x-π4)ꎬ得ex-a-2sinxȡ0.令g(x)=ex-a-2sinx(xȡ-π)ꎬ则gᶄ(x)=ex-a-2cosxꎬg(x)ȡ0. (ⅰ)当-πɤxɤ0时ꎬ-2sinxȡ0ꎬex-a>0ꎬ对于a>0ꎬ均有g(x)>0.(ⅱ)当x>0时ꎬ①当a>π4时ꎬg(x)<ex-π4-2sinxꎬ由于存在g(π4)<eπ4-π4-2sinπ4=0ꎬ故a>π4不符合题意.②当0<aɤπ4时ꎬg(x)ȡex-π4-2sinx.令h(x)=ex-π4-2sinx(xȡ0)ꎬhᶄ(x)=ex-π4-2cosxꎬ当xȡπ2时ꎬhᶄ(x)=ex-π4-2cosx>234-2cosx>2-2cosx>0ꎬh(x)在π2[ꎬ+ɕ)单调递增.㊀当0<x<π2时ꎬhᵡ(x)=ex-π4+2sinx>0ꎬ此时hᶄ(x)单调递增.又hᶄ(π4)=eπ4-π4-2cosπ4=0ꎬ所以当0<x<π4时ꎬhᶄ(x)<0ꎻ当π4<x<π2时ꎬhᶄ(x)>0.因此当0<x<π4时ꎬhᶄ(x)<0ꎬh(x)单调递减ꎻ当x>π4时ꎬhᶄ(x)>0ꎬh(x)单调递增ꎻ故h(x)ȡh(π4)=eπ4-π4-2sinπ4=0ꎬ符合题意.综上所述ꎬa的取值范围(0ꎬπ4].解法3㊀(1)同解法1㊁或解法2. (2)由f(x)ȡ2sin(x-π4)ꎬ得ex-a-2sinxȡ0.令g(x)=ex-a-2sinx(xȡ-π)ꎬ则gᶄ(x)=ex-a-2cosxꎬg(x)ȡ0. (ⅰ)当-πɤxɤ0时ꎬ-2sinxȡ0ꎬex-a>0ꎬ对于a>0ꎬ均有g(x)>0.(ⅱ)当x>0时ꎬ①当a>π4时ꎬg(x)<ex-π4-2sinxꎬ由于存在g(π4)<eπ4-π4-2sinπ4=0ꎬ故a>π4不符合题意.②当0<aɤπ4时ꎬg(x)ȡex-π4-2sinx.先证:ex-π4ȡx-π4+1(x>0).令f1(x)=ex-x-1ꎬ则f1ᶄ(x)=ex-1.当x<0时ꎬf1ᶄ(x)<0ꎬf1(x)单调递减ꎻ所以f1(x)ȡf1(0)=0.故exȡx+1.因此有ex-π4ȡx-π4+1.再证:x-π4+1ȡ2sinx(x>0).(∗)当xȡπ时ꎬx-π4+1ȡ3π4+1>2ȡ2sinxꎬ(∗)成立.当0<x<π时ꎬf2(x)=x-π4+1-2sinx(0<x<π)ꎬ则f2ᶄ(x)=1-2cosx.当0<x<π4时ꎬf2ᶄ(x)<0ꎬf2(x)单调递减ꎻ当π4<x<π时ꎬf2ᶄ(x)>0ꎬf2(x)单调递增.所以f2(x)ȡf2(π4)=0ꎬ故(∗)成立.故当x>0时ꎬx-π4+1ȡ2sinx.因此ꎬ当0<aɤπ4ꎬx>0时ꎬ由ex-π4ȡx-π4+1ꎬx-π4+1ȡ2sinxꎬ可得g(x)ȡex-π4-2sinxȡ0.综上所述ꎬa的取值范围(0ꎬπ4].解法4㊀(1)同解法1㊁或解法2. (2)由f(x)ȡ2sin(x-π4)ꎬ得ex-a-2sinxȡ0.令g(x)=ex-a-2sinx(xȡ-π)ꎬ则gᶄ(x)=ex-a-2cosxꎬg(x)ȡ0.由g(x)ȡ0ꎬ可知g(π4)ȡ0.即eπ4-a-2sinπ4ȡ0.所以0<aɤπ4.下证当0<aɤπ4时符合题意ꎬ证法同解法2㊁3.㊀解法赏析㊀由于解析式中含三角函数和指数函数ꎬ无论怎么求导ꎬ导函数中都仍会含有三角函数和指数函数ꎬ所以在零点的求解中会出现无法直接求解出来的隐零点[3]ꎬ而解法1体现了解决隐零点的一般思路:形式上虚设ꎬ运算上代换ꎬ数值上估算ꎬ策略上等价转化ꎻ解法2的解题思路是采用直接构造函数ꎬ然后再证明ꎬ经过多次构造ꎬ二阶求导ꎬ三阶求导ꎬ充分认识并发挥了三角函数的特有性质(周期性㊁有界性㊁单调性)和ex求导的不变性ꎬ为此类问题的解决提供探索路径ꎻ解法3运用了分类讨论思想ꎬ解题过程中进行了指数放缩ꎬ将函数式子化简为更为简单的形式再加以证明ꎻ解法4用 必要条件探路ꎬ后再证明充分性 的方法ꎬ先由g(x)ȡ0-πɤxɤ0()恒成立ꎬ可知g(π4)ȡ0成立ꎬ即0<aɤπ4ꎬ所以只需证当0<aɤπ4时符合题意即可ꎬ四种解法既有区别又相互联系.3教学思考3.1导数与三角函数结合试题的解题策略近几年的高考数学试题与质检考试题中ꎬ导数与三角函数相结合的试题逐渐成为趋势ꎬ由于三角函数的特殊性质(周期性㊁有界性㊁放缩法等)ꎬ解题时不宜盲目求导ꎬ而是采取构造函数㊁分类讨论等方法ꎬ最终找出解题有用的特征ꎬ再联系三角恒等变换ꎬ并结合其他基本初等函数的性质分析讨论ꎬ这对培养学生的数学综合能力起到不可估量的作用[4].3.2新高考背景下的课堂教学思考通过这样的好题ꎬ我们可以看出新高考对于学生的考查不仅仅局限于知识与技能ꎬ而是全面考查学生的数学核心素养和关键能力.试卷题目类型灵活ꎬ导数融入三角函数ꎬ拓展了高考命题的范围.这就需要教师突破各种局限ꎬ大胆迎接各种挑战ꎬ突破传统的导数题的框架ꎬ勇于创新ꎬ教会学生以 不变的 知识与技能去应对 万变的 数学试题ꎬ培养学生未来发展所必备的数学核心素养ꎬ适应国家新高考选拔新型人才的要求.参考文献:[1]江智如ꎬ江伟ꎬ蔡珺.例谈以三角函数为载体函数综合问题的解题策略[J].中学数学研究(华南师范大学版)ꎬ2020(15):12-16.[2]曹轩ꎬ龚芮.当导数遭遇三角[J].中学数学杂志ꎬ2020(11):42-44.[3]房彬.三角函数与导数结合类型中隐零点问题的探究[J].高中数理化ꎬ2021(10):11-13. [4]陈俊斌.三角为基导数联姻[J].数学通讯ꎬ2021(14):32-37.[责任编辑:李㊀璟]。
高二数学导数试题答案及解析1.若曲线的一条切线l与直线垂直,则切线l的方程为 ( )A.B.C.D.【答案】A【解析】设切点为,因为,所以,由导数的几何意义可知切线的斜率为。
直线的斜率为。
由题意可得,解得,切点为,切线的斜率为4,所以切线的方程为,即。
故A正确。
【考点】1导数的几何意义;2两直线垂直时斜率的关系;3直线方程。
2.曲线在点(1,1)处的切线方程为 .【答案】【解析】∵y=lnx+x,∴,∴切线的斜率k=2,所求切线程为.【考点】导数的几何意义.3.已知是定义在上的非负可导函数,且满足,对任意正数,若,则的大小关系为A.B.C.D.【答案】A【解析】因为,是定义在上的非负可导函数,且满足,即,所以,在是增函数,所以,若,则的大小关系为。
选A。
【考点】导数的运算法则,应用导数研究函数的单调性。
点评:中档题,在给定区间,如果函数的导数非负,则函数为增函数,如果函数的导数非正,则函数为减函数。
比较大小问题,常常应用函数的单调性。
4.已知函数的导函数为,1,1),且,如果,则实数的取值范围为()A.()B.C.D.【答案】B【解析】由于,1,1),故函数在区间上为增函数,且为奇函数,由得:,则,解得。
故选B。
【考点】函数的性质点评:求不等式的解集,常结合到函数的单调性,像本题解不等式就要结合到函数的单调性。
5.已知函数在上是单调函数,则实数a的取值范围是()A.B.C.D.【答案】B【解析】因为,函数在上是单调函数,所以,=0无不等实数解,即,解得,,故选B。
【考点】利用导数研究函数的单调性。
点评:简单题,在某区间,导数非负,函数为增函数,导数非正,函数为减函数。
6.已知曲线方程,若对任意实数,直线,都不是曲线的切线,则实数的取值范围是【答案】【解析】把已知直线变形后找出直线的斜率,要使已知直线不为曲线的切线,即曲线斜率不为已知直线的斜率,求出f(x)的导函数,由完全平方式大于等于0即可推出a的取值范围解:把直线方程化为y=-x-m,所以直线的斜率为-1,且m∈R,所以已知直线是所有斜率为-1的直线,即曲线的斜率不为-1,由得:f′(x)=x2-2ax,对于x∈R,有x2-2ax≥,根据题意得:-1<a<1.故答案为【考点】求曲线上过某点曲线方程点评:此题考查学生会利用导数求曲线上过某点曲线方程的斜率,是一道基础题.7.曲线在点(1,2)处的切线方程是____________---------【答案】【解析】,直线斜率为1,直线方程为【考点】导数的几何意义点评:几何意义:函数在某一点处的导数值等于该点处的切线的斜率8.已知函数.(1)当时,求曲线在点处的切线方程;(2)对任意,在区间上是增函数,求实数的取值范围.【答案】(1)(2)【解析】(Ⅰ)解:当时,, 2分,又 4分所以曲线在点处的切线方程为即 6分(Ⅱ)= 8分记,则,在区间是增函数,在区间是减函数,故最小值为 -10分因为对任意,在区间上是增函数.所以在上是增函数, 12分当即时,显然成立当综上 15分【考点】导数的几何意义与函数单调性点评:第一问利用导数的几何意义:函数在某一点处的导数值等于该点处的切线斜率,可求得切线斜率,进而得到切线方程;第二问也可用参变量分离法分离,通过求函数最值求的取值范围9.已知函数,则()A.0B.1C.-1D.2【答案】C【解析】根据题意,由于,则可知-1+0=-1,故答案为C.【考点】导数的运算点评:主要是考查了导数的运算法则的的运用,属于基础题。
高二数学利用导数研究函数的单调性试题答案及解析1.已知函数f(x)=x2+2alnx.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数在上是减函数,求实数a的取值范围.【答案】(Ⅰ)当a≥0时,递增区间为(0,+∞);当a<0时,递减区间是(0,);递增区间是(,+∞);(Ⅱ).【解析】解题思路:(Ⅰ)求定义域与导函数,因含有参数,分类讨论求出函数的单调区间;(Ⅱ)利用“函数g(x)为[1,2]上的单调减函数,则g′(x)≤0在[1,2]上恒成立”,得到不等式恒成立;再分离参数,求函数的最值即可.规律总结:若函数在某区间上单调递增,则在该区间恒成立;“若函数在某区间上单调递减,则在该区间恒成立.试题解析:(Ⅰ)f′(x)=2x+=,函数f(x)的定义域为(0,+∞).①当a≥0时,f′(x)>0,f(x)的单调递增区间为(0,+∞);②当a<0时,f′(x)=.当x变化时,f′(x),f(x)的变化情况如下:x(0,)(,+∞)-0+由上表可知,函数f(x)的单调递减区间是(0,);单调递增区间是(,+∞).(Ⅱ)由g(x)=+x2+2aln x,得g′(x)=-+2x+,由已知函数g(x)为[1,2]上的单调减函数,则g′(x)≤0在[1,2]上恒成立,即-+2x+≤0在[1,2]上恒成立.即a≤-x2在[1,2]上恒成立.令h(x)=-x2,在[1,2]上h′(x)=--2x=-(+2x)<0,=h(2)=-,所以a≤-.所以h(x)在[1,2]上为减函数,h(x)min故实数a的取值范围为{a|a≤-}.【考点】1.利用导数求函数的单调区间;2.根据函数的单调性求参数.2.函数的部分图象大致为( ).【答案】D【解析】,为奇函数,图像关于原点对称,排除选项B;,所以排除选项A;当时,,所以排除选项C;故选选项D.【考点】函数的图像.3.已知函数f(x)=ax2+bln x在x=1处有极值.(1)求a,b的值;(2)判断函数y=f(x)的单调性并求出单调区间.【答案】(1);(2)减区间(0,1),增区间(1,+∞)【解析】(1)由函数f(x)=ax2+bln x在x=1处有极值可知,解得;(2)由(1)可知,其定义域是(0,+∞),由,得由,得所以函数的单调减区间(0,1),增区间(1,+∞).试题解析:(1)又函数f(x)=ax2+bln x在x=1处有极值,所以解得.(2)由(1)可知,其定义域是(0,+∞)由,得由,得所以函数的单调减区间(0,1),增区间(1,+∞).【考点】1.导数与极值;2.导数与单调性4.函数f(x)=ax3-x在R上为减函数,则()A.a≤0B.a<1C.a<0D.a≤1【答案】【解析】当时,在上为减函数,成立;当时, 的导函数为,根据题意可知, 在上恒成立,所以且,可得.综上可知.【考点】导数法判断函数的单调性;二次函数恒成立.5.已知在R上开导,且,若,则不等式的解集为()A.B.C.D.【答案】B【解析】令,则,由,则,在上为增函数,,所以的解集为,故选B.【考点】函数的单调性与导数的关系.6.设,分别是定义在上的奇函数和偶函数,当时,,且,则不等式的解集是 ( )A.B.C.D.【答案】D.【解析】先根据可确定,进而可得到在时单调递增,结合函数,分别是定义在上的奇函数和偶函数可确定在时也是增函数.于是构造函数知在上为奇函数且为单调递增的,又因为,所以,所以的解集为,故选D.【考点】利用导数研究函数的单调性.7.在上可导的函数的图形如图所示,则关于的不等式的解集为().A.B.C.D.【答案】A【解析】由图象可知f′(x)=0的解为x=-1和x=1函数f(x)在(-∞,-1)上增,在(-1,1)上减,在(1,+∞)上增∴f′(x)在(-∞,-1)上大于0,在(-1,1)小于0,在(1,+∞)大于0当x<0时,f′(x)>0解得x∈(-∞,-1)当x>0时,f′(x)<0解得x∈(0,1)综上所述,x∈(-∞,-1)∪(0,1),故选A.【考点】函数的图象;导数的运算;其他不等式的解法.8.函数,若对于区间[-3,2]上的任意x1,x2,都有 | f(x1)-f (x2)|≤ t,则实数t的最小值是()A.20B.18C.3D.0【答案】A【解析】所以在区间,单调递增,在区间单调递减.,,,,可知的最大值为20 .故的最小值为20.【考点】利用导数求函数的单调性与最值.9.设函数.(1)若在时有极值,求实数的值和的极大值;(2)若在定义域上是增函数,求实数的取值范围.【答案】(1)极大值为(2)【解析】(1)先求导,根据在时有极值,则,可求得的值。
高二数学利用导数研究函数的单调性试题答案及解析1.已知(1)如果函数的单调递减区间为,求函数的解析式;(2)对一切的,恒成立,求实数的取值范围.【答案】(1);(2).【解析】(1)三个二次间的关系,其实质是抓住二次函数的图像与横坐标的交点、二次不等式解集的端点值、二次方程的根是同一个问题.解决与之相关的问题时,可利用函数与方程的思想、化归的思想将问题转化,结合二次函数的图象来解决;(2)若可导函数在指定的区间上单调递增(减),求参数问题,可转化为恒成立,从而构建不等式,要注意“=”是否可以取到;(3)(3)对于恒成立的问题,常用到两个结论:(1)(2)试题解析:解:(1)由题意的解集是即的两根分别是.将或代入方程得..……4分(2)由题意:在上恒成立即可得设,则令,得(舍)当时,;当时,当时,取得最大值, =-2.的取值范围是.【考点】(1)利用函数的单调性求函数解析式;(2)利用导数解决横成立的问题.2.函数的单调递增区间是().A.B.C.D.【答案】C【解析】,;令,得,即函数的单调递增区间是.【考点】利用导数研究函数的单调性.3.已知为定义在(0,+∞)上的可导函数,且恒成立,则不等式的解集为.【答案】【解析】因为为定义在(0,+∞)上的可导函数,且恒成立,所以在上恒成立,即在上为减函数;可化为,所以,解得.【考点】解抽象不等式.4.已知函数f(x)是偶函数,在上导数>0恒成立,则下列不等式成立的是( ).A.f(-3)<f(-1)<f(2)B.f(-1)<f(2)<f(-3)C.f(2)<f(-3)<f(-1)D.f(2)<f(-1)<f(-3)【答案】B【解析】因为函数在上,所以函数在上为增函数;又因为为偶函数,所以,,所以,即.【考点】函数的奇偶性.5.函数有极值点,则的取值范围是()A.B.C.D.【答案】D【解析】∵函数有极值点,∴f(x)的导数 f′(x)=x2-2x+a=0有两个实数根,∴,故选D.【考点】函数存在极值的条件.6.若定义在R上的函数f(x)的导函数为,且满足,则与的大小关系为().A.<B.=C.>D.不能确定【答案】C【解析】构造函数,则,因为,所以;即函数在上为增函数,则,即.【考点】利用导数研究函数的单调性.7.函数是定义在上的奇函数,且.(1)求函数的解析式;(2)证明函数在上是增函数;(3)解不等式:.【答案】(1)(2)证明见解析(3)【解析】(1)(由是定义在上的奇函数,利用可求得,再由可求得,即可求得;(2)由(1)可得,即得函数在上是增函数;(3)由,再利用为奇函数,可得,即可求得结果.试题解析:(1)是定义在上的奇函数,;又,,;(2),,即,∴函数在上是增函数.(3),又是奇函数,,在上是增函数,,解得,即不等式的解集为.【考点】函数的奇偶性;利用导数判断函数单调性.8.已知定义域为R的函数,且对任意实数x,总有/(x)<3则不等式<3x-15的解集为()A.(﹣∞,4)B.(﹣∞,﹣4)C.(﹣∞,﹣4)∪(4,﹢∞)D.(4,﹢∞)【答案】【解析】设,则所求的不等式解集可理解为使的解集.的导函数为,根据题意可知对任意实数恒成立,所以在上单调递减.则,令,则根据单调递减可知:.【考点】导数法判断单调性;根据单调性解不等式.9.在区间内不是增函数的是()A.B.C.D.【答案】D【解析】选项中,时都有,所以在上为单调递增函数,所以在是增函数;选项在,而在上为增函数,所以在是增函数;选项,令得或,所以在为增函数,而,所以在上增函数;选项,令,得。
导数中的探索性问题一、常见基本题型:(1)探索图像的交点个数问题,可转化方程解的个数求解,例1、 已知函数32()3f x x ax x =--,(1)若13x =-是()f x 的极值点,求()f x 在[1,]a 上的最大值;(2)在(1)的条件下,是否存在实数b ,使得函数()g x bx =的图像与函数()f x 的图象恰有3个交点?若存在,请求出实数b 的取值范围;若不存在,试说 明理由。
解:(1)因为13x =-是()f x 的极值点,所以,'1()0,4,3f a -=∴='()0f x =由得:13,3x =-,在区间[1,4]上, ()f x 在(1,3)单调减在(3,4)单调增, 且(1)6,(4)12,f f =-=-所以,max ()(1)6f x f ==- (2) 设32()()()43F x f x g x x x x bx =-=---,由题意可得()F x 有三个零点, 又由于0是()F x 的一个零点,所以,只要再有两个零点且都不相同即可;因此,方程2430x x b ---=有两个不等实根且无零根, 所以,2(4)4(3)0,30b b ⎧-++>⎨+≠⎩所以,存在实数b 使得函数()g x bx =的图像与函数()f x 的图象恰有3个交 点,7b >-且3b ≠-.(2)探索函数的零点个数问题例2.已知函数21()2,()ln 2f x ax xg x x =+=,是否存在正实数a ,使得函数 ()()g x x x Γ=-()21f x a '++在区间1(,)e e 内有两个不同的零点?若存在,请求出 a 的取值范围;若不存在,请说明理由. 解:ln ()(2)21x x ax a xΓ=-+++, 因()x Γ在区间1(,)e e内有两个不同的零点,所以()0x Γ=, 即方程2(12)0ax a x lnx +--=在区间1(,)e e内有两个不同的实根 设2()(12)H x ax a x lnx =+-- (0)x >,1()2(12)H x ax a x '=+--22(12)1(21)(1)ax a x ax x x x +--+-==令()0H x '=,因为a 为正数,解得1x =或12x a=-(舍) 当1(,1)x e ∈时, ()0H x '<, ()H x 是减函数;当(1,)x e ∈时, ()0H x '>,()H x 是增函数.为满足题意,只需()H x 在1(,)e e内有两个不相等的零点, 故 min 1()0()(1)0()0H e H x H H e ⎧>⎪⎪=<⎨⎪>⎪⎩, 解得1212-+<<e e e a (3) 探索函数图象的位置关系问题例3.若存在实常数k 和b ,使得函数()f x 和()g x 对其定义域上的任意实数x 分别满足: ()f x kx b ≥+和()g x kx b ≤+,则称直线:l y kx b =+为()f x 和()g x 的“隔离直线”. 已知2()h x x =,()2ln x e x ϕ=(其中e 为自然对数的底数).(1)求()()()F x h x x ϕ=-的极值;(2) 函数()h x 和()x ϕ是否存在隔离直线?若存在,求出此隔离直线方程;若不存在, 请说明理由.解:(1) ()()()F x h x x ϕ=-=22ln (0)x e x x ->,2()2e F x x x '∴=-=当x =()0F x '=.当0x <<()0F x '<,此时函数()F x 递减;当x >()0F x '>,此时函数()F x 递增;∴当x =()F x 取极小值,其极小值为0.(2)由(1)可知函数)(x h 和)(x ϕ的图象在e x =处有公共点,则2()e G x'=-= 当x =()0G x '=.当0x <<()0G x'>,此时函数()G x 递增;当x >()0Gx '<,此时函数()G x 递减; ∴当x =()G x 取极大值,其极大值为0.从而()2ln 0G x e x e =-+≤,即)0(2)(>-≤x e x e x ϕ恒成立.∴函数()h x 和()x ϕ存在唯一的隔离直线y e =-.二、针对性练习1. 设函数2()22ln(1)f x x x x =+-+.(1)求函数()f x 的单调区间;(2)当1[1,1]x e e∈--时,是否存在整数m ,使不等式22()2m f x m m e <≤-++恒 成立?若存在,求整数m 的值;若不存在,请说明理由。
高三数学导数的实际应用试题答案及解析1.已知函数 ().(1)若,求函数的极值;(2)设.①当时,对任意,都有成立,求的最大值;②设的导函数.若存在,使成立,求的取值范围.【答案】(1)参考解析;(2)①-1-e-1,②(-1,+∞)【解析】(1)由函数 (),且,所以对函数求导,根据导函数的正负性可得到结论(2)①当时,对任意,都有成立,即时,恒成立. 由此可以通过分离变量或直接求函数的最值求得结果,有分离变量可得b≤x2-2x-在x∈(0,+∞)上恒成立.通过求函数h(x)=x2-2x- (x>0)的最小值即可得到结论.②若存在,使.通过表示即可得到=,所以求出函数u(x)=(x>1)的单调性即可得到结论.(1)当a=2,b=1时,f (x)=(2+)e x,定义域为(-∞,0)∪(0,+∞).所以f ′(x)=e x. 2分令f ′(x)=0,得x1=-1,x2=,列表(0,)(,+∞)-↗极大值极小值↗由表知f (x)的极大值是f (-1)=e-1,f (x)的极小值是f ()=4. 4分(2)①因为g (x)=(ax-a)e x-f (x)=(ax--2a)e x,当a=1时,g (x)=(x--2)e x.因为g (x)≥1在x∈(0,+∞)上恒成立,所以b≤x2-2x-在x∈(0,+∞)上恒成立. 7分记h(x)=x2-2x- (x>0),则h′(x)=.当0<x<1时,h′(x)<0,h(x)在(0,1)上是减函数;当x>1时,h′(x)>0,h(x)在(1,+∞)上是增函数;所以h(x)min=h(1)=-1-e-1;所以b的最大值为-1-e-1. 9分解法二:因为g (x)=(ax-a)e x-f (x)=(ax--2a)e x,当a=1时,g (x)=(x--2)e x.因为g (x)≥1在x∈(0,+∞)上恒成立,所以g(2)=-e2>0,因此b<0. 5分g′(x)=(1+)e x+(x--2)e x=.因为b<0,所以:当0<x<1时,g′(x)<0,g(x)在(0,1)上是减函数;当x>1时,g′(x)>0,g(x)在(1,+∞)上是增函数.所以g(x)min=g(1)=(-1-b)e-1 7分因为g (x)≥1在x∈(0,+∞)上恒成立,所以(-1-b)e-1≥1,解得b≤-1-e-1因此b的最大值为-1-e-1. 9分②解法一:因为g (x)=(ax--2a)e x,所以g ′(x)=(+ax--a)e x.由g (x)+g ′(x)=0,得(ax--2a)e x+(+ax--a)e x=0,整理得2ax3-3ax2-2bx+b=0.存在x>1,使g (x)+g ′(x)=0成立.等价于存在x>1,2ax3-3ax2-2bx+b=0成立. 11分因为a>0,所以=.设u(x)=(x>1),则u′(x)=.因为x>1,u′(x)>0恒成立,所以u(x)在(1,+∞)是增函数,所以u(x)>u(1)=-1,所以>-1,即的取值范围为(-1,+∞). 14分解法二:因为g (x)=(ax--2a)e x,所以g ′(x)=(+ax--a)e x.由g (x)+g ′(x)=0,得(ax--2a)e x+(+ax--a)e x=0,整理得2ax3-3ax2-2bx+b=0.存在x>1,使g (x)+g ′(x)=0成立.等价于存在x>1,2ax3-3ax2-2bx+b=0成立. 11分设u(x)=2ax3-3ax2-2bx+b(x≥1)u′(x)=6ax2-6ax-2b=6ax(x-1)-2b≥-2b 当b≤0时,u′(x)≥0此时u(x)在[1,+∞)上单调递增,因此u(x)≥u(1)=-a-b因为存在x>1,2ax3-3ax2-2bx+b=0成立所以只要-a-b<0即可,此时-1<≤0 12分当b>0时,令x0=>=>1,得u(x)=b>0,又u(1)=-a-b<0于是u(x)=0,在(1,x)上必有零点即存在x>1,2ax3-3ax2-2bx+b=0成立,此时>0 13分综上有的取值范围为(-1,+∞)------14分【考点】1.函数的极值.2.函数最值.3.函数恒成立问题.4.存在性的问题.5.运算能力.2.将一个边长分别为a、b(0<a<b)的长方形的四个角切去四个相同的正方形,然后折成一个无盖的长方体形的盒子.若这个长方体的外接球的体积存在最小值,则的取值范围是________.【答案】【解析】设减去的正方形边长为x,其外接球直径的平方R2=(a-2x)2+(b-2x)2+x2,由R′=0,∴x=(a+b).∵a<b,∴x∈,∴0<(a+b)< ,∴1<<.3.对于三次函数,给出定义:是函数的导函数,是的导函数,若方程有实数解,则称点为函数的“拐点”.某同学经研究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且拐点就是对称中心.若,请你根据这一发现,求:(1)函数的对称中心为__________;(2)=________.【答案】(1);(2)2013.【解析】,,令,∴,∴∴对称中心为,∴,∴.【考点】1.新定义题;2.导数.4.已知,函数.(1)当时,写出函数的单调递增区间;(2)当时,求函数在区间[1,2]上的最小值;(3)设,函数在(m,n)上既有最大值又有最小值,请分别求出m,n的取值范围(用a表示).【答案】(1);(2);(3)详见解析.【解析】(1)对于含绝对值的函数一般可通过讨论去掉绝对值化为分段函数再解答,本题当时,函数去掉绝对值后可发现它的图象是由两段抛物线的各自一部分组成,画出其图象,容易判断函数的单调递增区间;(2)时,所以,这是二次函数,求其在闭区间上的最小值,一般要分类讨论,考虑对称轴和区间的相对位置关系,从而判断其单调性,从而求出最小值;(3)函数在开区间上有最大值和最小值,必然要使开区间上有极大值和极小值,且使极值为最值,由于函数是与二次函数相关,可考虑用数形结合的方法解答.试题解析:(1)当时,, 2分由图象可知,的单调递增区间为. 4分(2)因为,所以. 6分当,即时,; 7分当,即时,. 8分. 9分(3), 10分①当时,图象如图1所示.图1由得. 12分②当时,图象如图2所示.图2由得. 14分【考点】含绝对值的函数、二次函数.5.设,当时,恒成立,则实数的取值范围为。
讲题比赛特等奖获奖论文之五:函数与导数问题的转化探析2022年浙江高考数学第22题的多种解法◉杭州第七中学㊀王浩宇1试题呈现(2022年浙江卷第22题)设函数f (x )=e2x+l n x (x >0).(1)求f (x )的单调区间.(2)已知a ,b ɪR ,曲线f (x )上不同的三点(x 1,f (x 1)),(x 2,f (x 2)),(x 3,f (x 3))处的切线都经过点(a ,b ).证明:(ⅰ)若a >e ,则0<b -f (a )<12a e -1æèçöø÷;(ⅱ)若0<a <e ,x 1<x 2<x 3,则2e +e -a6e2<1x 1+1x 3<2a -e -a6e2.(注:e =2.71828 是自然对数的底数.)2思路分析本题第(1)小题求导即可,较为简单.下面主要对第(2)小题进行思路分析.2.1第(2)小题第(ⅰ)问思路分析分析题干,发现命题者在题干中给出了曲线过点(a ,b )的三条切线,题干中的信息可转化为方程b =fᶄ(x )a -x ()+f (x )有三个正根.思路一:函数零点个数.由于方程b =fᶄ(x )(a -x )+f (x )无法直接求解,故将其等价转化为函数零点个数问题,画出函数的草图,数形结合分析,可知a ,b 需满足的条件.此时不等式左侧已经得证,而右侧不等式的证明则可通过分析法,放缩b的范围得证,此为方法1.思路二:两个函数图象交点个数.进一步研究发现,可将b 单独分离,减少函数中参数的数量,便于计算.将问题转化为两个函数图象交点个数的问题,该方法与方法1类似,在计算上略有简化,此为方法2.思路三:换元法简化计算过程.方法2中函数有较多分式,在求导时计算量较大,故对该函数使用换元法(取倒数),将分式转化为整式简化计算,其余做法与方法2类似,此为方法3.第(ⅰ)问具体思维导图如图1所示.图12.2第(2)小题第(ⅱ)问思路分析分析题干,由思路分析可知h (x )的单调性,可得条件1.由于所证结论中存在x 1,x 3,因此大胆进行尝试,写出h x 1()和h x 3()的具体表达式;由于所证结论中未出现参数b ,故将h (x 1)与h (x 3)两式相减消去参数b ,可得条件2.此处是该题的一个难点,在没有思路时,可大胆猜测,小心求证.为了缩小已知和求证之间的差距,尝试对所证的结论进行转化.参考a <x <b ⇔x -a ()x -b ()<0,可将所证结论转化为两式相乘的形式.思路一:单向放缩化简.观察化简后的式子,发现条件2与该不等式有类似结构,化简后均可得类似2l n x 3x 1 x 3x 1+1x 3x 1-1>2+e -a 6e æèçöø÷2-e a -a 26e 2æèçöø÷的结构.由于不等式左右两侧变量完全不相干,使用放缩法,将左侧式子转化为关于a 和e 的表达式.将化简后的不等式看成函数,通过求导计算,使用分析法可证明结论,此为方法1和方法4.思路二:双向放缩化简.反思思路一的计算过程,发现对右侧不等式求导,计算量较大.文卫星老师曾说过 想多算少是本领 ,结合方法1中所求的函数零点和拐点为1,将ae-1看成整体,结合高阶无穷小相关思想,尝试构建关于ae -1的二次幂的式子,对不等式右侧式子进行放缩,此为方法2和方法3.但是该方法较难想到,且需要一定的高等数学知识的积累.思路三:函数单调性证明.在方法3构造函数的过程中,发现可以利用函数p (x )的单调性证明,此为方法5.该过程可以避免构造函数和对不等式进行放缩,只需利用p (x )的单调性.在具体计算过程中发现该方法计算量非常大且非常繁琐,构造的函数也较难想到,故并不推荐.思路四:极限法消参.对要证结论消参,将x 1,x 3中的一个用e 和a 表示,之后证明极端情况成立.所得式子与一元二次不等式有非常类似的结构,故考虑以求解一元二次不等式方式进行证明,该过程需要使用泰勒公式将对数函数进行转化,此为方法6.第(ⅱ)问思维导图如图2所示:图23具体解答方法3.1第(1)小题解答方法对函数f (x )求导,当x >0时,f (x )的单调递减区间是0,e 2æèçöø÷,单调递增区间是e 2,+ɕæèçöø÷.3.2第(2)小题第(ⅰ)问的解答方法分析题干:f (x )上不同的三点处的切线为y =f ᶄ(x i )(x -x i )+f (x i )(i =1,2,3)由于点(a ,b )满足上面三个方程,因此b =f ᶄ(x )a -x ()+f (x )有三个正实根x 1,x 2,x 3.方法1:函数的零点个数.构造函数h (x )=f (x )-b -f ᶄ(x )(x -a ),要满足题目条件,需要h (x )有三个正零点.画出h (x )的草图,如图3所示.图3结合图3分析,当h (x )有三个零点时,满足h (a )<0且h (e )>0即可.不等式左侧得证.又因为h (e )>0,所以b <1+a2e.两边同减f (a ),可得b -f (a )<1+a 2e -e 2a -l n a .放缩后,只需证1+a2e-e 2a -l n a <12a e -1æèçöø÷,即证e 2a +l n a >32,即证f (a )>32.由第(1)问知f (a )>f (e )=32显然成立.方法2:两个函数图象的交点.设g (x )=f (x )+f ᶄ(x )(a -x ),则g (x )的图象与y =b 有三个交点.g (x )草图,如图4所示.图4分析图象可得只需g (a )<b <g (e ),即f (a )<b <a2e+1.之后的证明同方法1.方法2是方法1的变式,计算量与方法1接近,分别从两函数图象的交点和函数的零点角度分析问题.但以上两种解法均有分式出现,可否一开始就进行换元达到化简运算的目的由此得出方法3,主要考查学生直观想象的数学核心素养.图5方法3:换元法化简计算.使用换元法,设m i =1x ii =1,2,3(),G (m )=a +e ()m -a e m 22-l n m -1,为满足题目条件需要G (m )与y =b 有三个交点.对G (m )求导,画出图象,如图5所示.分析图象发现,要满足题目条件,只需G 1a æèçöø÷<b <G 1e æèçöø÷,化简可得f (a )<b <1+a 2e .之后的证明同方法1.3.3第(2)小题第(ⅱ)问的解答方法方法1:不等式转化与放缩.条件1:若0<a <e ,仍设过点(a ,b )的函数为h (x ),求导得h (x )单调区间.条件2:由h (x 1)=h (x 3)=0,可得a +e ()1x 1-1x 3æèçöø÷-e a 21x 21-1x 23æèçöø÷+l n x 1-l n x 3=0.设t 1=1x 1,t 3=1x 3,ìîíïïïï则有t 1+t 3=21e +1a æèçöø÷-2e a l n t 1-l n t 3t 1-t 3.要证2e +e -a 6e 2<t 1+t 3<2a -e -a6e2,只需证t 1+t 3()-2a -e -a 6e 2æèçöø÷éëêêùûúút 1+t 3()-2e +e -a 6e 2æèçöø÷éëêêùûúú<0.代入t 1+t 3的值并化简,即证2l n t 1t 3 t 1t 3+1t 1t 3-1>136-16 a e æèçöø÷ 2-16 æèça e +16 a 2e 2öø÷.使用换元法优化式子结构,设m =t 1t 3,n =a e ,则m >1n >1.故只需证2l n m m +1m -1>136-16n æèçöø÷2-16n +16n 2æèçöø÷.该不等式左右两侧的未知量不相干,尝试将不等式左侧式子进行放缩.通过对y =2l n m m +1m -1求导发现该函数在(1,+ɕ)单调递增,又因为m >1n >1,所以2l n m m +1m -1>2n +1()n -1l n n .故只需证2l n n n +1n -1>136-16n æèçöø÷2-16n +16n 2æèçöø÷,①设q (x )=2l n x +x -13()x 2-x +12()x -1()36x +1().求导发现q (x )在0,1()上单调递增,因此q (n )<q (1)=0.即2l n n +n -13()2n 2-n +1()n -1()36n +1()<0得证.方法1最后的求导计算量非常大,主要考查学生数学运算的核心素养.在该方法的研究过程中,因为q (x )的式子结构较为复杂,考虑到x =1既是q (x )的零点,也是q (x )的拐点,故大胆尝试将n -1看成一个整体对q (n )进行化简,构建高阶无穷小量,该方法能够大幅度减少运算量,但是较难想到.虽然该方法的思路高于学生现有的认知,但是教师可以将此作为学生思维的最近发展区,引导成绩优秀的学生进行研究.方法2:双向放缩不等式.将n -1作为整体对不等式①的右侧进行化简,可得2l n n n +1n -1>4-13n -1()+13n n -1()-136n n -1()2.当0<n <1时,136n n -1()2的值接近于0,故将其舍去进行放缩,即证l n n n +1n -1>2+16n -1()2,即证l n n -2n -1()n +1-16n -1()3n +1<0.接下来利用函数的单调性进行判断.设r (x )=l n x -2x -1()x +1-16 x -1()3x +1,当0<x <1时,r ᶄ(x )>0恒成立,因此r (x )<r (1)=0,得证.笔者尝试对方法2中的计算步骤进行化简,尽可能构建已知和未知的相同部分,最终得到更简单的方法3.教师在讲解的过程中,也要做到 优术 ,层层递进简化计算.方法3:对比消元.要证的不等式转化为e a 21x 1+1x 3æèçöø÷2-e +a ()1x 1+1x 3æèçöø÷+e a 2 2e +e -a 6e 2æèçöø÷2a -e -a 6e 2æèçöø÷<0.由h x 1()-h x 3()=0,得-e a 21x 1+1x 3æèçöø÷2+a +e ()1x 1+1x 3æèçöø÷+(l n x 1-l n x 3)x 1+x 3x 3-x 1=0.只需证e a 22e +e -a 6e 2æèçöø÷2a -e -a 6e 2æèçöø÷<l n x 3x 1x 3x 1+1x 3x 1-1.方法1中同样有这个式子,但是此处用函数来证明更简单.记t =x 3x 1>e a ,n =a e ,即证t +1()l n tt -1>2+161-n ()2-n 721-n ()2.由于t >1n>1时,R (t )=t +1()l n t t -1递增,因此t +1t -1l n t >n +1n -1 l n n ,当0<n <1时,172n n -1()2的值接近于0,故将其舍去,即证n +1n -1l n n >2+16n -1()2.接下来的证明与方法2相同.和第(ⅰ)问一样,由于证明过程中需要多次用到换元法化简,故笔者尝试在证明开始就使用换元法,得到方法4.方法4的证明思路与方法1类似.方法4:倒数换元.令t =1x 优化式子结构,得p (t )=h 1t æèçöø÷.要证原不等式,只需证t 1+t 3-2a -e -a 6e 2æèçöø÷éëêêùûúú t 1+t 3-2e +e -a 6e 2æèçöø÷éëêêùûúú<0.由p t 1()-p t 3()=0,可得t 1+t 3()2-2a +2e æèçöø÷t 1+t 3()=-2a e (t 1+t 3)(l n t 3-l n t 1)t 3-t 1.由第(ⅰ)问知,必有1+a 2e <b <e2a+l n a ,且存在三个零点满足0<t 3<1e <t 2<1a <t 1.设k =t 1t 3>e a >1,m =e a >1,即(k +1)l n kk -1>2+m -1()212m -1()72m3.令不等式左边为r (k ),可知r (k )在(1,+ɕ)上单调递增,所以r (k )m i n ȡr (m ),则只需证m +1()l n m m -1>2+m -1()2(12m -1)72m3,令c =1m ɪ(0,1),则即证l n c +21-c ()1+c +1-c ()3(12-c )72(1+c )<0,化简后该不等式与方法2中的①式相同.接下去的证法与之前的方法相同.放缩不等式除了求导㊁舍去较小值以外,还能利用函数单调性,方法4就是利用特殊函数p (t )的单调性解决问题.该方法思维含量较少,但是计算量非常大,会消耗学生大量时间,不划算.方法5:特殊函数法.继续使用方法4中函数p (t ).由t 1>1a可知0<2e +e -a 6e 2-t 1<1e ,通过求导发现p (t )在0,1e æèçöø÷上单调递减.所以要证2e +e -a6e2-t 1<t 3,只需证p 2e +e -a 6e 2-t 1æèçöø÷>p t 3()=0.对p 2e +e -a 6e2-t 1æèçöø÷中含有t1的式子求导,发现在定义域中,当变量大于1a 时,该式的导数大于0,故放缩可得,p 2e +e -a 6e 2-t 1æèçöø÷>p 2e +e -a 6e2-1a æèçöø÷,故证明上式右边大于0即可.令n =ae<1,设y 1=l n (136n -16n 2-1),y 2=-3772n +736n 2-172n 3+73-2n.求导可得当0<n <1时,y 1与y 2均单调递增,且y ᶄ1>y 2ᶄ,又因为当n 取1时y 1=y 2,故当0<n <1时,y 1<y 2.故p 2e +e -a 6e 2-t 1æèçöø÷>y 2-y 1>0得证.另一侧不等式证明同理.笔者继续寻找计算量更小的方法,通过对p (t )的分析,发现p (t )非常接近二次不等式,仅多出一个对数结构的式子.回顾高中数学知识,泰勒公式展开能将对数转化为整式,故尝试使用泰勒公式展开化简问题,方法如下.方法6:泰勒公式展开.设F (x )=f ᶄ(x )a -x ()+f (x )=b ,x >0,则F (x )有三个解x 1,x 2,x 3,且0<x 1<a <x 2<e <x 3.要证1x 1+1x 3<2a -e -a 6e 2,即证1x 1+1e <2a -e -a6e2.由于x 1越小,1x 1+1e越大,故证明极端情况成立即可.此时b =F (e ).取s =1x 1>1a ,化简有-e a 2s 2+a +e ()s -2+a 2e æèçöø÷=l n s ,为满足题目条件,该方程需要有解.尝试用泰勒公式展开转化为二次不等式的形式.因为l n s +l n a >a s -1a æèçöø÷-a 22 s -1a æèçöø÷2,即证e -a ()a 2 s 2+a -e ()s +a 2e -12+1-l n a <0.由于不等式中有较多的e -a 的形式,故将1看成l ne,可得a 2s 2-s -12e +l ne -l n ae -a <0.由对数平均不等式可得a 2s 2-s -12e +1㊀a e <0,解得s <2-㊀aea ,故只需证1e +2-㊀ae a ɤ2a -e -a 6e 2.令v =ae,即v -㊀v ɤ16(v 2-v ),等价于16㊀v (㊀v +1)ɤ1,v ɪ(0,1),显然成立.另一侧不等式证明同理.4总结2022年的浙江高考数学压轴题继承了浙江卷命题简捷明了的风格,并未出现大段文字,为了与明年的全国卷衔接,压轴题还出现了需要转换的内容,学生需要将 三条切线过同一个点 这个条件进行转化,以此获得解题所需的不等式.该题为双变量含参不等式的证明,属于难题,主要难点在计算和等价转化上.该题不仅考查学生对数学解题 术 的应用,还考查学生对数学解题 道 的理解.对于这类含有参数的不等式,通过构造不同函数,利用函数图象不断等价转化,类比讨论,采用极端位置分析等方法,考查学生数学建模㊁数学运算㊁直观想象㊁逻辑推理等数学核心素养.解题过程中的感悟如下:多参函数设主元,整体代换简运算;泰勒展开来帮忙,适当放缩繁变简.㊀㊀㊀Z。
生命是永恒不断的创造,因为在它内部蕴含着过剩的精力,它不断流溢,越出时间和空间的界限,它不停地追求,以形形色色的自我表现的形式表现出来。
--泰戈尔导数题型分析及解题方法一、考试内容导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。
二、热点题型分析题型一:利用导数研究函数的极值、最值。
1.32()32f x x x =-+在区间[]1,1-上的最大值是 2 2.已知函数2)()(2=-==x c x x x f y 在处有极大值,则常数c = 6 ;3.函数331x x y -+=有极小值 -1 ,极大值 3题型二:利用导数几何意义求切线方程1.曲线34y x x =-在点()1,3--处的切线方程是 2y x =- 2.若曲线x x x f -=4)(在P 点处的切线平行于直线03=-y x ,则P 点的坐标为 (1,0)3.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 430x y --=4.求下列直线的方程:(1)曲线123++=x x y 在P(-1,1)处的切线; (2)曲线2x y =过点P(3,5)的切线;解:(1)123|y k 23 1)1,1(1x /2/23===∴+=∴++=-=-上,在曲线点-x x y x x y P Θ所以切线方程为0211=+-+=-y x x y 即, (2)显然点P (3,5)不在曲线上,所以可设切点为),(00y x A ,则200x y =①又函数的导数为x y 2/=,所以过),(00y x A 点的切线的斜率为/2|0x y k x x ===,又切线过),(00y x A 、P(3,5)点,所以有352000--=x y x ②,由①②联立方程组得,⎩⎨⎧⎩⎨⎧====255 110000y x y x 或,即切点为(1,1)时,切线斜率为;2201==x k ;当切点为(5,25)时,切线斜率为10202==x k ;所以所求的切线有两条,方程分别为2510 12 )5(1025)1(21-=-=-=--=-x y x y x y x y 或即,或题型三:利用导数研究函数的单调性,极值、最值1.已知函数))1(,1()(,)(23f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1 (Ⅰ)若函数2)(-=x x f 在处有极值,求)(x f 的表达式;(Ⅱ)在(Ⅰ)的条件下,求函数)(x f y =在[-3,1]上的最大值; (Ⅲ)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围解:(1)由.23)(,)(223b ax x x f c bx ax x x f ++='+++=求导数得过))1(,1()(f P x f y 上点=的切线方程为:).1)(23()1(),1)(1()1(-++=+++--'=-x b a c b a y x f f y 即而过.13)]1(,1[)(+==x y f P x f y 的切线方程为上故⎩⎨⎧-=-=+⎩⎨⎧-=-=++3023323c a b a c a b a 即∵124,0)2(,2)(-=+-∴=-'-==b a f x x f y 故时有极值在 ③由①②③得 a=2,b=-4,c=5 ∴.542)(23+-+=x x x x f(2)).2)(23(443)(2+-=-+='x x x x x f 当;0)(,322;0)(,23<'<≤->'-<≤-x f x x f x 时当时13)2()(.0)(,132=-=∴>'≤<f x f x f x 极大时当 又)(,4)1(x f f ∴=在[-3,1]上最大值是13。