反坐标方位角
- 格式:ppt
- 大小:2.73 MB
- 文档页数:44
直线定向确定地面上两点之间的相对位置,除了需要测定两点之间的水平距离外,还需确定两点所连直线的方向。
一条直线的方向,是根据某一标准方向来确定的。
确定直线与标准方向之间的关系,称为直线定向。
一、标准方向1.真子午线方向通过地球表面某点的真子午线的切线方向,称为该点的真子午线方向。
真子午线方向可用天文测量方法测定。
2.磁子午线方向磁子午线方向是在地球磁场作用下,磁针在某点自由静止时其轴线所指的方向。
磁子午线方向可用罗盘仪测定。
3.坐标纵轴方向在高斯平面直角坐标系中,坐标纵轴线方向就是地面点所在投影带的中央子午线方向。
在同一投影带,各点的坐标纵轴线方向是彼此平行的。
二、方位角测量工作中,常采用方位角表示直线的方向。
从直线起点的标准方向北端起,顺时针方向量至该直线的水平夹角,称为该直线的方位角。
方位角取值围是0˚~360˚。
因标准方向有真子午线方向、磁子午线方向和坐标纵轴方向之分,对应的方位角分别称为真方位角(用A表示)、磁方位角(用A m表示)和坐标方位角(用α表示)。
三、三种方位角之间的关系因标准方向选择的不同,使得一条直线有不同的方位角,如图4-19所示。
过1点的真北方向与磁北方向之间的夹角称为磁偏角,用δ表示。
过1点的真北方向与坐标纵轴北方向之间的夹角称为子午线收敛角,用γ表示。
δ和γ的符号规定相同:当磁北方向或坐标纵轴北方向在真北方向东侧时,δ和γ的符号为“+”;当磁北方向或坐标纵轴北方向在真北方向西侧时,δ和γ的符号为“-”。
同一直线的三种方位角之间的关系为:(4-14);(4-15);(4-16)四、坐标方位角的推算1.正、反坐标方位角如图4-20所示,以A为起点、B为终点的直线AB的坐标方位角αΑB,称为直线AB的坐标方位角。
而直线BA的坐标方位角αBA,称为直线AB的反坐标方位角。
由图4-20中可以看出正、反坐标方位角间的关系为:(4-17)2.坐标方位角的推算在实际工作中并不需要测定每条直线的坐标方位角,而是通过与已知坐标方位角的直线连测后,推算出各直线的坐标方位角。
二 计算坐标与坐标方位角的基本公式控制测量的主要目的是通过测量和计算求出控制点的坐标,控制点的坐标是根据边长及方位角计算出来的.下面介绍计算坐标与坐标方位角的基本公式,这些公式是矿山测量工中最基本最常用的公式.一、坐标正算和坐标反算公式1.坐标正算根据已知点的坐标和已知点到待定点的坐标方位角、边长计算待定点的坐标,这种计算在测量中称为坐标正算。
如图5—5所示,已知A 点的坐标为A x 、A y ,A 到B 的边长和坐标方位角分别为AB S 和AB α,则待定点B 的坐标为AB A B ABA B y y y x x x ∆+=∆+= }(5—1) 式中 AB x ∆ 、AB y ∆——坐标增量。
由图5—5可知AB AB AB AB AB AB S y S x ααsin cos =∆=∆ }(5—2)式中 AB S ——水平边长; AB α-—坐标方位角.将式(5-2)代入式(5—1),则有AB AB A B ABAB A B S y y S x x ααsin cos +=+= }(5—3)当A 点的坐标A x 、A y 和边长AB S 及其坐标方位角AB α为已知时,就可以用上述公式计算出待定点B 的坐标。
式(5—2)是计算坐标增量的基本公式,式(5-3)是计算坐标的基本公式,称为坐标正算公式.从图5—5可以看出AB x ∆是边长AB S 在x 轴上的投影长度,AB y ∆是边长AB S 在y 轴上的投影长度,边长是有向线段,是在实地由A 量到B 得到的正值。
而公式中的坐标方位角可以从0°到360°变化,根据三角函数定义,坐标方位角的正弦值和余弦值就有正负两种情况,其正负符号取决于坐标方位角所在的象限,如图5-6所示。
从式(5—2)知,由于三角函数值的正负决定了坐标增量的正负,其符号归纳成表5—3.图5-5 坐标计算图5—6 坐标增量符号表5—3 坐标增量符号表坐标方位角(°)所在象限坐标增量的正负号⊿x ⊿y0~9090~180180~270270~ⅠⅡⅢⅣ+--+++--例1 已知A 点坐标A x =100。
测量学名词解释:
1、大地水准面:设想一个与静止的平均海水面重合并延伸到大陆内部的包围整个地球的封闭的重力位水准面。
2、绝对高程:地面点沿垂线方向至大地水准面的距离。
3、方位角:地平坐标系的经向坐标,过天球上一点的地平经圈与子午圈所交的球面角。
4、等高线:地图上地面高程相等的各相邻点所连成的曲线。
5、测设:通过用一定的测量方法,按照要求的精度,把设计图纸上规划设计好的建筑物、构筑物的平面位置和高程在地面上标定出来,作为施工的依据。
6、地形图:表示地表上的地物、地貌平面位置及基本的地理要素且高程用等高线表示的一种普通地图。
25.水准点:沿水准路线每隔一定距离布设的高程控制点。
26.水准管轴:水准管两端一般刻有2mm间隔的刻画线,刻画线的中点s称为水准管零点,过零点且与水准管内壁圆弧相切的纵向直线L-L称为水准管轴。
27.水准管分划值:水准管两端一般刻有2mm间隔的刻画线
30.竖盘指标差:当经纬仪置平后,竖盘读数系统零位的偏差。
31.直线定线:在距离测量时,得到的结果必须是直线距离,若用钢尺丈量距离,
丈量的距离一般都比整尺要长,一次不能量完,需要在直线方向上标定一些点,
量工作。
方位角(azimuthangle):从某点的指北方向线起,依顺时针方向到目标方向线之间的水平夹角,叫方位角。
(一)方位角的种类由于每点都有真北、磁北和坐标纵线北三种不同的指北方向线,因此,从某点到某一目标,就有三种不同方位角。
(1)真方位角。
某点指向北极的方向线叫真北方向线,而经线,也叫真子午线。
由真子午线方向的北端起,顺时针量到直线间的夹角,称为该直线的真方位角,一般用A表示。
通常在精密测量中使用。
(2)磁方位角。
地球是一个大磁体,地球的磁极位置是不断变化的,某点指向磁北极的方向线叫磁北方向线,也叫磁子午线。
在地形图南、北图廓上的磁南、磁北两点间的直线,为该图的磁子午线。
由磁子午线方向的北端起,顺时针量至直线间的夹角,称为该直线的磁方位角,用Am表示。
(3)坐标方位角。
由坐标纵轴方向的北端起,顺时针量到直线间的夹角,称为该直线的坐标方位角,常简称方位角,用a表示。
方位角在测绘、地质与地球物理勘探、航空、航海、炮兵射击及部队行进时等,都广泛使用。
不同的方位角可以相互换算。
军事应用:为了计算方便精确,方位角的单位不用度,用密位作单位。
换算作:360度=6000密位。
(二)三种方位角之间的关系因标准方向选择的不同,使得一条直线有不同的方位角。
同一直线的三种方位角之间的关系为:A=Am+δA=a+γa=Am+δ-γ(三)坐标方位角的推算1.正、反坐标方位角每条直线段都有两个端点,若直线段从起点1到终点2为直线的前进方向,则在起点1处的坐标方位角a12称为直线12的正方位角,在终点2处的坐标方位角a21称为直线12的反方位角。
a反=a正±180°式中,当a正<180°时,上式用加180°;当a正>180°时,上式用减180°。
2.坐标方位角的推算实际工作中并不需要测定每条直线的坐标方位角,而是通过与已知坐标方位角的直线连测后,推算出各直线的坐标方位角。
【方位角(azimuthangle)】从某点的指北方向线起,依顺时针方向到目标方向线之间的水平夹角,叫方位角。
(一)方位角的种类由于每点都有真北、磁北和坐标纵线北三种不同的指北方向线,因此,从某点到某一目标,就有三种不同方位角。
(1)真方位角。
某点指向北极的方向线叫真北方向线,而经线,也叫真子午线。
由真子午线方向的北端起,顺时针量到直线间的夹角,称为该直线的真方位角,一般用A表示。
通常在精密测量中使用。
(2)磁方位角。
地球是一个大磁体,地球的磁极位置是不断变化的,某点指向磁北极的方向线叫磁北方向线,也叫磁子午线。
在地形图南、北图廓上的磁南、磁北两点间的直线,为该图的磁子午线。
由磁子午线方向的北端起,顺时针量至直线间的夹角,称为该直线的磁方位角,用A m表示。
(3)坐标方位角。
由坐标纵轴方向的北端起,顺时针量到直线间的夹角,称为该直线的坐标方位角,常简称方位角,用α表示。
方位角在测绘、地质与地球物理勘探、航空、航海、炮兵射击及部队行进时等,都广泛使用。
不同的方位角可以相互换算。
军事应用:为了计算方便精确,方位角的单位不用度,用密位作单位。
换算作:360度=6000密位。
【三种方位角之间的关系】因标准方向选择的不同,使得同一条直线有三种不同的方位角,三种方位角之间的关系如图4-19所示。
A12 为真方位角,A m12为磁方位角,α12为坐标方位角。
过1点的真北方向与磁北方向之间的夹角称为磁偏角(δ),过1点的真北方向与坐标纵轴北方向之间的夹角称为子午线收敛角(γ)。
真方位角A12=磁方位角A m12+磁偏角δ=坐标方位角α12+子午线收敛角γα12=A m12+δ-γ(1)A12=A m12+δ(2)A12=α12+γ(3)(4)δ和γ的符号规定相同:当磁北方向或坐标纵轴北方向在真北方向东侧时,δ和γ的符号为“+”;当磁北方向或坐标纵轴北方向在真北方向西侧时,δ和γ的符号为“-”。
同一直线的三种方位角之间的关系为(注意在计算时带上δ和γ的符号):坐标方位角和大地方位角的关系示意图上式中:γ为平面子午线收敛角,当站点在中央子午线西侧时γ为负,在东侧时为正;δ为Gauss投影的方向改化[1]。
坐标正算和坐标反算的原理及应用一、坐标正算坐标正算是指根据给定的点坐标和直线之间的水平距离 DAB 与坐标方位角 AB,推算出另一条直线的坐标方位角 AB 和水平距离DAB 的方法。
坐标正算的计算公式为:XB = XA + DAB·cos(AB)YB = YA + DAB·sin(AB)其中,XB 和 YB 分别称为 A~B 的纵、横坐标增量,XA、YA 分别是直线 AB 的起点和终点的坐标,DAB 是直线 AB 的水平距离。
需要注意,XB 和 YB 均有正、负号,其符号取决于直线 AB 的坐标方位角所在的象限。
二、坐标反算坐标反算是指根据给定的两个点坐标和直线之间的水平距离DAB,推算出直线 AB 的坐标方位角 AB 和水平距离 DAB 的方法。
坐标反算的计算公式为:AB = (YB - YA) / (XB - XA) - 90°其中,AB 是直线 AB 的坐标方位角,XB、YA 分别是直线 AB 的起点和终点的坐标,YB 和 XA 分别是 A~B 和 B~A 的横纵坐标增量。
需要注意,坐标反算得到的方位角是一个锐角,必须先根据 YB-YA 与 XB-XA 的正负号,确定直线 AB 所在的象限,再将象限角换算为坐标方位角。
三、坐标正算和坐标反算的应用坐标正算和坐标反算在实际应用中有着广泛的应用,下面列举几个典型的应用:1. 航空航天领域:在航空航天领域中,坐标正算和坐标反算被用来确定飞行器的位置和方向,从而确保飞行器的安全和准确性。
2. 机械设计领域:在机械设计中,坐标正算和坐标反算被用来计算机械零部件的位置和方向,从而确保机械设计的精确性和合理性。
3. 地理信息系统:在地理信息系统中,坐标正算和坐标反算被用来确定地图中各个点的位置和方向,从而支持地图数据的采集、管理和分析。
4. 机器人领域:在机器人领域中,坐标正算和坐标反算被用来确定机器人的位置和方向,从而确保机器人的准确移动和作业。
一 方位角:在高斯直角坐标系中,由坐标纵轴方向的北端起,顺时针量到直线间的夹角,称为该直线的坐标方位角,常简称方位角,用a 表示。
1、第一象限的方位角YX第一象限第二象限第三象限第四象限oAa图12、第二象限的方位角Y X第一象限第二象限第三象限第四象限oAa图23、第三象限的方位角YX第一象限第二象限第三象限第四象限o Aa图34、第四象限的方位角YX第一象限第二象限第三象限第四象限oAa图4方位角计算公式:x=a -1tanA Y O Y -AX OX-方位角的计算器计算程序:Pol(X A -X O ,Y A -Y O )直线OA 方位角度值赋予给计算器的字母J ,0≤J <360。
直线段OA 的距离值赋予给计算器的字母I,I >0 直线OA 与直线AO 的方位角关系: 1、当直线OA 的方位角≤180°时,其反方位角等于a+180°。
2、 当直线OA 的方位角>180°时,其反方位角等于a-180°。
二 方位角的推算 (一)几个基本公式 1、坐标方位角的推算或:注意:若计算出的方位角>360°,则减去360°;若为负值,则加上360°。
例题:方位角的推算已知:α12=30°,各观测角β如图,求各边坐标方位角α23、α34、α45、α51。
13图5解: α23= α12-β2+180°=30°-130°+180°=80°α34= α23-β3+180°=80°-65°+180°=195°α45=α34-β4+180°=195°-128°+180°=247°α51=α45-β5+180°=247°-122°+180°=305°α12=α51-β1+180°=305°-95°+180°=30°(检查)三坐标正算一、直线段的坐标计算oB DACEaap图6设起点O的坐标(X O,Y O),直线OP的方位角为F op,求A、C、E点的坐标1、设直线段OA长度为L,则A点坐标为X A=X O+L×Cos(F op)Y A=Y O+L×Sin(F op)2、设直线段OB长度为L OB,直线段BC长度为L BC,则C点坐标为X B=X O+L OB×Cos(F op)Y B=Y O+L OB×Sin(F op)直线BC的方位角F BC=F op+aIF F B C>360°:Then F BC-360°→F BC:IfEndX C=X B+L BC×Cos(F BC)Y C=Y B+L BC×Sin(F BC)3、设直线段OD长度为L,直线段DE长度为L DE,则E点坐标为ODX D=X O+L OD×Cos(F op)Y D=Y O+L OD×Sin(F op)直线DE的方位角F DE=F op-aIF F DE<0°:Then F DE+360°→F DE:IfEndX E=X D+L DE×Cos(F DE)Y E=Y D+L DE×Sin(F DE)二、缓和曲线段的坐标计算x Y 00=L- +=L 40R L 52s 2L3456R L 94s 4L 6R L 3s L 336R L 7s 33-90 L πRL sO2切线角=设完整缓和曲线起点O 的坐标为O (XO,YO ),方位角为F ,曲线长度为L S ,曲线上任一点的曲线长度为L,当线路右转时直线CP 的方位角Fcp=F+90°IF F cp >360°:Then F cp-360°→F cp :IfEnd当线路左转时直线CP 的方位角Fcp=F-90°IF F cp<0°:Then F cp+360°→F cp:IfEndX P=X O+Abs(x O)×Cos(F)+Abs(y O)×COS(F CP)Y P=Y O+Abs(x O)×Sin(F)+Abs(y O)×Sin(F CP)三、圆曲线段的坐标计算圆曲线的已知点数据为起点S的桩号K s、走向方位角αs、起点S 坐标为(X o,Y o)、圆曲线半径为R与曲线长为L。