高中数学 第3章《导数及其应用》导数在实际生活中的应用 精品导学案1 苏教版选修1-1
- 格式:doc
- 大小:134.00 KB
- 文档页数:3
3. 4 导数在实际生活中的应用江苏省泰兴中学吴卫东邵艳郭红梅潘翠萍教学目标:1.通过生活中优化问题的学习,体会导数在解决实际问题中的作用,促进学生全面认识数学的科学价值、应用价值和文化价值;2.通过实际问题的研究,促进学生分析问题、解决问题以及数学建模能力的提高.教学重点:如何建立实际问题的目标函数.教学难点:如何建立实际问题的目标函数.教学过程:一、问题情境问题1 把长为60cm 的铁丝围成矩形,长宽各为多少时面积最大?问题2 把长为100cm 的铁丝分成两段,各围成正方形,怎样分法,能使两个正方形面积之和最小?问题3 做一个容积为256L 的方底无盖水箱,它的高为多少时材料最省?二、新课引入导数在实际生活中有着广泛的应用,利用导数求最值的方法, 可以求出实际生活中的某些最值问题.1.几何方面的应用(面积和体积等的最值).2.物理方面的应用(功和功率等最值).3.经济学方面的应用(利润方面最值).三、知识应用例1 在边长为60 cm 的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?说明1解应用题一般有四个要点步骤:设—列—解—答.说明2用导数法求函数的最值,与求函数极值方法类似,加一步与几个极值及端点值比较即可.例2圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才能使所用的材料最省?变式:当圆柱形金属饮料罐的表面积为定值S时,它的高与底面半径应怎样选取,才能使所用材料最省?说明1这种在定义域内仅有一个极值的函数称单峰函数•说明2用导数法求单峰函数最值,可以对一般的求法加以简化,其步骤为:S1列:列出函数关系式;S2求:求函数的导数;S3述:说明函数在定义域内仅有一个极大(小)值,从而断定为函数的最大(小)值,必要时作答.例3在如图所示的电路中,已知电源的内阻为r,电动势为;.外电阻R为多大时,才能使电功率最大?最大电功率是多少?I ---- M ------ 1w说明求最值要注意验证等号成立的条件,也就是说取得这样的值时对应的自变量必须有解.例4强度分别为a,b的两个光源A,B,它们间的距离为d,试问:在连接这两个光源的线段AB上,何处照度最小?试就a =8,b=1,d =3时回答上述问题•(照度与光的强度成正比,与光源的距离的平方成反比)例5在经济学中,生产x单位产品的成本称为成本函数,记为C(x);出售x单位产品的收益称为收益函数,记为R(x) ; R(x)-C(x)称为利润函数,记为P(x) •(1)设C(x) =10 "x30003 X25 x1000 ,生产多少单位产品时,边际成本C'(x)最低?(2)设C(x^50x 10000,产品的单价p=100-0.1x,怎样的定价可使利润最大?变式已知某商品生产成本C与产量q的函数关系式为C= 100+ 4q,价格p1与产量q的函数关系式为P=25--q .求产量q为何值时,利润L最大?8分析:利润L等于收入R减去成本C,而收入R等于产量乘价格.由此可得出利润L 与产量q的函数关系式,再用导数求最大利润.四、课堂练习1. _________________________________________________________ 将正数a分成两部分,使其立方和为最小,这两部分应分成________________________ 和_.2._________________________________________________________ 在半径为R的圆内,作内接等腰三角形,当底边上高为___________________________ 时,它的面积最大.3.有一边长分别为8与5的长方形,在各角剪去相同的小正方形,把四边折起作成一个无盖小盒,要使纸盒的容积最大,问剪去的小正方形边长应为多少?4.一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面ABCD的面积为定值S时,使得湿周I = AB+ BC+ CD最小,这样可使水流阻力小,渗透少,求此时的高h和下底边长b.五、回顾反思(1)解有关函数最大值、最小值的实际问题,需要分析问题中各个变量之间的关系,找出适当的函数关系式,并确定函数的定义区间;所得结果要符合问题的实际意义.(2)根据问题的实际意义来判断函数最值时,如果函数在此区间上只有一个极值点,那么这个极值就是所求最值,不必再与端点值比较.(3)相当多有关最值的实际问题用导数方法解决较简单.六、课外作业1.课本第96页第1,2,3,4题.2.补充练习:为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位: cm)满足关系:C x k 0沁叮0,若不建隔热层,每年能源消耗费3x +5用为8万元.设f x为隔热层建造费用与20年的能源消耗费用之和.(I)求k的值及f x的表达式;(U)隔热层修建多厚对,总费用 f x达到最小,并求最小值.。
导数在实际生活中的应用情境导入:师:上课之前先请大家看一段视频。
从刚刚的视频中我们了解到微积分是从生产技术和自然科学的需要中产生的,同时它又促进了生产技术和自然科学的开展。
它并没有我们想象中的不接地气,在我们实际生活中也经常会遇到。
比方经济学里的利润最值问题,物理学里的效率最值问题,几何方面的面积体积最值问题。
这些在数学上我们一般都归结为函数的最值问题,而函数的最值问题又可以利用我们最近才学过的什么知识来解决?生:导数师:这就是我们今天这节课所要研究的内容:导数在实际生活中的应用新课导学师:让我们回归到生活。
大家先看一下这里的这张照片。
在这张图片中显示的两种不同口味的可乐,想必很多同学之前已经喝过。
不知道大家有没有注意过这两罐可乐的体积,它们体积是相等的都是330ml。
从所用材料上来看,哪个用料最省呢?大家可以讨论一下,讨论完之后,进行投票。
投票选择蓝罐可乐用料最省的,请点击选项1选择鬼爪可乐用料最省的,请点击选项2师:从投票结果来看,选择蓝罐可乐的是压倒性的胜利。
大家的选择是否正确呢?那我们就来做一下验证。
学生活动一:探索建模例:某种圆柱形的饮料罐的容积一定时,如何确定它的高与底面的半径,使得所用材料最省?师:既然这两罐可乐的体积是相等的,也就是可以看作是个定值。
让我们来算一算,当它的高与底面半径的关系如何时,才能使得用料呢?这里的用料最省,其实就是来解决这个圆柱体的什么?生:圆柱体的外表积最小。
师:外表积如何表示?生:师:侧面积又可以写成?生:师:底面积呢?生:师:在这个式子中有两个未知量,我该怎么办?生:因为这两个罐子的体积是相等的,所以我可以用表示。
师:你是想利用这个表达式代入进来到达什么目的?生:只有一个未知量师:也就是到达消元的目的。
很好,根据刚刚他所说的体积是一定的。
那先把体积表示出来,你是想用表示,还是表示?生:消师:为什么?生:消不用开根号师:如果我消,代入进这个等式会带根号,相对来说这个式子会更复杂。
3.4导数在实际生活中的应用1.导数在实际生活中有着广泛的应用.如用料最省、利润最大、效率最高等问题一般可以归结为函数的最值问题,从而可以用导数来解决.2.利用导数解决优化问题的流程:解决生活中的优化问题的思路:(1)审题:阅读理解文字表达的题意、分清条件和结论.(2)建模:利用数学知识建立相应的数学模型.(3)解模:把数学问题转化为函数求解.(4)检验.[对应学生用书P56][例1] 用长为90 cm,宽为48 cm的长方形铁皮做一个无盖的容器,先在四个角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图所示),问该容器的高为多少时,容器的容积最大?最大容积是多少?[思路点拨] 设出所截正方形的边长为x,则该容器的底面边长和高均可用x表示,得到容积关于x的函数,用导数法求解.[精解详析] 设容器的高为x cm,容器的体积为V(x) cm3.则V(x)=x(90-2x)(48-2x)=4x3-276x2+4 320x(0<x<24).V ′(x )=12x 2-552x +4 320=12(x 2-46x +360)=12(x -10)(x -36)(0<x <24).令V ′(x )=0,得x 1=10,x 2=36(舍去). 当0<x <10时,V ′(x )>0,V (x )是增函数; 当10<x <24时,V ′(x )<0,V (x )是减函数.因此,在定义域(0,24)内函数V (x )只有当x =10时取得最大值,其最大值为V (10)=10×(90-20)×(48-20)=19 600(cm 3).即当容器的高为10 cm 时,容器的容积最大,最大容积是19 600 cm 3.[一点通] 解决面积、容积的最值问题,要正确引入变量,将面积、容积表示为变量的函数,结合实际问题的定义域,利用导数求解函数的最值.如果在区间内只有一个极值点,那么根据实际意义,该极值点也是最值点.1.要做一个圆锥形的漏斗,其母线长为20 cm ,要使其体积最大,则高为________cm. 解析:设该漏斗的高为x cm , 则底面半径为202-x 2cm ,其体积为V =13πx (202-x 2)=13π(400x -x 3)(0<x <20),则V ′=13π(400-3x 2).令V ′=0,解得x 1=2033,x 2=-2033(舍去).当0<x <2033时,V ′>0;当2033<x <20时,V ′<0, 所以当x =2033时,V 取得最大值.答案:20332.如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18 000 cm 2,四周空白的宽度为10 cm ,两栏之间的中缝空白的宽度为5 cm.怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?解:设广告的高和宽分别为x cm ,y cm ,则每栏的高和宽分别为x -20,y -252,其中x >20,y >25.两栏面积之和为2(x -20)·y -252=18 000,由此得y =18 000x -20+25.广告的面积S =xy =x (18 000x -20+25)=18 000xx -20+25x ,∴S ′=x --x ]x -2+25=-36 0000x -2+25.令S ′>0,得x >140, 令S ′<0,得20<x <140.∴函数在(140,+∞)上单调递增,在(20,140)上单调递减, ∴S (x )的最小值为S (140).当x =140时,y =175.即当x =140,y =175时,S 取得最小值24 500,故当广告的高为140 cm ,宽为175 cm 时,可使广告的面积最小.[例2] 某地建一座桥,两端的桥墩已建好,这两墩相距m 米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元,距离为x 米的相邻两墩之间的桥面工程费用为(2+x )x 万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素.记余下工程的费用为y 万元.(1)试写出y 关于x 的函数关系式;(2)当m =640米时,需新建多少个桥墩才能使y 最小?[思路点拨] 解答本题可先根据题目条件写出函数关系式,再利用导数方法求最值. [精解详析] (1)设需新建n 个桥墩, 则(n +1)x =m ,即n =m x-1.所以y =f (x )=256n +(n +1)(2+x )x=256⎝ ⎛⎭⎪⎫m x -1+m x(2+x )x=256mx+m x +2m -256.(2)由(1)知,f ′(x )=-256m x 2+12mx -12=m 2x 2(x 32-512). 令f ′(x )=0,得x 32=512,所以x =64.当0<x <64时,f ′(x )<0,f (x )在区间(0,64)内为减函数;当64<x <640时,f ′(x )>0,f (x )在区间(64,640)内为增函数. 所以f (x )在x =64处取得最小值.此时n =m x -1=64064-1=9.故需新建9个桥墩才能使y 最小.[一点通] 用料最省问题是日常生活中常见的问题之一,解决这类问题要明确自变量的意义以及最值问题所研究的对象.正确书写函数表达式,准确求导,结合实际问题做答.3.做一个无盖的圆柱形水桶,若要使体积是27π,且用料最省,则圆柱的底面半径为________.解析:设圆柱的底面半径为r ,高为h ,则V =27π=πr 2h ,∴h =27r2,若用料最省,则表面积最小,设表面积为S ,则S =πr 2+2πr ·h =πr 2+2π27r=πr 2+54πr,S ′=2πr -54πr2=2πr 3-r 2,令S ′=0,得r =3.∵当0<r <3时,S ′<0,S (r )为减函数,r >3时,S ′>0,S (r )为增函数.∴当r =3时,S 取最小值,即用料最省. 答案:34.某工厂要围建一个面积为512 m 2的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁,若使砌壁所用的材料最省,堆料场的长和宽应分别为(单位:m)________.解析:要使材料最省,则要求新砌的墙壁的总长最短. 设场地宽为x 米,则长为512xm ,因此新墙总长L =2x +512x (x >0),则L ′=2-512x2.令L ′=0,得x =16或x =-16(舍去). 此时长为51216=32(m),可使L 最短.答案:32,16[例3] 某商场销售某种商品的经验表明,该商品每日的销售量y (单位:kg)与销售价格x (单位:元/kg)满足关系式y =a x -3+10(x -6)2.其中3<x <6,a 为常数.已知销售价格为5元/kg 时,每日可售出该商品11千克.(1)求a 的值;(2)若该商品的成本为3元/kg ,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.[思路点拨] (1)根据“销售价格为5元/kg 时,每日可售出该商品11 kg”可知销售函数图像过点(5,11)将其代入可求得a 的值;(2)利润为y =(每件产品的售价-每件产品的成本)×销量,表示出函数解析式后,可借助导数求最值.[精解详析] (1)因为x =5时,y =11, 所以a2+10=11,a =2.(2)由(1)可知,该商品每日的销售量y =2x -3+10(x -6)2. 所以商场每日销售该商品所获得的利润f (x )=(x -3)⎣⎢⎡⎦⎥⎤2x -3+x -2=2+10(x -3)(x -6)2,3<x <6.从而,f ′(x )=10[(x -6)2+2(x -3)(x -6)] =30(x -4)(x -6).于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表可得,x =4是函数f (x )在区间(3,6)内的极大值点,也是最大值点. 所以,当x =4时,函数f (x )取得最大值,且最大值等于42.答:当销售价格为4元/kg 时,商场每日销售该商品所获得的利润最大. [一点通](1)利润(收益)=销售额-成本,在有关利润(收益)的问题中,注意应用此公式列出函数关系式,然后利用导数的知识并结合实际问题求出相应最值.(2)在实际问题中,若某函数在所给区间上只有一个极值,则该极值即为相应的最值.这是实际问题中求最值的常用方法.5.已知某生产厂家的年利润y (单元:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获取最大年利润的年产量为________万件.解析:因为y ′=-x 2+81,所以当x >9时,y ′<0;当x ∈(0,9)时,y ′>0,所以函数y =-13x 3+81x -234在(9,+∞)上单调递减,在(0,9)上单调递增,所以x =9是函数的极大值点,又因为函数在(0,+∞)上只有一个极大值点,所以函数在x =9处取得最大值.答案:96.已知某工厂生产x 件产品的成本为c =25 000+200x +140x 2(元).问:(1)要使平均成本最低,应生产多少件产品?(2)若产品以每件500元售出,要使利润最大,应生产多少件产品? 解:(1)设平均成本为y 元,则y =25 000+200x +140x2x =25 000x +200+x40(x >0),y ′=-25 000x 2+140, 令y ′=0,得x =1 000或x =-1 000(舍去). 当0<x <1 000时,y ′<0; 当x >1 000时,y ′>0,故当x =1 000时,y 取极小值,而只有一个点使y ′=0,故函数在该点处取得最小值,因此要使平均成本最低,应生产1 000件产品.(2)利润函数为S (x )=500x -⎝ ⎛⎭⎪⎫25 000+200x +x 240=300x -25 000-x 240,S ′(x )=300-x20,令S ′(x )=0,得x =6 000,当0<x <6 000时,S ′(x )>0,当x >6 000时,S ′(x )<0, 故当x =6 000时,S (x )取极大值, 而只有一个点使S ′(x )=0, 故函数在该点取得最大值,因此,要使利润最大,应生产6 000件产品.用导数解应用题求最值的方法与步骤:[对应课时跟踪训练(二十二)]1.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L 1=5.06x -0.15x2和L 2=2x ,其中x 为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为________.解析:设该公司在甲地销x 辆,那么乙地销15-x 辆,利润L (x )=5.06x -0.15x 2+2(15-x )=-0.15x 2+3.06x +30.由L ′(x )=-0.3x +3.06=0,得x =10.2.且当x <10.2时,L ′(x )>0,x >10.2时,L ′(x )<0, ∴x =10时,L (x )取到最大值,这时最大利润为45.6万元. 答案:45.6万元2.如图,将直径为d 的圆木锯成长方体横梁,横截面为矩形,横梁的强度同它的断面高的平方与宽x 的积成正比(强度系数为k ,k >0).要将直径为d 的圆木锯成强度最大的横梁,断面的宽x 应为________.解析:设断面高为h ,则h 2=d 2-x 2.设横梁的强度函数为f (x ),则f (x )=kxh 2=kx (d 2-x 2),0<x <d .令f ′(x )=k (d 2-3x 2)=0,解得x =±33d (舍去负值).当0<x <33d 时,f ′(x )>0,f (x )单调递增;当33d <x <d 时,f ′(x )<0,f (x )单调递减.所以函数f (x )在定义域(0,d )内只有一个极大值点x =33d .所以x =33d 时,f (x )有最大值. 答案:33d 3.将长为l 的铁丝剪成2段,各围成长与宽之比为2∶1及3∶2的矩形,则两矩形面积之和的最小值为________.解析:如图所示,设边长之比为2∶1的矩形周长为x ,则边长之比为3∶2的矩形周长为l -x ,两矩形面积之和为S =2x 6·x 6+l -x10·l -x10=x 218+350(l -x )2,0<x <l .由S ′=x 9+325(x -l )=0,得x =2752l .当x 变化时,S ′,S 的变化情况如下表:由上表可知,当x =2752l 时,S 的最小值为3104l 2.答案:3l21044.如图,已知一罐圆柱形红牛饮料的容积为250 mL ,则它的底面半径等于________时(用含有π的式子表示),可使所用的材料最省.解析:设圆柱的高为h ,表面积为S ,容积为V ,底面半径为r ,则表面积S =2πrh +2πr 2,而V =250=πr 2h ,得h =250πr 2,则S =2πr ·250πr2+2πr2=500r +2πr 2,S ′=-500r 2+4πr ,令S ′=0得r =53π2π,因为S 只有一个极值,所以当r =53π2π时,S 取得最小值,即此时所用的材料最省.答案:53π2π5.某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与仓库到车站的距离成正比,如果在距离车站10 km 处建仓库,这两项费用y 1和y 2分别为2万元和8万元,那么,要使这两项费用之和最小,仓库应建在离车站________km 处.解析:依题意可设每月土地占用费y 1=k 1x,每月库存货物的运费y 2=k 2x ,其中x 是仓库到车站的距离,k 1,k 2是比例系数.于是由2=k 110得k 1=20;由8=10k 2得k 2=45.因此,两项费用之和为y =20x +4x 5(x >0),y ′=-20x 2+45,令y ′=0,得x =5,或x =-5(舍去).当0<x <5时,y ′<0;当x >5时,y ′>0.因此,当x =5时,y 取得极小值,也是最小值.故当仓库建在离车站5千米处时,两项费用之和最小. 答案:56.某品牌电视生产厂家有A ,B 两种型号的电视机参加了家电下乡活动,若厂家对A ,B 两种型号的电视机的投放金额分别为p ,q 万元,农民购买电视机获得的补贴分别为110p ,25lnq 万元,已知A ,B 两种型号的电视机的投放总额为10万元,且A ,B 两种型号的电视机的投放金额均不低于1万元,请你制定一个投放方案,使得在这次活动中农民得到的补贴最多,并求出最大值.(精确到0.1,参考数据:ln 4≈1.4)解:设B 型号电视机的投放金额为x 万元(1≤x ≤9),农民得到的补贴为y 万元, 则A 型号的电视机的投放金额为(10-x )万元, 由题意得y =110(10-x )+25ln x =25ln x -110x +1,1≤x ≤9,∴y ′=25x -110,令y ′=0得x =4,由y ′>0得1≤x <4,由y ′<0得4<x ≤9, 故y 在[1,4)上单调递增,在(4,9]上单调递减,∴当x =4时,y 取得最大值,且y max =25 ln 4-110×4+1≈1.2,这时,10-x =6.故厂家对A ,B 两种型号的电视机的投放金额分别为6万元和4万元时,农民得到的补贴最多,最多补贴约1.2万元.7.请你设计一个包装盒.如图所示,ABCD 是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒.E 、F 在AB 上,是被切去的一个等腰直角三角形斜边的两个端点.设AE =FB =x (cm).(1)若广告商要求包装盒的侧面积S (cm 2)最大,试问x 应取何值?(2)某厂商要求包装盒的容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.解:设包装盒的高为h (cm),底面边长为a (cm). 由已知得a =2x ,h =60-2x2=2(30-x ),0<x <30.(1)S =4ah =8x (30-x )=-8(x -15)2+1 800,所以当x =15时,S 取得最大值. (2)V =a 2h =22(-x 3+30x 2),V ′=62x (20-x ).由V ′=0,得x =0(舍)或x =20.当x ∈(0,20)时,V ′>0;当x ∈(20,30)时,V ′<0. 所以当x =20时,V 取得极大值,也是最大值.此时h a =12.即包装盒的高与底面边长的比值为12.8.统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y (L)关于行驶速度x (km/h)的函数解析式可以表示为:y =1128 000x 3-380x +8(0<x ≤120).已知甲、乙两地相距100 km.(1)当汽车以40 km/h 的速度匀速行驶时,从甲地到乙地要耗油多少L? (2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少L? 解:(1)当x =40 km/h 时,汽车从甲地到乙地行驶了10040=2.5 h ,要耗油⎝⎛⎭⎪⎫1128 000×403-380×40+8×2.5=17.5(L).∴当汽车以40 km/h 的速度匀速行驶时,从甲地到乙地耗油17.5 L.(2)当速度为x km/h 时,汽车从甲地到乙地行驶了100xh ,设耗油量为h (x )升,依题意得h (x )=⎝⎛⎭⎪⎫1128 000x 3-380x +8·100x=11 280x 2+800x -154(0<x ≤120), 则h ′(x )=x640-800x 2=x 3-803640x 2(0<x ≤120).令h ′(x )=0,得x =80,当x ∈(0,80)时,h ′(x )<0,h (x )是单调递减函数; 当x ∈(80,120)时,h ′(x )>0,h (x )是单调递增函数. ∴当x =80时,h (x )取到极小值,h (80)=11.25. ∵h (x )在(0,120]上只有一个极值, 且h (120)=856>h (80).∴当x =80时函数取得最小值.∴当汽车以80 km/h 的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25 L.[对应学生用书P58]一、导数的概念 1.导数函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),当Δx 无限趋近于0时,比值ΔyΔx=f x 0+Δx -f x 0Δx 无限趋近于一个常数A ,则称f (x )在点x =x 0处可导,称常数A 为函数f (x )在点x =x 0处的导数,记作f ′(x 0).2.导函数若f (x )对于区间(a ,b )内任一点都可导,则f ′(x )在各点的导数中随着自变量x 的变化而变化,因而也是自变量x 的函数,该函数称为f (x )的导函数.记作f ′(x ).二、导数的几何意义1.f ′(x 0)是函数y =f (x )在x 0处切线的斜率,这是导数的几何意义. 2.求切线方程: 常见的类型有两种:一是函数y =f (x )“在点x =x 0处的切线方程”,这种类型中(x 0,f (x 0))是曲线上的点,其切线方程为y -f (x 0)=f ′(x 0)(x -x 0).二是函数y =f (x )“过某点的切线方程”,这种类型中,该点不一定为切点,可先设切点为Q (x 1,y 1),则切线方程为y -y 1=f ′(x 1)(x -x 1),再由切线过点P (x 0,y 0)得y 0-y 1=f ′(x 1)(x 0-x 1),又y 1=f (x 1),由上面两个方程可解得x 1,y 1的值,即求出了过点P (x 0,y 0)的切线方程.三、导数的运算 1.基本初等函数的导数 (1)f (x )=c ,则f ′(x )=0; (2)f (x )=x α,则f ′(x )=α·xα-1;(3)f (x )=a x (a >0且a ≠1),则f ′(x )=a xln a .(4)f (x )=log a x ,则f ′(x )=1x ln a; (5)f (x )=sin x ,则f ′(x )=cos x ; (6)f (x )=cos x ,则f ′(x )=-sin x ; 2.导数四则运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)[f xg x ]′=fx g x -f x gxg 2x.四、导数与函数的单调性 利用导数求函数单调区间的步骤: (1)求导数f ′(x );(2)解不等式f ′(x )>0或f ′(x )<0; (3)写出单调增区间或减区间.特别注意写单调区间时,区间之间用“和”或“,”隔开,绝对不能用“∪”连接. 五、导数与函数的极值 利用导数求函数极值的步骤: (1)确定函数f (x )的定义域; (2)求方程f ′(x )=0的根;(3)检验f ′(x )=0的根的两侧的f ′(x )的符号,若左正右负,则f (x )在此根处取得极大值.若左负右正,则f (x )在此根处取得极小值,否则此根不是f (x )的极值点. 六、求函数f (x )在闭区间[a ,b ]上的最大值、最小值的方法与步骤 (1)求f (x )在(a ,b )内的极值;(2)将(1)求得的极值与f (a )、f (b )相比较,其中最大的一个值为最大值,最小的一个值为最小值.特别地,①当f (x )在[a ,b ]上单调时,其最小值、最大值在区间端点取得;②当f (x )在(a ,b )内只有一个极值点时,若在这一点处f (x )有极大(或极小)值,则可以判断f (x )在该点处取得最大(或最小)值,这里(a ,b )也可以是(-∞,+∞).七、导数的实际应用利用导数求实际问题的最大(小)值时,应注意的问题:(1)求实际问题的最大(小)值时,一定要从问题的实际意义去考查,不符合实际意义的值应舍去.(2)在实际问题中,由f ′(x )=0常常仅解到一个根,若能判断函数的最大(小)值在x 的变化区间内部得到,则这个根处的函数值就是所求的最大(小)值.⎣⎢⎡⎦⎥⎤对应阶段质量检测三 见8开试卷 (时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分.将答案填在题中的横线上) 1.在Δx 无限趋近于0时,f x 0-f x 0+ΔxΔx无限趋近于1,则f ′(x 0)=________.解析:由已知得Δx 无限趋近于0时,f x 0+Δx -f x 0Δx无限趋近于-1,则f ′(x 0)=-1.答案:-12.若函数f (x )=x sin x +cos x ,则f ′⎝ ⎛⎭⎪⎫π2=________. 解析:∵f (x )=x sin x +cos x , ∴f ′(x )=(x sin x +cos x )′ =(x sin x )′+(cos x )′ =sin x +x cos x -sin x =x cos x .∴f ′⎝ ⎛⎭⎪⎫π2=π2cos π2=0.答案:03.设f (x )=x ln x ,若f ′(x 0)=2,则x 0=________. 解析:f ′(x )=ln x +x ·1x=ln x +1,由f ′(x 0)=2,得ln x 0+1=2. ∴x 0=e. 答案:e4.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则a =________,b =________.解析:∵y ′=2x +a ,∴y ′|x =0=a =1.又(0,b )在x -y +1=0上,故0-b +1=0,得b =1. 答案:1 15.已知函数f (x )=-x 3+ax 2-x +18在(-∞,+∞)上是单调函数,则实数a 的取值范围是________.解析:由题意得f ′(x )=-3x 2+2ax -1≤0在(-∞,+∞)上恒成立,因此Δ=4a 2-12≤0⇒-3≤a ≤3,所以实数a 的取值范围是[-3,3].答案:[-3,3]6.用长14.8 m 的钢条制作一个长方体容器的框架,如果所制的底面的一边比另一边长0.5 m ,那么容器的最大容积为________m 3.解析:设容器底面短边长为x m ,则另一边长为 (x +0.5)m ,高为(3.2-2x )m. 由3.2-2x >0,x >0,得0<x <1.6. 设容器的容积为y m 3,则有y =x (x +0.5)(3.2-2x )(0<x <1.6), 整理得y =-2x 3+2.2x 2+1.6x ,y ′=-6x 2+4.4x +1.6,令y ′=0,解得x 1=1,x 2=-415(舍去).从而,定义域(0,1.6)内只有在x =1处有y ′=0,由题意,若x 过小(接近0)或x 过大(接近1.6)时,y 值很小,因此,当x =1时,y max =1.8,此时高1.2 m ,所以当容器的高为1.2 m 时,容积最大,最大容积为1.8 m 3. 答案:1.87.已知使函数y =x 3+ax 2-43a 的导数为0的x 值也使y 值为0,则常数a 的值为________.解析:∵y ′=3x 2+2ax ,由3x 2+2ax =0,得x =0或x =-2a 3.又当x =0时,y =0,∴-4a3=0.∴a =0.经验证a =0符合题意. 答案:08.已知函数f (x )=x 3-12x +8在区间[-3,3]上的最大值与最小值分别为M ,m ,则M -m =________.解析:f ′(x )=3x 2-12=3(x -2)(x +2),∴f (x )在[-3,-2],[2,3]上单调递增,在[-2,2]上单调递减.f (-3)=17,f (-2)=24,f (2)=-8,f (3)=-1,故M =24,m =-8,则M -m =32.答案:329.已知函数f (x )=x 3-3x 2+3+a 的极大值为5,则实数a =________.解析:∵f ′(x )=3x 2-6x ;由f ′(x )=0得x =0或x =2;由f ′(x )>0得x <0或x >2,则f (x )的单调递增区间为(-∞,0)和(2,+∞);由f ′(x )<0得0<x <2,则f (x )的单调递减区间为(0,2).当x =0时函数取得极大值,∴f (0)=3+a =5,∴a =2.答案:210.设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (3)=0.则不等式f (x )g (x )<0的解集是________.解析:设F (x )=f (x )g (x ),则F (x )为奇函数,F (0)=0. ∵x <0时,F ′(x )>0, 且F (-3)=-F (3) =-f (3)g (3)=0, ∴F (x )示意图如图:当x ∈(-∞,-3)或(0,3)时,F (x )<0. 答案:(-∞,-3)∪(0,3)11.函数y =1+ln xx的单调递增区间是________.解析:y ′=xx -ln x x 2=1-ln xx 2.令y ′>0,得1-ln x >0,∴0<x <e. 故增区间为(0,e) 答案:(0,e)12.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(e)+ln x (e 为自然对数的底数),则f ′(e)=________.解析:由f (x )=2xf ′(e)+ln x ,得f ′(x )=2f ′(e)+1x ,则f ′(e)=2f ′(e)+1e ⇒f ′(e)=-1e.答案:-1e13.设曲线y =xn +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,则a 1+a 2+…+a 99=________.解析:由于y ′| x =1=n +1,∴曲线在点(1,1)处的切线为y -1=(n +1)(x -1),令y=0,得x =x n =nn +1,∴a n =lg n n +1,∴原式=lg 12+lg 23+…+lg 99100=lg ⎝ ⎛⎭⎪⎫12×23× (99100)lg1100=-2. 答案:-214.若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是________.解析:∵f ′(x )=4x -1x =4x 2-1x ,x >0,∴当0<x <12时,f ′(x )<0,f (x )为减函数,当x >12时,f ′(x )>0,f (x )为增函数,依题意得⎩⎪⎨⎪⎧0≤k -1<12,12<k +1,k -1<k +1.∴1≤k <32.答案:⎣⎢⎡⎭⎪⎫1,32二、解答题(本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分)已知函数f (x )=ax 2-43ax +b ,f (1)=2,f ′(1)=1;(1)求f (x )的解析式;(2)求f (x )在(1,2)处的切线方程. 解:(1)f ′(x )=2ax -43a .由已知得⎩⎪⎨⎪⎧f=2a -43a =1,f=a -43a +b =2.解得⎩⎪⎨⎪⎧a =32,b =52.∴f (x )=32x 2-2x +52.(2)函数f (x )在(1,2)处的切线方程为y -2=x -1,即x -y +1=0.16.(本小题满分14分)设函数f (x )=-13x 3+x 2+(m 2-1)x (x ∈R ),其中m >0.(1)当m =1时,求曲线y =f (x )在点(1,f (1))处的切线斜率; (2)求函数的单调区间与极值. 解:(1)当m =1时,f (x )=-13x 3+x 2,f ′(x )=-x 2+2x ,故f ′(1)=1.所以曲线y =f (x )在点(1,f (1))处的切线斜率为1.(2)f ′(x )=-x 2+2x +m 2-1,令f ′(x )=0,得到x =1-m ,x =1+m ,因为m >0,所以1+m >1-m .当x 变化时,f (x ),f ′(x )的变化情况如下表:f (x )在(-∞,1-m )和(1+m ,+∞)内为减函数,在(1-m,1+m )内为增函数.函数f (x )在x =1+m 处取得极大值f (1+m ), 且f (1+m )=23m 3+m 2-13,函数f (x )在x =1-m 处取得极小值f (1-m ), 且f (1-m )=-23m 3+m 2-13.17.(本小题满分14分)某造船公司年造船量是20艘,已知造船x 艘的产值函数为R (x )=3 700x +45x 2-10x 3(单位:万元),成本函数为C (x )=460x -5 000(单位:万元).(1)求利润函数P (x );(提示:利润=产值-成本)(2)问年造船量安排多少艘时,可使公司造船的年利润最大? 解:(1)P (x )=R (x )-C (x )=-10x 3+45x 2+3 700x -(460x -5 000) =-10x 3+45x 2+3 240x +5 000 (x ∈N *,且1≤x ≤20). (2)P ′(x )=-30x 2+90x +3 240 =-30(x -12)(x +9),由P ′(x )=0,得x =12,x =-9(舍去). 当0<x <12时,P ′(x )>0,P (x )单调递增; 当x >12时,P ′(x )<0,P (x )单调递减. ∴当x =12时,P (x )取得极大值,也为最大值.∴当年造船量安排12艘时,可使公司造船的年利润最大.18.(本小题满分16分)已知x =1是函数f (x )=13ax 3-32x 2+(a +1)x +5的一个极值点.(1)求函数f (x )的解析式;(2)若曲线y =f (x )与直线y =2x +m 有三个交点,求实数m 的取值范围. 解:(1)依题意f ′(x )=ax 2-3x +a +1, 由f ′(1)=0得a =1,∴函数f (x )的解析式为f (x )=13x 3-32x 2+2x +5.(2)曲线y =f (x )与直线y =2x +m 有三个交点, 即13x 3-32x 2+2x +5-2x -m =0有三个实数根, 令g (x )=13x 3-32x 2+2x +5-2x -m =13x 3-32x 2+5-m ,则g (x )有三个零点.由g ′(x )=x 2-3x =0得x =0或x =3.令g ′(x )>0得x <0或x >3;令g ′(x )<0得0<x <3.∴函数g (x )在(-∞,0)上为增函数,在(0,3)上为减函数,在(3,+∞)上为增函数. ∴函数在x =0处取得极大值,在x =3处取得极小值. 要使g (x )有三个零点,只需⎩⎪⎨⎪⎧g ,g,解得12<m <5.∴实数m 的取值范围为⎝ ⎛⎭⎪⎫12,5. 19.(本小题满分16分)已知函数f (x )=(x -k )e x, (1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值. 解:(1)f ′(x )=(x -k +1)e x. 令f ′(x )=0,得x =k -1.当x 变化时,f (x )与f ′(x )的变化情况如下:所以,f (x )的单调递减区间是(-∞,k -1);单调递增区间是(k -1,+∞). (2)当k -1≤0,即k ≤1时,函数f (x )在[0,1]上单调递增, 所以f (x )在区间[0,1]上的最小值为f (0)=-k . 当0<k -1<1,即1<k <2时,由(1)知f (x )在[0,k -1)上单调递减,在(k -1,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (k -1)=-e k -1.当k -1≥1,即k ≥2时,函数f (x )在[0,1]上单调递减, 所以f (x )在区间[0,1]上的最小值为f (1)=(1-k )e.20.(本小题满分16分)已知函数f (x )=ax 2+1(a >0),g (x )=x 3+bx .(1)若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,求a ,b 的值; (2)当a =3,b =-9时,若函数f (x )+g (x )在区间[k,2]上的最大值为28,求k 的取值范围.解:(1)f′(x)=2ax,g′(x)=3x2+b.因为曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,所以f(1)=g(1),且f′(1)=g′(1),即a+1=1+b,且2a=3+b,解得a=3,b=3.(2)记h(x)=f(x)+g(x),当a=3,b=-9时,h(x)=x3+3x2-9x+1,h′(x)=3x2+6x-9.令h′(x)=0,得x1=-3,x2=1.h(x)与h′(x)在(-∞,2]上的变化情况如下:由此可知:当k≤-3时,函数h(x)在区间[k,2]上的最大值为h(-3)=28;当-3<k<2时,函数h(x)在区间[k,2]上的最大值小于28.因此,k的取值范围是(-∞,-3].。
应用题微专题〔教案〕学习目标:1能根据实际问题的具体背景,进行数学化设计,将实际问题转化为数学问题2 通过对实际问题的研究解决,渗透数学建模的思想,提高学生学习数学的兴趣学习重点:几何背景下实际应用题中函数模型的构建学习难点:构建函数模型过程中自变量的优选学习过程:一、模拟练习题题型分析近五年江苏高考应用题统计分析二模拟练习题讲解〔2021年高考江苏第17题〕某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,方案修建一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为,山区边界曲线为,方案修建的公路为,如下图,为的两个端点,测得点到的距离分别为5千米和40千米,点到的距离分别为20千米和2.5千米,以所在的直线分别为轴,建立平面直角坐标系,假设曲线符合函数〔其中为常数〕模型〔1〕求的值;①请写出公路长度的函数解析式,并写出其定义域;②当t为何值时,公路的长度最短?求出最短长度分析:今年的命题组长也是15年的组长,所以这里先回忆一下15年高考应用题的特点此题属“图形-函数-最值〞型问题,题中已给出具体的函数模型,无需建模,只需根据条件求出待定系数,然后求出函数的最值即可选用该题的意图是熟悉一下今年命题组长的命题风格解析:〔1〕由题意知,点的坐标分别为,.将其分别代入,得,解得.〔2〕①由〔1〕知,〔〕,那么点的坐标为,设在点处的切线交,轴分别于点,,那么的方程为,由此得,.故,.②设,那么.令,解得.列表如下:-0 +递减极小值递增从而,当时,函数有极小值,也是最小值,所以,此时.答:当时,公路的长度最短,最短长度为千米.三。
课本改编题城和城相距,现方案以为直径的半圆上选择一点〔不与点,重合〕建造垃圾处理厂垃圾处理厂对城市的影响度与所选地点到城市的距离有关,对城和城的总影响度为对城与城的影响度之和记点到城的距离为,建在处的垃圾处理厂对城和城的总影响度为统计调查说明:垃圾处理厂对城的影响度与所选地点到城的距离的平方成反比例关系,比例系数为4;对城的影响度与所选地点到城的距离的平方成反比例关系,比例系数为当垃圾处理厂建在的中点时,对城和城的总影响度为〔2〕试在上找一点,使建在此处的垃圾处理厂对城和城的总影响度最小?分析:这是一道课本改编题,由选修2-2第1章?导数及其应用?第节中的例4改编而来该题是“图形-函数-最值〞型问题,变量已指定,建模不困难第〔1〕问主要是结合图形求出待定系数;第〔2〕问题是利用导数求函数的最值选用该题的意图是引导学生注重回归教材解析:〔1〕由题意,知,,,那么,所以因为当时,,代入表达式解得所以〔2〕因为,所以令,得,所以,即列表如下:- 0 +递减极小值递增所以当,取极小值,也是最小值答:当点到城的距离为 时,建在此处的垃圾处理厂对城和城的总影响度最小四。
1.4导数在实际生活中的应用学习目标:1.通过生活中优化问题的学习,体会导数在解决实际问题中的作用,促进学生全面认识数学的科学价值、应用价值和文化价值.2.通过实际问题的研究,促进学生分析问题、解决问题以及数学建模能力的提高. 学习重点 如何建立数学模型来解决实际问题学习难点 如何建立数学模型来解决实际问题【新课引入】导数在实际生活中有着广泛的应用,利用导数求最值的方法,可以求出实际生活中的某些最值问题.1.几何方面的应用(面积和体积等的最值)2.物理方面的应用(功和功率等最值)3.经济学方面的应用(利润方面最值)知识扫描:1.生活中的优化问题常见类型:费用最少省问题;利润最大问题;面积、体积最大问题.2.导数在实际生活中的应用主要是解决有关最大(小)值问题,一般应先建立好目标函数后,把问题转化为上一节研究的内容.例题选讲:例1.在边长为60cm 的正方形铁皮的四角切去边长相等的小正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底铁皮箱,当箱底边长为多少时,箱子容积最大?最大容积是多少?解法一:设箱底边长为x cm ,则箱高602x h -=cm ,得箱子容积260)(322x x h x x V -== )600(<<x . x 60c23()602x V x x '=- )600(<<x 令23()602x V x x '=-=0,解得 x =0(舍去),x =40, 并求得 V (40)=16 000 由题意可知,当x 过小(接近0)或过大(接近60)时,箱子容积很小,因此,16 000是最大值答:当x =40cm 时,箱子容积最大,最大容积是16 000cm 3解法二:设箱高为x cm ,则箱底长为(60-2x )cm ,则得箱子容积x x x V 2)260()(-=)300(<<x .(后面同解法一,略) 由题意可知,当x 过小或过大时箱子容积很小,所以最大值出现在极值点处.事实上,可导函数260)(322x x h x x V -==、x x x V 2)260()(-=在各自的定义域中都只有一个极值点,从图象角度理解即只有一个波峰,是单峰的,因而这个极值点就是最值点,不必考虑端点的函数值.变式1:在长为80 cm 宽50cm 的长方形铁片的四角切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的长方体箱子,箱子的高是多少时,箱子的容积最大?最大容积是多少?变式2:在长为80 cm 宽50cm 的长方形铁片,做成一个无盖的长方体箱子,使箱子的容积尽可能大,箱子的高是多少?例2.某种圆柱形饮料罐的容积一定,如何确定它的高与底半径,才能使它的用料最省?解:设圆柱的高为h ,底半径为R ,则表面积S =2πRh +2πR 2由V =πR 2h ,得2V h R π=,则S (R )= 2πR 2V R π+ 2πR 2=2V R+2πR 2 x 60-2x 60-2x 60-2x x60-2x 6060令 22()V s R R '=-+4πR =0 解得,Rh =2V Rπ即h =2R因为S (R )只有一个极值,所以它是最小值答:当罐的高与底直径相等时,所用材料最省变式3:当圆柱形金属饮料罐的表面积为定值S 时,它的高与底面半径应怎样选取,才能使所用材料最省?提示:S =2Rh π+22R π⇒h =R R S ππ222- ⇒V (R )=R R S ππ222-πR 2=3221)2(21R SR R R S ππ-=- )('R V )=026R S π=⇒ ⇒R h R Rh R 222622=⇒+=πππ.例3.已知某商品生产成本C 与产量q 的函数关系式为C =100+4q ,价格p 与产量q 的函数关系式为 1258p q =-,求产量q 为何值时,利润L 最大? 分析:利润L 等于收入R 减去成本C ,而收入R 等于产量乘价格.由此可得出利润L 与产量q 的函数关系式,再用导数求最大利润. 解:收入211252588R q p q q q q ⎛⎫=⋅=-=- ⎪⎝⎭ (0100)q << 利润221125(1004)2110088L R C q q q q q ⎛⎫=-=---=-- ⎪⎝⎭ 1214L q '=-+ 令 0L '=,即 12104q -+=,求得唯一的极值点84q = 答:产量为84时,利润L 最大.【归纳】利用导数解决优化问题的基本思路:【课内练习】练习:1.学校或班级举行活动,通常需要张贴海报进行宣传.现让你设计一张如图所示的竖向张贴的海报,要求版心面积为2128dm .上、下两边各空2dm .左、右两边各空1dm .如何设计海报的尺寸,才能使四周空白的面积最小?解:设版心的宽为x dm ,长为y dm ,则有 xy=128,(1)另设四周空白面积为S ,则2(2)221S x y =+⨯+⨯⨯ 428x y =++(2)由(1)式得:128y x= 代入(2)式中得:256()48(0).S x x x x=++> 0=2256令S'(x)=0,即4-x 22568,48872)812816()8x S dm y dm ∴=∴=⨯++===最小面积(此时解法二:由解法(一)得256256()4848S x x x x x=++≥• 232872=⨯+= 2564,8(0)x x x S x ==>当且仅当即时取最小值 16=128此时y=8816dm dm 答:应使用版心宽为,长为,四周空白面积最小2.已知:某商品生产成本C与产量q 的函数关系式为1004C q =+,价格p 与产量q 的函数关系式为1258p q =-.求产量 q 为何值时,利润 L 最大? 1(25)(1004)8L pq C q q q =-=--+解:利润 21211008q q =-+- 1'21,'0,4L q L ∴=-+=令 84q =求得 '0L ><当时,q 84, '0L <>当时,q 84,84q L ∴当产量为时,利润最大1(25)(1004)8L pq C q q q =-=--+另解:利润 21211008q q =-+-1421842b q L a =-==当时,的值最大 3.某宾馆有50个房间供游客居住,当每个房间每天的定价为180元时,房间会全部住满;房间的单价每增加10元,就会有一个房间空闲.如果游客居住房间,宾馆每天每间需花费20元的各种维修费.房间定价多少时,宾馆的利润最大? 解:设宾馆定价为(180+10x)元时,宾馆的利润W最大(18010)(50)(50)20W x x x =+---⋅2103408000x x =-++'()0,17W x x ==令求得17x W ∴=当,利润最大1801017350+⨯=此时房价为:(元)【归纳反思】解决优化问题的方法之一:通过搜集大量的统计数据,建立与其相应的数学模型,再通过研究相应函数的性质,提出优化方案,使问题得到解决.在这个过程中,导数往往是一个有利的工具,其基本思路如以下流程图所示:1.利用导数解决生活中的优化问题的一般步骤是:(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系()y f x =;(2)求函数的导数()f x ',解方程()0f x '=;(3)比较函数在区间端点和使()0f x '=的点的数值的大小,得到最大(小)值.2.解决生活中的优化问题应当注意的问题:①在求实际问题的最大(小)值时,一定要考虑实际问题的意义,不符合实际意义的值应舍去;'=的情形,如果函②在实际问题中,有时会遇到函数在区间内只有一个点()0f x数在这点有极大(小)值,那么不与端点比较,也可以知道这就是最大(小)值.③在解决实际优化问题中,不仅要注意将问题中涉及的变量关系用函数关系表示,还要确定出函数关系中自变量的定义区间.。
第16课时 导数在实际生活中的应用(1)【学习目标】1. 了解正角、负角、零角、象限角以及轴线角的概念;2. 能熟练写出终边相同的角的集合,能熟练判断任意角所在象限 •【问题情境】1. 日出日落,寒来暑往……自然界中有许多“按一定规律周而复始”的现象 律不断重复出现的现象称为周期现象,你能否举出生活中类似的例子呢?2. 初中所学的角的概念是什么?主要学了哪些角? 问题吗?是举例说明.【合作探究】 1. 探究一如图所示,射线 0P 以圆0上0A 为起始位置旋转,(1) 若/ AOB=120,射线 0P 按怎样的方式旋转就能与 0B 重合?有什么 规律?用什么样的数学模型来刻画?(2) 若0B 是角a 的终边,射线 0P 按怎样的方式旋转就能与 0B 重合?有什么规律? 用什么样的数学模型来刻画?.这种按一定规这些角能解决生活中的所有有关角的2. 探究二在直角坐标系中,0x为起始边,0B为第四象限的角平分线,(1)终边与0B重合的角有多少个?写出他们的集合?(2)终边与y 轴正半轴重合的角的集合是什么?与坐标轴重合呢(1) 650 ° (2) -150° (3) -990° 15'3. 知识建构(1)角的概念__________________________________________________ .(2)任意角:_________________ 叫做正角,________________ 叫做负角,__________________ 叫做零角.(3) _______________________________________________ 象限角.(4) ______________________________________________________________ 与角a终边相同的角的集合为___________________________________________________________4. 概念巩固( 1 )判断下列说法是否正确:①第二象限角比第一象限角大;②若0°< a < 90° ,则a是第一象限角;③第一象限角一定不是负角;④钝角一定是第二象限角;第二象限角一定是钝角;⑤三角形内角一定是第一或第二象限角。
江苏省响水中学高中数学 第3章《导数及其应用》复习1导学案 苏教版选修1-1复习要求:1.了解导数概念的实际背景.2.理解导数的几何意义.3.能根据导数的定义求简单的多项式、分式函数的导数.4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.课前预习:1.知识要点回顾:(1)导数的概念:(2)导数的几何意义:函数f(x)在点x0处的导数f′(x0)的几何意义是曲线y =f(x)在点(x0,f(x0))处的切线斜率.相应地,切线方程为(3)基本初等函数的导数公式:(4)导数的运算法则(5)曲线y =f(x)“在点P(x 0,y0)处的切线”与“过点P(x0,y0)的切线”的区别:2.判断:(1)f′(x0)与(f(x0))′表示的意义相同;( )(2)求f′(x0)时,可先求f(x0)再求f′(x0);( )(3)曲线的切线与曲线不一定只有一个交点;( )(4)若f(a)=a3+2ax -x2,则f′(a)=3a2+2x 。
( )3.某汽车的路程函数是s(t)=2t3-12gt2,g =10 m/s2,则当t =2 s 时,汽车的加速度= 4.下列函数求导运算正确的个数为( )①(3x)′=3xlog3e ;②(log2x)′=1x·ln 2;③⎝⎛⎭⎫sin π3′=cos π3;④⎝⎛⎭⎫1ln x ′=x.2.已知曲线y=13x3+43.(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程;(3)求斜率为1的曲线的切线方程.3.(1)若曲线y=x2+ax+b在点P(0,b)处的切线方程为x-y+1=0,求a,b的值.(2)直线y=12x+b与曲线y=-12x+ln x相切,求b的值。
2016-2017学年高中数学第3章导数及其应用4 导数在实际生活中的应用学案苏教版选修1-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学第3章导数及其应用4 导数在实际生活中的应用学案苏教版选修1-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学第3章导数及其应用4 导数在实际生活中的应用学案苏教版选修1-1的全部内容。
3。
4 导数在实际生活中的应用1.掌握利用导数解决简单的实际生活中的优化问题的方法。
(重点)2。
提高学生综合运用导数知识解题的能力,培养化归转化的思想意识。
(难点)[基础·初探]教材整理导数的实际应用阅读教材P93~P96练习以上部分,完成下列问题.1.导数的实际应用导数在实际生活中有着广泛的应用,如用料最省、利润最大、效率最高等问题一般可以归结为函数的最值问题,从而可用导数来解决.2。
用导数解决实际生活问题的基本思路1.判断正误:(1)应用导数可以解决所有实际问题中的最值问题。
()(2)应用导数解决实际应用问题,首先应建立函数模型,写出函数关系式.()(3)应用导数解决实际问题需明确实际背景.( )【解析】(1)×。
如果实际问题中所涉及的函数不可导、就不能应用导数求解.(2)√。
求解实际问题一般要建立函数模型,然后利用函数的性质解决实际问题。
(3)√。
要根据实际问题的意义确定自变量的取值。
【答案】(1)×(2)√(3)√2。
生产某种商品x单位的利润L(x)=500+x-0.001x2,生产________单位这种商品时利润最大,最大利润是________。
高中数学第三章导数及其应用3-4导数在实际生活中的应用学案苏教版选修1_1学习目标 1.了解导数在解决实际问题中的作用.2.掌握利用导数解决简单的实际生活中的优化问题.知识点生活中的优化问题1.生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为________________.2.利用导数解决优化问题的实质是求函数最值.3.解决优化问题的基本思路:上述解决优化问题的过程是一个典型的______________过程.类型一几何中的最值问题命题角度1 平面几何中的最值问题例1 某市在市内主干道北京路一侧修建圆形休闲广场.如图,圆形广场的圆心为O,半径为100 m,并与北京路一边所在直线l相切于点M.点A为上半圆弧上一点,过点A作l的垂线,垂足为点B.市园林局计划在△ABM内进行绿化.设△ABM的面积为S(单位:m2),∠AON=θ(单位:弧度).(1)将S表示为θ的函数;(2)当绿化面积S最大时,试确定点A的位置,并求最大面积.反思与感悟平面图形中的最值问题一般涉及线段、三角形、四边形等图形,主要研究与面积相关的最值问题,一般将面积用变量表示出来后求导数,求极值,从而求最值.跟踪训练1 如图所示,在二次函数f(x)=4x-x2的图象与x轴所围成图形中有一个内接矩形ABCD ,求这个矩形面积的最大值.命题角度2 立体几何中的最值问题例2 请你设计一个包装盒如图所示,ABCD 是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E ,F 在AB 上是被切去的等腰直角三角形斜边的两个端点,设AE =FB =x cm.(1)若广告商要求包装盒侧面积S 最大,则x 应取何值?(2)若广告商要求包装盒容积V 最大,则x 应取何值?并求出此时包装盒的高与底面边长的比值.反思与感悟 (1)立体几何中的最值问题往往涉及空间图形的表面积、体积,并在此基础上解决与实际相关的问题.(2)解决此类问题必须熟悉简单几何体的表面积与体积公式,如果已知图形是由简单几何体组合而成,则要分析其组合关系,将图形进行拆分或组合,以便简化求值过程.跟踪训练2 周长为20 cm 的矩形,绕一条边旋转成一个圆柱,则圆柱体积的最大值为________ cm3.类型二 实际生活中的最值问题命题角度1 利润最大问题例3 已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内生产该品牌服装x 千件并全部销售完,每千件的销售收入为R(x)万元,且R(x)=⎩⎪⎨⎪⎧10.8-130x2,0<x≤10,108x -1 0003x2,x>10. (1)求年利润W(万元)关于年产量x(千件)的函数解析式;。
江苏省响水中学高中数学第3章《导数及其应用》导数在实际生活中的应
用导学案苏教版选修1-1
学习目标
1.通过使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用.
2.在解决具体问题的过程中,体会导数方法在研究函数性质中的一般性和有效性.
课前预学:
问题1:一般地,如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.只要利用导数求出函数y=f(x)的所有,再求出端点的函数值,进行比较,就可以得出函数的最大值和最小值.
问题2:生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为问题.导数是求函数最大(小)值的有力工具,可以运用导数解决一些生活中的优化问题.
问题3:利用导数解决生活中的优化问题的一般步骤
(1)分析实际问题中各个量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y=f(x);
(2)求函数的,解方程f'(x)=0;
(3)比较函数在区间端点和点的函数值的大小,最大(小)者为最大(小)值.
问题4:解决生活中的优化问题应当注意的问题
确定函数关系式中自变量的区间,一定要考虑实际问题的意义,不符合实际问题的值应舍去.
课堂探究:
一.利润最大问题
某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=错误!未找到引用源。
+10(x-6)2,其中3<x<6,a为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.
(1)求a的值;
(2)若该商品的成本为3元/千克,试确定销售量价格x的值,使商场每日销售该商品所获得的利润最大.
三.成本最低问题:
如图,某工厂拟建一座平面图为矩形,且面积为200平方米的三级污水处理池,由于地形限制,长、宽都不能超过16米.如果池四周壁建造单价为每米400元,中间两条隔墙建造单价为每米248元,池底建造单价为每平方米80元,无盖.
(1)写出总造价y(元)与污水处理池的长x(米)的函数关系式,并指出其定义域;
(2)污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求出最低总造价.
教师个人研修总结
在新课改的形式下,如何激发教师的教研热情,提升教师的教研能力和学校整体的教研实效,是摆在每一个学校面前的一项重要的“校本工程”。
所以在学习上级的精神下,本期个人的研修经历如下:
1.自主学习:我积极参加网课和网上直播课程.认真完成网课要求的各项工作.教师根据自己的专业发展阶段和自身面临的专业发展问题,自主选择和确定学习书目和学习内容,认真阅读,记好读书笔记;学校每学期要向教师推荐学习书目或文章,组织教师在自学的基础上开展交流研讨,分享提高。
2.观摩研讨:以年级组、教研组为单位,围绕一定的主题,定期组织教学观摩,开展以课例为载体的“说、做、评”系列校本研修活动。
3.师徒结对:充分挖掘本校优秀教师的示范和带动作用,发挥学校名师工作室的作用,加快新教师、年轻教师向合格教师和骨干教师转化的步伐。
4.实践反思:倡导反思性教学和教育叙事研究,引导教师定期撰写教学反思、教育叙事研究报告,并通过组织论坛、优秀案例评选等活动,分享教育智慧,提升教育境界。
5.课题研究:立足自身发展实际,学校和骨干教师积极申报和参与各级教育科研课题的研究工作,认真落实研究过程,定期总结和交流阶段性研究成果,及时把研究成果转化为教师的教育教学实践,促进教育质量的提高和教师自身的成长。
6.专题讲座:结合教育教学改革的热点问题,针对学校发展中存在的共性问题和方向性问题,进行专题理论讲座。
7.校干引领:从学校领导开始,带头出示公开课、研讨课,参与本校的教学观摩活动,进行教学指导和引领。
8.网络研修:充分发挥现代信息技术,特别是网络技术的独特优势,借助教师教育博客等平台,促进自我反思、同伴互助和专家引领活动的深入、广泛开展。
我们认识到:一个学校的发展,将取决于教师观念的更新,人才的发挥和校本培训功能的提升。
多年来,我们学校始终坚持以全体师生的共同发展为本,走“科研兴校”的道路,坚持把校本培训作为推动学校建设和发展的重要力量,进而使整个学校的教育教学全面、持续、健康发展。
反思本学期的工作,还存在不少问题。
很多工作在程序上、形式上都做到了,但是如何把工作做细、做好,使之的目的性更加明确,是继续努力的方向。
另外,我校的研修工作压力较大,各学科缺少领头羊、研修氛围有待加强、师资缺乏等各类问题摆在我们面前。
缺乏专业人员的引领,各方面的工作开展得还不够规范。
相信随着课程改革的深入开展,在市教育教学研究院的领导和专家的亲临指导下,我校校本研修工作一定能得以规范而全面地展开。
“校本研修”这种可持续的、开放式的继续教育模式,一定能使我校的教育教学工作又上一个台阶。