第3题图
第三节 全等三角形
返回目录
解法二:∵FC∥AB, ∴∠A=∠ECF,∠ADE=∠F,(1分) 在△ADE与△CFE中,
∠A=∠ECF
∠ADE=∠F ,(3分)
DE=FE ∴△ADE≌CFE(AAS),(5分) ∴AE=CE.(6分)
解法三:∵FC∥AB, ∴∠ADE=∠F,(1分) 在△ADE和△CFE中,
∠A=∠ECD,AB=CD.
求证:∠B=∠D.
证明:∵点C是AE的中点, ∴AC=CE.(2分) 在△ABC和△CDE中,
AC=CE
∠A=∠ECD
AB=CD ∴△ABC≌△CDE(SAS),(4分)
∴∠B=∠D.(6分)
第14题图
第三节 全等三角形
15. (2014昆明卷16题5分)已知:如图,点A、B、C、D在同一直线
返回目录
3. (2016昆明卷16题6分·源于人教八上P45第12题)如图,点D是AB上一点,DF交
AC于点E,DE=FE,FC∥AB.
求证:AE=CE.
证明:解法一:∵FC∥AB,
∴∠A=∠ACF,(1分)
在△ADE和△CFE中, ∠A=∠ACF
∠AED=∠CEF ,(3分)
DE=FE ∴△ADE≌△CFE(AAS),(5分) ∴AE=CE.(6分)
∴BC=DF.
第5题图
返回目录
第三节 全等三角形
返回目录
6. (2018曲靖卷17题7分)如图,在 ABCD的边AB,CD上截取线段AF,CE,使
AF=CE,连接EF,点M,N是线段EF上的两点,且EM=FN,连接AN,CM.
(1)求证:△AFN≌△CEM;
(1)证明:∵四边形ABCD是平行四边形, ∴AB∥CD, ∴∠AFN=∠CEM.(1分) 在△AFN和△CEM中,