2017年普通高等学校招生全国统一考试答案
- 格式:doc
- 大小:153.00 KB
- 文档页数:6
2017年普通高等学校招生全国统一考试(课标全国卷Ⅱ)第二部分阅读理解第一节A21.A细节理解题。
根据 National Theatre of China中的“This production of Shakespeare’s Richard Ⅲ”可知,中国国家剧院将会演出莎士比亚的Richard Ⅲ,所以答案为A项。
22.C细节理解题。
根据 Deafinitely Theatre London|British Sign Language(BSL)可知,该剧院能够使用手语进行演出,这是这家剧院和其他剧院的不同之处,也就是它的特别之处,所以答案为C项。
23.D细节理解题。
根据文章最后一部分第一句话“The Habima is the centre of Hebrew-language theatre worldwide.”可知,这家剧院用希伯来语演出。
再结合Date & Time中的Tuesday 29 May可知,观众可以在这一天看到希伯来语的戏剧演出,所以答案为D项。
B24.C推理判断题。
根据第一段中的“it wanted somebody as well known as Paul”可知,这家电影公司不想把这个角色给作者,是因为他们想把角色给像保罗这样出名的人,作者还不够出名,所以答案为C项。
25.D细节理解题。
根据第二段中的“Both of us had the qualities and virtues that are typical of American actors”可知,保罗和作者之所以有着长久的友谊,是因为他们两个人有着相似的品质,所以答案为D项。
26.A词义猜测题。
根据本段第一句话“We shared the belief that if...”可知,尽管他们不经常见面,但是正是那种信念让他们聚在了一起。
由此推断出画线单词指的是他们的共同的信念,所以答案为A项。
27.B推理判断题。
2017年全国卷1高考语文试题及答案解析(完整版) ★启用前2017年普通高等学校招生全国统一考试语文(新课标1)注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、现代文阅读(35分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。
气候正义是环境正义在气候变化领域的具体发展和体现。
2000年前后,一些非政府组织承袭环境正义运动的精神。
开始对气候变化的影响进行伦理审视,气候正义便应运而生。
气候正义关注的核心主要是在气候容量有限的前提下,如何界定各方的权利和义务,主要表现为一种社会正义或法律正义。
从空间维度来看,气候正义涉及不同国家和地区之间公平享有气候容量的问题,也涉及一国内部不同区域之间公平享有气候容量的问题,因而存在气候变化的国际公平和国内公平问题,公平原则应以满足人的基本需求作为首要目标,每个人都有义务将自己的“碳足迹”控制在合理范围之内。
比如说,鉴于全球排放空间有限,而发达国家已实现工业化,在分配排放空间时,就应首先满足发展中国家在衣食住行和公共基础设施建设等方面的基本发展需求,同时遏制在满足基本需求之上的奢侈排放。
从时间维度上来看,气候正义涉及当代人与后代之间公平享有气候容量的问题,因而存在代际权利义务关系问题。
这一权利义务关系,从消极方面看,体现为当代人如何约束自己的行为来保护地球气候系统,以将同等质量的气候系统交给后代;从积极方面看,体现为当代人为自己及后代设定义务,就代际公平而言,地球上的自然资源在代际分配问题上应实现代际共享,避免“生态赤字”。
因为,地球这个行星上的自然资源包括气候资源,是人类所有成员,包括上一代、这一代和下一代,共同享有和掌管的。
绝密★启用前2017年普通高等学校招生全国统一考试理科综合能力测试注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
可能用到的相对原子质量:H 1 C 12 N 14 O 16 S 32 Cl 35.5 K 39 Ti 48 Fe56 I 127一、选择题:本题共13个小题,每小题6分,共78分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.细胞间信息交流的方式有多种。
在哺乳动物卵巢细胞分泌的雌激素作用于乳腺细胞的过程中,以及精子进入卵细胞的过程中,细胞间信息交流的实现分别依赖于A.血液运输,突触传递B.淋巴运输,突触传递C.淋巴运输,胞间连丝传递D.血液运输,细胞间直接接触2.下列关于细胞结构与成分的叙述,错误的是A.细胞膜的完整性可用台盼蓝染色法进行检测B.检测氨基酸的含量可用双缩脲试剂进行显色C.若要观察处于细胞分裂中期的染色体可用醋酸洋红液染色D.斐林试剂是含有Cu2+的碱性溶液,可被葡萄糖还原成砖红色3.通常,叶片中叶绿素含量下降可作为其衰老的检测指标。
为研究激素对叶片衰老的影响,将某植物离体叶片分组,并分别置于蒸馏水、细胞分裂素(CTK)、脱落酸(ABA)、CTK+ABA溶液中,再将各组置于光下。
一段时间内叶片中叶绿素含量变化趋势如图所示,据图判断,下列叙述错误的是A.细胞分裂素能延缓该植物离体叶片的衰老B.本实验中CTK对该植物离体叶片的作用可被ABA削弱C.可推测ABA组叶绿体中NADPH合成速率大于CTK组D.可推测施用ABA能加速秋天银杏树的叶由绿变黄的过程4.某同学将一定量的某种动物的提取液(A)注射到实验小鼠体内,注射后若干天,未见小鼠出现明显的异常表现。
2017年普通高等学校招生全国统一考试课标全国卷Ⅱ1.A本题考查筛选并整合文中信息的能力。
B.曲解文意。
据第二段可知,此时青花瓷上的中国画元素与伊斯兰风格融为一体,而选项却说“此时青花瓷与外来文化已无关系”。
C.扩大范围。
据第三段第4句可知,“明初往往被认为是保守的”,选项却扩大为“明代社会往往被认为是保守的”。
D.强加因果。
据尾段尾句可知,中国瓷器从单色走向多彩,是当时社会转型的例证,选项“从而”一词,却将中国瓷器从单色走向多彩误认为是推动当时社会转型的原因。
2.A本题考查分析文章结构,分析论点、论据和论证方法的能力。
第一段在对元明两代瓷器进行对比论证后,得出了“青花瓷崛起是郑和航海时代技术创新与文化交融的硕果”的论点。
3.B本题考查分析概括作者在文中的观点态度的能力。
据第三段首句“一般来说”可知,文中“时尚兴盛则是社会快速变化的标志”并不是绝对的,但命题人去掉“一般来说”后,该项说法过于绝对。
4.B本题考查对作品内容和艺术特色的分析鉴赏能力。
据全文尾句中“千万别高兴起来说什么接触了,认识了若干事物人情,天知道那是罪过”可知,作者认为,外出旅行未必能深入认识事物人情,故选项“通过……就会获得深刻的认识”的表述曲解文意。
5.答案①指具体的窗子,如铁纱窗、玻璃窗,分隔了不同的生活场景;②指“无形的窗子”,即心态与观念的限制,造成了自我与外部世界的隔膜。
解析本题考查体会重要词语丰富意思的能力。
“窗子”含意指向本文标题的含意,文章二至五段侧重写向窗外看到的不同的现实生活图景,且二至五段的结尾反复强调“铁纱窗”“玻璃窗”“窗子以外”等;再结合尾段“无形中的窗子是仍然存在的”“你有的是一个提梁的小小世界”“隐隐约约”等信息可知,作者笔下的窗子,既有有形的,也有无形的;有形的窗子指向具体不同材质、不同形状的窗子,无形的窗子指向人的不同的精神世界。
6.答案①转“我”为“你”,“你”成为自我观察与描写的对象,蕴含着作者冷静审视的态度;②使用“你”的同时,又使用了“我”,蕴含着作者的自嘲与反思。
2017年普通高等学校招生全国统一考试(课标全国卷Ⅰ)文数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合A={x|x<2},B={x|3-2x>0},则( )A.A∩B={x|x<32}B.A∩B=⌀C.A∪B={x|x<32}D.A∪B=R2.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数3.下列各式的运算结果为纯虚数的是( )A.i(1+i)2B.i2(1-i)C.(1+i)2D.i(1+i)4.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.14B.π8C.12D.π45.已知F是双曲线C:x2-y 23=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为( )A.13B.12C.23D.326.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )7.设x,y满足约束条件{x+3y≤3,x-y≥1,y≥0,则z=x+y的最大值为( )A.0B.1C.2D.38.函数y=sin2x1-cosx的部分图象大致为( )9.已知函数f(x)=ln x+ln(2-x),则( )A. f(x)在(0,2)单调递增B. f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.下面程序框图是为了求出满足3n-2n>1 000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1 000和n=n+1B.A>1 000和n=n+2C.A≤1 000和n=n+1D.A≤1 000和n=n+211.△ABC的内角A,B,C的对边分别为a,b,c.已知sin B+sin A(sin C-cos C)=0,a=2,c=√2,则C=( )A.π12B.π6C.π4D.π312.设A,B是椭圆C:x 23+y2m=1长轴的两个端点.若C上存在点M满足∠AMB=120°,则m的取值范围是( )A.(0,1]∪[9,+∞)B.(0,√3]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,√3]∪[4,+∞)第Ⅱ卷(非选择题,共90分)二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a=(-1,2),b=(m,1).若向量a+b与a垂直,则m= .14.曲线y=x2+1x在点(1,2)处的切线方程为.15.已知α∈(0,π2),tan α=2,则cos(α-π4)= .16.已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)记S n为等比数列{a n}的前n项和.已知S2=2,S3=-6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.18.(12分)如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;,求该四棱锥的侧面积.(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P-ABCD的体积为8319.(12分)为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序 1 2 3 4 5 6 7 8零件尺寸 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04抽取次序9 10 11 12 13 14 15 16零件尺寸10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得x =116∑i=116x i =9.97,s=√116∑i=116(x i -x )2=√116(∑i=116x i 2-16x 2)≈0.212,√∑i=116(i -8.5)2≈18.439,∑i=116(x i -x )(i-8.5)=-2.78,其中x i 为抽取的第i 个零件的尺寸,i=1,2, (16)(1)求(x i ,i)(i=1,2,…,16)的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r|<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小);(2)一天内抽检零件中,如果出现了尺寸在(x -3s,x +3s)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (i)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ii)在(x -3s,x +3s)之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01) 附:样本(x i ,y i )(i=1,2,…,n)的相关系数r=∑i=1n(x i -x )(y i -y )√∑i=1n (x i -x )√∑i=1n(y i -y ).√0.008≈0.09.20.(12分)设A,B 为曲线C:y=x 24上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM⊥BM,求直线AB 的方程.21.(12分)已知函数f(x)=e x(e x-a)-a2x.(1)讨论f(x)的单调性;(2)若f(x)≥0,求a的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为{x =3cosθ,y =sinθ(θ为参数),直线l 的参数方程为{x =a +4t ,y =1-t(t 为参数). (1)若a=-1,求C 与l 的交点坐标;(2)若C 上的点到l 距离的最大值为√17,求a.23.[选修4—5:不等式选讲](10分)已知函数f(x)=-x 2+ax+4,g(x)=|x+1|+|x-1|. (1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[-1,1],求a 的取值范围.2017年普通高等学校招生全国统一考试(课标全国卷Ⅰ)一、选择题1.A 本题考查集合的运算.由3-2x>0得x<32,则B={x |x <32},所以A∩B={x |x <32},故选A.2.B 本题考查样本的数字特征.统计问题中,体现数据的稳定程度的指标为数据的方差或标准差.故选B.3.C 本题考查复数的运算和纯虚数的定义. A.i(1+i)2=i×2i=-2; B.i 2(1-i)=-(1-i)=-1+i; C.(1+i)2=2i;D.i(1+i)=-1+i,故选C. 4.B 本题考查几何概型.设正方形的边长为2,则正方形的内切圆的半径为1,其中黑色部分和白色部分关于正方形的中心对称,则黑色部分的面积为π2,所以在正方形内随机取一点,此点取自黑色部分的概率P=π22×2=π8,故选B.5.D 本题考查双曲线的几何性质. 易知F(2,0),不妨取P 点在x 轴上方,如图.∵PF⊥x 轴,∴P(2,3),|PF|=3,又A(1,3), ∴|AP|=1,AP⊥PF, ∴S △APF =12×3×1=32.故选D.6.A 本题考查线面平行的判定.B 选项中,AB ∥MQ,且AB ⊄平面MNQ,MQ ⊂平面MNQ,则AB ∥平面MNQ;C 选项中,AB ∥MQ,且AB ⊄平面MNQ,MQ ⊂平面MNQ,则AB ∥平面MNQ;D 选项中,AB ∥NQ,且AB ⊄平面MNQ,NQ ⊂平面MNQ,则AB ∥平面MNQ.故选A.7.D 本题考查简单的线性规划问题. 作出约束条件表示的可行域如图:平移直线x+y=0,可得目标函数z=x+y 在A(3,0)处取得最大值,z max =3,故选D.8.C 本题考查函数图象的识辨.易知y=sin2x1-cosx 为奇函数,图象关于原点对称,故排除B 选项;sin 2≈sin 120°=√32,cos 1≈cos 60°=12,则f(1)=sin21-cos1=√3,故排除A 选项; f(π)=sin2π1-cos π=0,故排除D 选项,故选C.9.C 本题考查函数的图象与性质.函数f(x)=ln x+ln(2-x)=ln[x(2-x)],其中0<x<2,则函数f(x)由f(t)=ln t,t(x)=x(2-x)复合而成,由复合函数的单调性可知,x ∈(0,1)时, f(x)单调递增,x ∈(1,2)时, f(x)单调递减,则A 、B 选项错误;t(x)的图象关于直线x=1对称,即t(x)=t(2-x),则f(x)=f(2-x),即f(x)的图象关于直线x=1对称,故C 选项正确,D 选项错误.故选C. 10.D 本题考查程序框图问题.本题求解的是满足3n-2n>1 000的最小偶数n,判断循环结构为当型循环结构,即满足条件要执行循环体,不满足条件应输出结果,所以判断语句应为A≤1 000,另外,所求为满足不等式的偶数解,因此中语句应为n=n+2,故选D.11.B 本题考查正弦定理和两角和的正弦公式.在△ABC 中,sin B=sin(A+C),则sin B+sin A(sin C-cos C) =sin(A+C)+sin A(sin C-cos C)=0,即sin Acos C+cos Asin C+sin Asin C-sin Acos C=0,∴cos Asin C+sin Asin C=0,∵sin C≠0,∴cos A+sin A=0,即tan A=-1,即A=34π. 由a sinA =c sinC 得√22=√2sinC ,∴sin C=12,又0<C<π4,∴C=π6,故选B.12.A 本题考查圆锥曲线的几何性质.当0<m<3时,椭圆C 的长轴在x 轴上,如图(1),A(-√3,0),B(√3,0),M(0,1).图(1)当点M 运动到短轴的端点时,∠AMB 取最大值,此时∠AMB≥120°,则|MO|≤1,即0<m≤1; 当m>3时,椭圆C 的长轴在y 轴上,如图(2),A(0,√m ),B(0,-√m ),M(√3,0)图(2)当点M 运动到短轴的端点时,∠AMB 取最大值,此时∠AMB≥120°,则|OA|≥3,即√m ≥3,即m≥9.综上,m ∈(0,1]∪[9,+∞),故选A.二、填空题 13.答案 7解析 本题考查向量数量积的坐标运算. ∵a=(-1,2),b=(m,1),∴a+b=(m -1,3),又(a+b)⊥a, ∴(a+b)·a=-(m-1)+6=0,解得m=7. 14.答案 x-y+1=0解析 本题考查导数的几何意义.∵y=x 2+1x,∴y'=2x -1x2,∴y'|x=1=2-1=1,∴所求切线方程为y-2=x-1,即x-y+1=0.15.答案3√1010解析 因为α∈(0,π2),且tan α=sinαcosα=2,所以sin α=2cos α,又sin 2α+cos 2α=1,所以sin α=2√55,cos α=√55,则cos (α-π4)=cos αcos π4+sin αsin π4=√55×√22+2√55×√22=3√1010.16.答案 36π解析 由题意作出图形,如图.设球O 的半径为R,由题意知SB⊥BC,SA⊥AC,又SB=BC,SA=AC,则SB=BC=SA=AC=√2R.连接OA,OB,则OA⊥SC,OB⊥SC,因为平面SCA⊥平面SCB,平面SCA∩平面SCB=SC,所以OA⊥平面SCB,所以OA⊥OB,则AB=√2R,所以△ABC 是边长为√2R 的等边三角形,设△ABC 的中心为O 1,连接OO 1,CO 1. 则OO 1⊥平面ABC,CO 1=23×√32×√2R=√63R,则OO 1=√R 2-(√63R)2=√33R,则V S-ABC =2V O-ABC =2×13×√34(√2R)2×√33R=13R 3=9, 所以R=3.所以球O 的表面积S=4πR 2=36π.三、解答题17.解析 本题考查等差、等比数列. (1)设{a n }的公比为q,由题设可得{a 1(1+q )=2,a 1(1+q +q 2)=-6.解得q=-2,a 1=-2.故{a n }的通项公式为a n =(-2)n . (2)由(1)可得S n =a 1(1-q n )1-q=-23+(-1)n·2n+13.由于S n+2+S n+1=-43+(-1)n·2n+3-2n+23=2[-23+(-1)n·2n+13]=2S n ,故S n+1,S n ,S n+2成等差数列.18.解析 本题考查立体几何中面面垂直的证明和几何体侧面积的计算. (1)证明:由已知∠BAP=∠CDP=90°, 得AB⊥AP,CD⊥PD. 由于AB∥CD,故AB⊥PD, 从而AB⊥平面PAD. 又AB ⊂平面PAB, 所以平面PAB⊥平面PAD.(2)在平面PAD 内作PE⊥AD,垂足为E.由(1)知,AB⊥平面PAD, 故AB⊥PE,可得PE⊥平面ABCD. 设AB=x,则由已知可得AD=√2x,PE=√22x. 故四棱锥P-ABCD 的体积V P-ABCD =13AB·AD·PE=13x 3.由题设得13x 3=83,故x=2.从而PA=PD=2,AD=BC=2√2,PB=PC=2√2.可得四棱锥P-ABCD 的侧面积为12PA·PD+12PA·AB+12PD·DC+12BC 2sin 60°=6+2√3.19.解析 本题考查统计问题中的相关系数及样本数据的均值与方差. (1)由样本数据得(x i ,i)(i=1,2,…,16)的相关系数为r=∑i=116(x i -x )(i -8.5)√∑i=1(x i -x )2√∑i=1(i -8.5)2=0.212×√16×18.439≈-0.18.由于|r|<0.25,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小.(2)(i)由于x =9.97,s≈0.212,由样本数据可以看出抽取的第13个零件的尺寸在(x -3s,x +3s)以外,因此需对当天的生产过程进行检查.(ii)剔除离群值,即第13个数据,剩下数据的平均数为115×(16×9.97-9.22)=10.02, 这条生产线当天生产的零件尺寸的均值的估计值为10.02.∑i=116x i 2=16×0.2122+16×9.972≈1 591.134,剔除第13个数据,剩下数据的样本方差为115×(1 591.134-9.222-15×10.022)≈0.008,这条生产线当天生产的零件尺寸的标准差的估计值为√0.008≈0.09.20.解析 本题考查直线与抛物线的位置关系. (1)设A(x 1,y 1),B(x 2,y 2),则x 1≠x 2,y 1=x 124,y 2=x 224,x 1+x 2=4, 于是直线AB 的斜率k=y 1-y2x 1-x 2=x 1+x 24=1.(2)由y=x 24,得y'=x2,设M(x3,y3),由题设知x32=1,解得x3=2,于是M(2,1).设直线AB的方程为y=x+m,故线段AB的中点为N(2,2+m),|MN|=|m+1|.将y=x+m代入y=x 24得x2-4x-4m=0.当Δ=16(m+1)>0,即m>-1时,x1,2=2±2√m+1.从而|AB|=√2|x1-x2|=4√2(m+1).由题设知|AB|=2|MN|,即4√2(m+1)=2(m+1),解得m=7.所以直线AB的方程为y=x+7.21.解析本题考查了利用导数研究函数的单调性、最值.(1)函数f(x)的定义域为(-∞,+∞), f '(x)=2e2x-ae x-a2=(2e x+a)(e x-a).①若a=0,则f(x)=e2x,在(-∞,+∞)单调递增.②若a>0,则由f '(x)=0得x=ln a.当x∈(-∞,ln a)时, f '(x)<0;当x∈(ln a,+∞)时, f '(x)>0.故f(x)在(-∞,ln a)单调递减,在(ln a,+∞)单调递增.③若a<0,则由f '(x)=0得x=ln(-a2).当x∈(-∞,ln(-a2))时,f '(x)<0;当x∈(ln(-a2),+∞)时, f '(x)>0.故f(x)在(-∞,ln(-a2))单调递减,在(ln(-a2),+∞)单调递增.(2)①若a=0,则f(x)=e2x,所以f(x)≥0.②若a>0,则由(1)得,当x=ln a时, f(x)取得最小值,最小值为f(ln a)=-a2ln a,从而当且仅当-a 2ln a≥0,即a≤1时, f(x)≥0.③若a<0,则由(1)得,当x=ln (-a 2)时, f(x)取得最小值,最小值为f (ln (-a2))=a 2[34-ln (-a2)].从而当且仅当a 2[34-ln (-a2)]≥0, 即a≥-2e 34时, f(x)≥0. 综上,a 的取值范围是[-2e 34,1].22.解析 本题考查极坐标与参数方程的应用. (1)曲线C 的普通方程为x 29+y 2=1.当a=-1时,直线l 的普通方程为x+4y-3=0. 由{x +4y -3=0,x 29+y 2=1解得{x =3,y =0或{x =-2125,y =2425.从而C 与l 的交点坐标为(3,0),(-2125,2425).(2)直线l 的普通方程为x+4y-a-4=0,故C 上的点(3cos θ,sin θ)到l 的距离为d=√17.当a≥-4时,d 的最大值为√17,由题设得√17=√17,所以a=8;当a<-4时,d 的最大值为√17,由题设得17=√17,所以a=-16.综上,a=8或a=-16.23.解析 本题考查含绝对值不等式的求解问题.(1)当a=1时,不等式f(x)≥g(x)等价于x2-x+|x+1|+|x-1|-4≤0.①当x<-1时,①式化为x2-3x-4≤0,无解;当-1≤x≤1时,①式化为x2-x-2≤0,从而-1≤x≤1;当x>1时,①式化为x2+x-4≤0,从而1<x≤-1+√17.2所以f(x)≥g(x)的解集为}.{x|-1≤x≤-1+√172(2)当x∈[-1,1]时,g(x)=2.所以f(x)≥g(x)的解集包含[-1,1],等价于当x∈[-1,1]时f(x)≥2.又f(x)在[-1,1]的最小值必为f(-1)与f(1)之一,所以f(-1)≥2且f(1)≥2,得-1≤a≤1.所以a的取值范围为[-1,1].。
2017年普通高等学校招生全国统一考试(全国卷II )英语本试卷分第一卷(选择题)和第二卷(非选择题)两部分。
第一卷1至12页。
第二卷13至16页。
考试结束,将本试卷和答题卡一并交回。
第一卷 第一部分 英语知识运用(共三节,满分50分)从A 、B、C、D四个选项中,找出其划线部分与所给单词的划线部分读音相同的选项,并在答题卡上将该项涂黑。
在答题卡上将该项涂黑。
例:haveA. gaveB. saveC. hatD. made 答案是C 。
1. courseA. journeyB. fourC. labourD. hour 2. matchA. separateB. marryC. machineD. many 3. riseA. purseB. elseC. praiseD. mouse 4. batheA. faithB. clothC. mathsD. smooth 5. BritainA. certainB. trainC. againstD. contain第二节 语法和词汇知识(共15小题;每小题1分,满分15分)从A 、B、C、D四个选项中,选出可以填入空白处的最佳选项,并在答题卡上将该项涂黑。
例:We ___ last night, but we went to the concert instead.A. must have studiedB. might studyC. should have studiedD. would study 答案是C 。
6. 6. ––Do you know A Do you know Anna‘s telephone number?nna‘s telephone number?-- -- ____. As a matter of fact, I don‘t know any Anna, either.____. As a matter of fact, I don‘t know any Anna, either.A. I think soB. I‘m afraid notC. I hope soD. I‘d rather not 7. A small car is big enough for a family of three ____ you need more space for baggage.A. onceB. becauseC. ifD. unless 8. It‘s not ___ good idea to drive for four hours without ___ break.A. a ; aB. the ; aC. the ; theD. a ; the 9. 9. –– What are you reading, Tom?– I‘m not really reading, just ___ the pages.A. turning offB. turning aroundC. turning overD. turning up 10. -- Could I ask you a rather personal question?-- Sure, ____.A. pardon meB. go aheadC. good ideaD. forget it 11. If the weather had been better, we could have had a picnic. But it ____ all day.A. rainedB. rainsC. has rainedD. is raining 12. The director had her assistant ___ some hot dogs for the meeting.A. picked upB. picks upC. pick upD. picking up 13. Stand over there ___ you‘ll be able to see the oil painting bet 13. Stand over there ___ you‘ll be able to see the oil painting better. ter.A. butB. tillC. andD. or 14. If their marketing plans succeed, they ____ their sales by 20 percent.A. will increaseB. have been increasingC. have increasedD. would be increasing 15. Modern equipment and no smoking are two of the things I like ____ working here.A. withB. overC. atD. about 16. The road conditions there turned out to be very good, ___ was more than we could expect.A. itB. whatC. whichD. that 17. Liza ___ well not want to go on the trip --- she hates traveling.A. willB. canC. mustD. may 18. Little Johnny felt the bag, curious to know what it ____.A. collectedB. containedC. loadedD. saved 19. The house still needed a lot of work, but ___ the kitchen was finished.A. insteadB. altogetherC. at onceD. at least 20. It was in New Zealand ___ Elizabeth first met Mr. Smith.A. thatB. howC. whichD. when 第三节 完形填空(共20小题;每小题1.5分,满分30分)阅读下面短文,从短文后各题所给的四个选项(A 、B、C和D)中,选出可以填入空白处的最佳选项,并在答题卡上将该选项涂黑。
2017年全国卷1高考语文试题及答案解析(完整版) ★启用前2017年普通高等学校招生全国统一考试语文(新课标1)注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、现代文阅读(35分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。
气候正义是环境正义在气候变化领域的具体发展和体现。
2000年前后,一些非政府组织承袭环境正义运动的精神。
开始对气候变化的影响进行伦理审视,气候正义便应运而生。
气候正义关注的核心主要是在气候容量有限的前提下,如何界定各方的权利和义务,主要表现为一种社会正义或法律正义。
从空间维度来看,气候正义涉及不同国家和地区之间公平享有气候容量的问题,也涉及一国内部不同区域之间公平享有气候容量的问题,因而存在气候变化的国际公平和国内公平问题,公平原则应以满足人的基本需求作为首要目标,每个人都有义务将自己的“碳足迹”控制在合理范围之内。
比如说,鉴于全球排放空间有限,而发达国家已实现工业化,在分配排放空间时,就应首先满足发展中国家在衣食住行和公共基础设施建设等方面的基本发展需求,同时遏制在满足基本需求之上的奢侈排放。
从时间维度上来看,气候正义涉及当代人与后代之间公平享有气候容量的问题,因而存在代际权利义务关系问题。
这一权利义务关系,从消极方面看,体现为当代人如何约束自己的行为来保护地球气候系统,以将同等质量的气候系统交给后代;从积极方面看,体现为当代人为自己及后代设定义务,就代际公平而言,地球上的自然资源在代际分配问题上应实现代际共享,避免“生态赤字”。
因为,地球这个行星上的自然资源包括气候资源,是人类所有成员,包括上一代、这一代和下一代,共同享有和掌管的。
2017年普通高等学校招生全国统一考试语文答案解析一、现代文阅读1.【答案】D【解析】本题考查筛选并整合文中的信息的能力。
A.“提出了气候正义”无中生有,原文是“2000年前后,一些非政府组织承袭环境正义运动的精神,开始对气候变化的影响进行伦理审视,气候正义便应运而生”,并没有说“气候正义”是由非政府组织提出的。
B.“实际上就是限制排放的问题”错,原文是“公平原则应以满足人的基本需求作为首要目标,每个人都有义务将自己的‘碳足迹’控制在合理范围之内”,“限制排放”仅仅是其中一个方面,文章第二段也仅是拿“限制排放”举了个例子。
C.“要为后代设定义务”错,文中说“气候正义的本质是为了保护后代的利益,而非为其设定义务”。
2.【答案】C【解析】本题考查分析论点、论据和论证方法的能力。
“文章在论证中以大量篇幅阐述代际公平”错,文章在论证中以大量篇幅阐述的是代际权利义务关系。
3.【答案】B【解析】本题考查分析概括作者在文中的观点态度的能力。
“那么后代需求就可以得到保证”的推断不符合文意,原文说“气候变化公约或协定把长期目标设定为……,这是符合后代利益的”,并不能说落实目标就能保证后代需求。
4.【答案】B【解析】本题考查对小说相关内容和艺术特色的分析鉴赏能力。
“这都说明生命奇迹无法解释”错,被困队员身陷绝境却调动起所有能量开门救助敲门人,送瓜人在被困队员生死关头奇迹般地出现,这些行为都体现了救助精神的神奇力量。
5.【答案】①省去许多不必要的叙述交代,使情节更简洁;②集中描写人物在特定环境下的状态与感受,使主题更突出。
【解析】文本以“渴”为中心谋篇布局,分析这样处理的好处,可从小说故事情节的发展、人物形象的塑造、主题的表达、读者的阅读感受等角度来思考。
既然是以“渴”为中心,就起到了贯穿全文的线索作用,使情节更紧凑。
同时,“渴”作为线索,推动了情节的发展。
在人物形象塑造上,表现了人的生命意志的顽强。
在主题上,突出了艰苦环境下人与人之间的互助精神的难能可贵。
2017年普通高等学校招生全国统一考试(全国I卷生物)1.【答案】D2【答案】B3【答案】C4【答案】C5【答案】D6【答案】B29.(10分)5,5【答案】(1)甲组用添加放射性同位素标记的碱基T的培养基培养的宿主细胞,与新病毒混合培养;乙组用添加放射性同位素标记的碱基U的培养基培养的宿主细胞,与新病毒混合培养。
(2)分离出甲乙两组的病毒,进行放射性检测,若甲组中病毒不带放射性,乙组中病毒带放射性,则说明该病毒为RNA病毒。
若甲组中病毒带放射性,乙组中病毒不带放射性,则说明该病毒为DNA病毒。
30.(9分)3,3,3【答案】(1)植物进行光合作用,吸收二氧化碳释放出氧气,导致密闭容器中二氧化碳浓度降低,暗反应速率降低,所以植物的光合作用速率降低大于0(2)植物进行光合作用,吸收二氧化碳释放出氧气,导致密闭容器中氧气浓度增加,所以植物有氧呼吸增加31.(8分)2,2,2,2【答案】(1)血浆(2)增加下降(3)细胞与外界环境进行物质交换的媒介32.(8分)1,1,1.5,1.5,1,1,1【答案】(1)有角:无角=1:3 有角:无角=3:1(2)白毛个体全为雄性白毛个体中雌雄各半(3)3 5 737.[生物——选修1:生物技术实践](15分)2,2,4,2,3,2【答案】(1)脲酶细胞内不含固定CO2的酶提供能量、合成其他物质(2)尿素其他两组中还有NH4NO3,会使不分解尿素的杂菌也在培养基中生长(3)调节渗透压,维持pH、物质原料(三选其二即可)38.[生物——选修3:现代生物科技专题][(15分)3,2,3,2,2,3【答案】(1)在基因组中获得的基因A含有内含子,大肠杆菌中没有切除内含子对应的RNA序列的机制,因此大肠杆菌中基因A表达出的蛋白质与蛋白A不同(2)噬菌体病毒具有宿主专一性,噬菌体专一性的侵染细菌,不能将目的基因导入家蚕中(3)易培养,繁殖快(4)蛋白A的抗体(5)外源DNA进入受体细胞中能正常表达(生物共用同一套遗传密码)。
2017年普通高等学校全国统一考试语文答案解析一、现代文阅读1.【答案】A【解析】B选项与外来文化已无关系,与第二段意思相反。
C选项明代应为“明初”。
D选项强加因果2.【答案】A【解析】A项“论证了瓷器发展与审美观念更新的关系”说法错误,文章第一段通过元明两代瓷器的比较,证明青花瓷崛起是郑和航海时代技术创新与文化交融的硕果。
3.【答案】B【解析】本题考查理解文意,筛选并整合文中的信息的能力。
B项“可见青花瓷兴盛的成化年间社会变化很快”文中没有体现这一内容。
4.【答案】B【解析】本题考查对作品内容和艺术特色的分析鉴赏能力。
据全文尾句中“千万别高兴起来说什么接触了,认识了若干事物人情,天知道那是罪过”可知,作者认为,外出旅行未必能深入认识事物人情,故选项B中“通过……就会获得深刻的认识”的表述曲解文意。
5.【答案】①有形的各种窗子;②无形的窗子,指人的内心与外在世界的隔膜;③理想照进现实的窗口;④人们心中时时约束自己的框框;⑤人人渴望打开,却很难敞开的心灵之窗。
【解析】本题主要考查语句内涵。
需要学生筛选信息,仔细阅读原文,找出相关语段,提炼中心意思即可。
主要抓住“窗子”的本意和比喻义,如窗子既是指现实世界中的窗子,窗子又是指隔绝自己生活与他人世界的象征。
6.【答案】①转“我”为“你”,“你”成为自我观察与描写的对象,蕴含着作者冷静审视的态度;②使用“你”的同时,又使用了“我”,蕴含着作者的自嘲与反思。
【解析】作者在首段就提出问题,运用第二人称来叙述,设置了和读者面对面交流的亲切情景。
第二段主要运用第一人称第四、五两段转换为第二人称,这三段细腻描写了“我”与“你”看窗外或远或近的情形,体现了作者对“所有的活动的颜色、声音、生的滋味”的理性审视。
第六段中“你”和“我”两种人称交替出现,从“气闷”“受不了”“换个样子过活去”等可看出作者的自我嘲讽与反思。
7.【答案】D【解析】解答此题,应先仔细阅读各选项表述文字,然后在文本找准相应的答题区间,再认真加以比较,明辨正误。
2017年高考全国Ⅲ卷语文试题和答案2017年普通高等学校招生全国统一考试(新课标Ⅲ卷)语文1.现代文阅读(35分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。
“让居民望得见山、看得见水、记得住乡愁”,这是以人为核心的新型城镇化建设的要求,也戳中了一些地方城镇化的软肋。
一些乡村在变为城镇的过程中,虽然面貌焕然一新,但很多曾经让人留恋的东西却荡然无存。
人们或多或少有这样的担忧:快速的、大规模的城镇化会不会使“乡愁”无处安放?要在城镇化进程中留住乡愁,不让“乡愁”变成“乡痛”,一个重要措施是要留住、呵护并活化乡村记忆。
乡村记忆是乡愁的载体,主要包括两个方面:一方面是物质文化的记忆,如日常生活用品、公共活动场所、传统民居建筑等“记忆场所”;另一方面是非物质文化记忆,如村规民约、传统习俗、传统技艺以及具有地方特色的生产生活模式等。
乡村物质文化记忆与非物质文化记忆常常相互融合渗透,构成一个有机整体。
这些乡村记忆是人们认知家园空间、乡土历史与传统礼仪的主要载体。
在城镇化的过程中留住他们,才能留住乡愁。
这实质上是对人的情感的尊重。
至于哪些乡村记忆真正值得保留,这一方面可以借助一些科学的评价体系进行合理的评估,另一方面可以广泛听取民意,然后进行综合甄选。
在新型城镇化建设过程中,需要做好这方面的前期规划。
仅仅留住乡村记忆而不进行呵护,乡村记忆会逐渐失去原有魅力。
呵护乡村记忆,使其永葆“温度”,就要对相关记忆场所做好日常维护工作,为传统技艺传承人延续传统技艺创造条件,保持乡村传统活动的原有品质。
比如,对一些乡土景观、农业遗产、传统生产设施与生产方法等有意识地进行整理维护。
对于乡村中的集体记忆场所,如村落的祠堂、乡村的入口、议事亭、祭祀场所等,2.阅读下面的文字,完成4~6题。
我们的裁缝店李娟在城市里,裁缝和裁缝店越来越少了,但在喀吾图,生活迥然不同。
这是游牧地区,人们体格普遍高大宽厚,再加上常年的繁重劳动,很多人身体都有着不同程度的变形,只有量身定做的衣服才能穿得平展。
2017年普通高等学校招生全国统一考试(新课标Ⅲ卷)文科综合地理注意事项:1. 本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2. 回答第I卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3. 回答第II卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷一、选择题:本题共35小题,每小题4分,共140分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
剪纸是中国民间传统艺术,2009年9月入选联合国教科文组织人类非物质文化遗产代表作名录。
剪纸表现的内容丰富多彩,反映人们的生活环境、习俗和风情等,寄托人们对美好生活的向往,图1是一帧剪纸作品。
据此完成1-3题。
1.图1剪纸所反映的景观主要分布于我国图1A.四川盆地B.华北平原C.珠江三角洲D.长江三角洲2.形成这种景观特征的自然条件有A.沟壑纵横,降水集中B.地势低平,降水丰沛C.地形封闭,排水不畅D.山河相间,降水均匀3.该景观主要分布区具代表性的地方剧种是A.川剧B.豫剧C.粤剧D.越剧【答案】1.D 2.B 3.D【解析】1.读图分析可知,图示景观以小桥,流水为主,反映的是江南水乡的景观,对应的应该为长三角区域,故答案选D。
2.江南水乡的形成主要与区域的地形和气候相关,长三角地区为亚热带季风气候,雨热同期,降水充足;地形平坦,河流流速较缓,分叉较多,因此河道密集,传统出行方式为船,故答案选B项。
3.川剧为四川一带的剧种,豫剧主要在河南一带;粤剧主要在广东,广西一代;越剧是上海江苏一代的剧种,故答案选D。
某条城市地铁线穿越大河,途经的主要客流集散地。
图2示意该地铁线各站点综合服务等级。
据此完成4~6题。
图24.地铁站点综合服务等级的高低主要取决于A.站点的用地面积B.周边的人流量C.站点的信息化水平D.周边的环境质量5. 根据所处区位和地铁站点综合服务等级,推测甲、乙、丙站点沿线区域为A. 中心商务区B. 森林公园C. 大型住宅区D. 产业园区6. 该城市空间形态的形成最有可能A.围绕一个核心向四周扩展B. 沿河流呈条带状延展C. 围绕多个核心向四周扩展D. 沿交通线呈条带状延展【答案】4.B 5.A 6.C【解析】4.地铁主要是缓解城市交通的,在人口流动量大的区域设置站点,能够及时分散和输送流动人口,而且流动人口数量越多,需要配套的服务和设施越齐全,站点的综合服务等级越高,故答案选B项。
2017年普通高等学校招生全国统一考试英语答案解析第一部分听力第一节1.【答案】C2.【答案】A3.【答案】C4.【答案】B5.【答案】A第二节6.【答案】C7.【答案】A8.【答案】B9.【答案】C10.【答案】B11.【答案】B12.【答案】C13.【答案】A14.【答案】B15.【答案】A16.【答案】B17.【答案】C18.【答案】A19.【答案】C20.【答案】A第二部分阅读理解第一节21.【答案】B【解析】根据文章第一段while you are here to pick up a wonderful science activity or souvenir to remember your visit.可知买纪念品应该在building3。
22.【答案】D【解析】根据文章第一段while you are here to pick up a wonderful science activity or souvenir to remember your visit.可知买纪念品应该在building3。
23.【答案】A【解析】通过It's an amazing accomplishment and one we cannot achieve without generous support from individuals, corporations, and other social organizations. Visit to find various ways you can support Pacific Science Center.可知在寻求支持和捐赠。
24.【答案】A【解析】细节理解题。
定位到第一段第二句话,“竭力去帮助那些受伤的、无家可归的和虚弱的动物让我悲伤难忍,但是它们能否生存下来是不敢肯定的”,由此可知,他们纵然付出很多,但最后可能白忙一场。
因此,选择A。
2017年普通高等学校招生全国统一考试(天津卷)英语笔试本试卷分为第I卷(选择题)和第II卷(非选择题)两部分,共130分,考试用时100分钟。
第I卷1至10页。
第II卷11至12页。
答卷前,考生务必将自己的姓名,准考号填写在答题卡上,并在规定位置粘贴考试用条形码,答卷时,考生务必将答案写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第I 卷注意事项:1. 每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如果改动,用橡皮擦干净后,再选涂其他答案标号。
2. 本卷共55小题,共95分。
第一部分:英语知识运用(共两节,满分45分)第一节:单项填空(共15小题;每小题1分,满分15分)从A、B、C、D四个选项中,学科&网选出可以填入空白处的最佳选项。
例:Stand over there___________ you’ll be able to see it better.A. orB. andC. butD. while答案是B。
1.—Albert’s birthday is on next Saturday, and I’m planning a surprise party for him.—__________. I’ll bring some wine.A. Sounds like funB. It dependsC. Just a minuteD. You are welcome2. My room is a mess, but I __________clean it before I go out tonight. I can do it in the morning.A. daren’tB.shouldn’tC.needn’tD.mustn’t3. —I want to see Mr. White. We have an appointment.—I’m sorry, but he is not ________ at the moment, for the meeting hasn’t ended.A. busyB. activeC. concernedD. available4. She asked me _______ I had returned the books to the library, and I admitted that I hadn’t.A. whenB. whereC. whetherD. what5. Mr. and Mrs. Brown would like to see their daughter _____, get married, and have kids.A. settled downB. keep offC. get upD. cut in6. Nowadays, cycling, along with jogging and swimming, _______ as one of the best all-round forms of exercise.A. regardB. is regardedC. are regardedD. regards7. —Michael was late for Mr. Smith’s chemistry class this morning.—________? As far as I know, he never came late to class.A. So whatB. Why notC. Who caresD. How come8. I ________down to London when I suddenly found that I was on the wrong road.A. was drivingB. have drivenC. would driveD. drove9. My eldest son, _______ work takes him all over the world, is in New York at the moment.A. thatB. whoseC. hisD. who10. I was watching the clock all through the meeting, as I had a train ______.A. catchingB. caughtC. to catchD. to be caught11. It was when I got back to my apartment ______ I first came across my new neighbors.A. whoB. whereC. whichD. that12. When you drive through the Redwood Forests in California, you will be _____ trees that are over 1,000 years old.A. amongB. againstC. behindD. below13. We offer an excellent education to our students. ________, we expect students to work hard.A. On averageB. At bestC. in returnD. After all14. The hospital has recently obtained new medical equipment, _____ more patients to be treated.A. being allowedB. allowingC. having allowedD. allowed15. —Do you have Betty’s phone number?—Yes. Otherwise, I ______able to reach her yesterday.A. hadn’t b eenB. wouldn’t have beenC. weren’tD. wouldn’t be第二节:完形填空(共20小题;每小题1.5分,满分30分)阅读下面短文,掌握其大意,然后从16-35各题所给的A、B、C、D四个选项中,选春最佳选项。
2017年普通高等学校招生全国统一考试语文答案解析一、现代文阅读1.【答案】D【解析】本题考查筛选并整合文中的信息的能力。
A.“提出了气候正义”无中生有,原文是“2000年前后,一些非政府组织承袭环境正义运动的精神,开始对气候变化的影响进行伦理审视,气候正义便应运而生”,并没有说“气候正义”是由非政府组织提出的。
B.“实际上就是限制排放的问题”错,原文是“公平原则应以满足人的基本需求作为首要目标,每个人都有义务将自己的‘碳足迹’控制在合理范围之内”,“限制排放”仅仅是其中一个方面,文章第二段也仅是拿“限制排放”举了个例子。
C.“要为后代设定义务”错,文中说“气候正义的本质是为了保护后代的利益,而非为其设定义务”。
2.【答案】C【解析】本题考查分析论点、论据和论证方法的能力。
“文章在论证中以大量篇幅阐述代际公平”错,文章在论证中以大量篇幅阐述的是代际权利义务关系。
3.【答案】B【解析】本题考查分析概括作者在文中的观点态度的能力。
“那么后代需求就可以得到保证”的推断不符合文意,原文说“气候变化公约或协定把长期目标设定为……,这是符合后代利益的”,并不能说落实目标就能保证后代需求。
4.【答案】B【解析】本题考查对小说相关内容和艺术特色的分析鉴赏能力。
“这都说明生命奇迹无法解释”错,被困队员身陷绝境却调动起所有能量开门救助敲门人,送瓜人在被困队员生死关头奇迹般地出现,这些行为都体现了救助精神的神奇力量。
5.【答案】①省去许多不必要的叙述交代,使情节更简洁;②集中描写人物在特定环境下的状态与感受,使主题更突出。
【解析】文本以“渴”为中心谋篇布局,分析这样处理的好处,可从小说故事情节的发展、人物形象的塑造、主题的表达、读者的阅读感受等角度来思考。
既然是以“渴”为中心,就起到了贯穿全文的线索作用,使情节更紧凑。
同时,“渴”作为线索,推动了情节的发展。
在人物形象塑造上,表现了人的生命意志的顽强。
在主题上,突出了艰苦环境下人与人之间的互助精神的难能可贵。
2017年普通高等学校招生统一考试全国I 卷理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =R C .{|1}A B x x =>D .A B =∅【答案】A 【解析】试题分析:由31x <可得033x <,则0x <,即{|0}B x x =<,所以{|1}{|0}A B x x x x =<<{|0}x x =<,{|1}{|0}{|1}A B x x x x x x =<<=< ,故选A.【考点】集合的运算,指数运算性质【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理. 2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .π8 C .12D .π4【答案】B 【解析】试题分析:设正方形边长为a ,则圆的半径为2a ,正方形的面积为2a ,圆的面积为2π4a .由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221ππ248a a ⋅=,选B.秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率p 满足1142p <<,故选B. 【考点】几何概型【名师点睛】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A . 3.设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p【答案】B【考点】复数的运算与性质【名师点睛】分式形式的复数,分子、分母同乘以分母的共轭复数,化简成i(,)z a b a b =+∈R 的形式进行判断,共轭复数只需实部不变,虚部变为原来的相反数即可.4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A .1B .2C .4D .8【答案】C 【解析】【考点】等差数列的基本量求解【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D 【解析】试题分析:因为()f x 为奇函数且在(,)-∞+∞单调递减,要使1()1f x -≤≤成立,则x 满足11x -≤≤,从而由121x -≤-≤得13x ≤≤,即满足1(2)1f x -≤-≤成立的x 的取值范围为[1,3],选D. 【考点】函数的奇偶性、单调性【名师点睛】奇偶性与单调性的综合问题,要充分利用奇、偶函数的性质与单调性解决不等式和比较大小问题,若()f x 在R 上为单调递增的奇函数,且12()()0f x f x +>,则120x x +>,反之亦成立. 6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C 【解析】试题分析:因为6662211(1)(1)1(1)(1)x x x x x ++=⋅++⋅+,则6(1)x +展开式中含2x 的项为22261C 15x x ⋅=,621(1)x x ⋅+展开式中含2x 的项为442621C 15x x x⋅=,故2x 的系数为151530+=,选C.【考点】二项式定理【名师点睛】对于两个二项式乘积的问题,用第一个二项式中的每项乘以第二个二项式的每项,分析含2x 的项共有几项,进行相加即可.这类问题的易错点主要是未能分析清楚构成这一项的具体情况,尤其是两个二项展开式中的r不同.7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.16【答案】B【解析】试题分析:由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为12(24)2122⨯+⨯⨯=,故选B.【考点】简单几何体的三视图【名师点睛】三视图往往与几何体的体积、表面积以及空间线面关系、角、距离等问题相结合,解决此类问题的关键是由三视图准确确定空间几何体的形状及其结构特征并且熟悉常见几何体的三视图. 8.下面程序框图是为了求出满足3n−2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000和n=n+1 B.A>1 000和n=n+2C.A≤1 000和n=n+1 D.A≤1 000和n=n+2【答案】D【考点】程序框图【名师点睛】解决此类问题的关键是读懂程序框图,明确顺序结构、条件结构、循环结构的真正含义.本题巧妙地设置了两个空格需要填写,所以需要抓住循环的重点,偶数该如何增量,判断框内如何进行判断可以根据选项排除.9.已知曲线C1:y=cos x,C2:y=sin (2x+2π3),则下面结论正确的是A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2 【答案】D 【解析】试题分析:因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则22π2πππ:sin(2)cos(2)cos(2)3326C y x x x =+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为cos 2y x =,再将曲线向左平移π12个单位长度得到2C ,故选D.【考点】三角函数图象变换【名师点睛】对于三角函数图象变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住ππsin cos(),cos sin()22αααα=-=+;另外,在进行图象变换时,提倡先平移后伸缩,而先伸缩后平移在考试中也经常出现,无论哪种变换,记住每一个变换总是对变量x 而言.10.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .10【答案】A【考点】抛物线的简单几何性质【名师点睛】对于抛物线弦长问题,要重点抓住抛物线定义,到定点的距离要想到转化到准线上,另外,直线与抛物线联立,求判别式,利用根与系数的关系是通法,需要重点掌握.考查最值问题时要能想到用函数方法和基本不等式进行解决.此题还可以利用弦长的倾斜角表示,设直线的倾斜角为α,则22||sin pAB α=,则2222||πcos sin (+)2p pDE αα==,所以222221||||4(cos sin cos p p AB DE ααα+=+=+ 222222222111sin cos )4()(cos sin )4(2)4(22)16sin cos sin cos sin ααααααααα=++=++≥⨯+=. 11.设x 、y 、z 为正数,且235x y z==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【答案】D【考点】指、对数运算性质【名师点睛】对于连等问题,常规的方法是令该连等为同一个常数,再用这个常数表示出对应的,,x y z ,通过作差或作商进行比较大小.对数运算要记住对数运算中常见的运算法则,尤其是换底公式以及0与1的对数表示.12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110【答案】A 【解析】试题分析:由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k -则该数列的前(1)122k k k ++++=项和为 11(1)1(12)(122)222k k k k S k -++⎛⎫=+++++++=-- ⎪⎝⎭,要使(1)1002k k +>,有14k ≥,此时122k k ++<,所以2k +是第1k +组等比数列1,2,,2k 的部分和,设1212221t t k -+=+++=- ,所以2314t k =-≥,则5t ≥,此时52329k =-=, 所以对应满足条件的最小整数293054402N ⨯=+=,故选A. 【考点】等差数列、等比数列【名师点睛】本题非常巧妙地将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断. 二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2b |= .【答案】23 【解析】试题分析:222|2|||44||4421cos60412+=+⋅+=+⨯⨯⨯+= a b a a b b ,所以|2|1223+==a b . 秒杀解析:利用如下图形,可以判断出2+a b 的模长是以2为边长,一夹角为60°的菱形的对角线的长度,则为23.【考点】平面向量的运算【名师点睛】平面向量中涉及有关模长的问题时,常用到的通法是将模长进行平方,利用向量数量积的知识进行解答,很快就能得出答案;另外,向量是一个工具型的知识,具备代数和几何特征,在做这类问题时可以使用数形结合的思想,会加快解题速度.14.设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,,,则32z x y =-的最小值为 .【答案】5- 【解析】试题分析:不等式组表示的可行域如图所示,易求得1111(1,1),(,),(,)3333A B C ---,由32z x y =-得322zy x =-在y 轴上的截距越大,z 就越小,所以,当直线32z x y =-过点A 时,z 取得最小值, 所以z 的最小值为3(1)215⨯--⨯=-. 【考点】线性规划【名师点睛】本题是常规的线性规划问题,线性规划问题常出现的形式有:①直线型,转化成斜截式比较截距,要注意z 前面的系数为负时,截距越大,z 值越小;②分式型,其几何意义是已知点与未知点的斜率;③平方型,其几何意义是距离,尤其要注意的是最终结果应该是距离的平方;④绝对值型,转化后其几何意义是点到直线的距离.15.已知双曲线C :22221x y a b-=(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为 .【答案】233【解析】试题分析:如图所示,作AP MN ⊥,因为圆A 与双曲线C 的一条渐近线交于M 、N 两点,则MN 为双曲线的渐近线by x a=上的点,且(,0)A a ,||||AM AN b ==, 而AP MN ⊥,所以30PAN ∠= , 点(,0)A a 到直线by x a=的距离22||||1b AP b a =+,在Rt PAN △中,||cos ||PA PAN NA ∠=,代入计算得223a b =,即3a b =, 由222c a b =+得2c b =, 所以22333c b e a b ===.【考点】双曲线的简单几何性质【名师点睛】双曲线渐近线是其独有的性质,所以有关渐近线问题备受出题者的青睐.做好这一类问题要抓住以下重点:①求解渐近线,直接把双曲线后面的1换成0即可;②双曲线的焦点到渐近线的距离是b ;③双曲线的顶点到渐近线的距离是abc. 16.如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为.【答案】415 【解析】试题分析:如下图,连接DO 交BC 于点G ,设D ,E ,F 重合于S 点,正三角形的边长为x (x >0),则1332OG x =⨯36x =.∴356FG SG x ==-, 222233566SO h SG GO x x ⎛⎫⎛⎫==-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3553x ⎛⎫=- ⎪ ⎪⎝⎭, ∴三棱锥的体积21133553343ABC V S h x x ⎛⎫=⋅=⨯⨯- ⎪ ⎪⎝⎭△451535123x x =-. 设()45353n x x x =-,x >0,则()3453203n x x x '=-, 令()0n x '=,即43403x x -=,得43x =,易知()n x 在43x =处取得最大值.∴max 15485441512V =⨯⨯-=.【考点】简单几何体的体积【名师点睛】对于三棱锥最值问题,需要用到函数思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导的方式进行解决.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A.(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 【解析】试题分析:(1)由三角形面积公式建立等式21sin 23sin a ac B A=,再利用正弦定理将边化成角,从而得出sin sin B C 的值;(2)由1cos cos 6B C =和2sin sin 3B C =计算出1cos()2B C +=-,从而求出角A ,根据题设和余弦定理可以求出bc 和b c +的值,从而求出ABC △的周长为333+.【考点】三角函数及其变换【名师点睛】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题的通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可. 18.(12分)如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠= .(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠= ,求二面角A −PB −C 的余弦值. 【解析】试题解析:(1)由已知90BAP CDP ∠=∠=︒,得AB ⊥AP ,CD ⊥PD . 由于AB//CD ,故AB ⊥PD ,从而AB ⊥平面P AD . 又AB ⊂平面P AB ,所以平面P AB ⊥平面P AD . (2)在平面PAD 内作PF AD ⊥,垂足为F ,由(1)可知,AB ⊥平面PAD ,故AB PF ⊥,可得PF ⊥平面ABCD .以F 为坐标原点,FA 的方向为x 轴正方向,||AB 为单位长,建立如图所示的空间直角坐标系F xyz -.由(1)及已知可得2(,0,0)2A ,2(0,0,)2P ,2(,1,0)2B ,2(,1,0)2C -. 所以22(,1,)22PC =-- ,(2,0,0)CB = ,22(,0,)22PA =- ,(0,1,0)AB = .设(,,)x y z =n 是平面PCB 的法向量,则0,0,PC CB ⎧⋅=⎪⎨⋅=⎪⎩ n n 即220,2220,x y z x ⎧-+-=⎪⎨⎪=⎩可取(0,1,2)=--n .设(,,)x y z =m 是平面PAB 的法向量,则0,0,PA AB ⎧⋅=⎪⎨⋅=⎪⎩ m m 即220,220.x z y ⎧-=⎪⎨⎪=⎩可取(1,0,1)=m . 则3cos ,||||3⋅==-<>n m n m n m , 所以二面角A PB C --的余弦值为33-. 【考点】面面垂直的证明,二面角平面角的求解【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键. 19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得16119.9716i i x x ===∑,16162221111()(16)0.2121616i i i i s x x x x ===-=-≈∑∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2≈,0.0080.09≈.【解析】试题解析:(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故~(16,0.0026)X B .因此16(1)1(0)10.99740.0408P X P X ≥=-==-≈.X 的数学期望为160.00260.0416EX =⨯=.(2)(i )如果生产状态正常,一个零件尺寸在(3,3)μσμσ-+之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(3,3)μσμσ-+之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ii )由9.97,0.212x s =≈,得μ的估计值为ˆ9.97μ=,σ的估计值为ˆ0.212σ=,由样本数据可以看出有一个零件的尺寸在ˆˆˆˆ(3,3)μσμσ-+之外,因此需对当天的生产过程进行检查.剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的平均数为1(169.979.22)10.0215⨯-=,因此μ的估计值为10.02.162221160.212169.971591.134ii x==⨯+⨯≈∑,剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈, 因此σ的估计值为0.0080.09≈. 【考点】正态分布,随机变量的期望和方差【名师点睛】数学期望是离散型随机变量中重要的数学概念,反映随机变量取值的平均水平.求解离散型随机变量的分布列、数学期望时,首先要分清事件的构成与性质,确定离散型随机变量的所有取值,然后根据概率类型选择公式,计算每个变量取每个值的概率,列出对应的分布列,最后求出数学期望.正态分布是一种重要的分布,之前考过一次,尤其是正态分布的3σ原则. 20.(12分)已知椭圆C :2222=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,32),P 4(1,32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点. 【解析】试题分析:(1)根据3P ,4P 两点关于y 轴对称,由椭圆的对称性可知C 经过3P ,4P 两点.另外由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此234,,P P P 在椭圆上,代入其标准方程,即可求出C 的方程;(2)先设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,再设直线l 的方程,当l 与x轴垂直时,通过计算,不满足题意,再设l :y kx m =+(1m ≠),将y kx m =+代入2214x y +=,写出判别式,利用根与系数的关系表示出x 1+x 2,x 1x 2,进而表示出12k k +,根据121k k +=-列出等式表示出k 和m 的关系,从而判断出直线恒过定点.试题解析:(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点. 又由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此22211,131,4b ab ⎧=⎪⎪⎨⎪+=⎪⎩解得224,1.a b ⎧=⎪⎨=⎪⎩故C 的方程为2214x y +=.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t ,242t -),(t ,242t --).则22124242122t t k k t t---++=-=-,得2t =,不符合题设. 从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=. 由题设可知22=16(41)0k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841kmk -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+ 121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时,0∆>,于是l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-).【考点】椭圆的标准方程,直线与圆锥曲线的位置关系【名师点睛】椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中未告知,则一定要讨论直线斜率不存在和存在两种情况,其通法是联立方程,求判别式,利用根与系数的关系,再根据题设关系进行化简. 21.(12分)已知函数2()e (2)e x x f x a a x =+--. (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围. 【解析】试题分析:(1)讨论()f x 单调性,首先进行求导,发现式子特点后要及时进行因式分解,再对a 按0a ≤,0a >进行讨论,写出单调区间;(2)根据第(1)问,若0a ≤,()f x 至多有一个零点.若0a >,当ln x a =-时,()f x 取得最小值,求出最小值1(ln )1ln f a a a-=-+,根据1a =,(1,)a ∈+∞,(0,1)a ∈进行讨论,可知当(0,1)a ∈时有2个零点.易知()f x 在(,ln )a -∞-有一个零点;设正整数0n 满足03ln(1)n a>-,则0000()e (e2)e 20n n n n f n a a n n n =+-->->->.由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点.从而可得a 的取值范围为(0,1).试题解析:(1)()f x 的定义域为(,)-∞+∞,2()2e (2)e 1(e 1)(2e 1)x x x x f x a a a '=+--=-+, (ⅰ)若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减. (ⅱ)若0a >,则由()0f x '=得ln x a =-.当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>,所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增.(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.(ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+. ①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e (2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n n f n a a n n n =+-->->->. 由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点. 综上,a 的取值范围为(0,1).【考点】含参函数的单调性,利用函数零点求参数取值范围【名师点睛】研究函数零点问题常常与研究对应方程的实根问题相互转化.已知函数()f x 有2个零点求参数a 的取值范围,第一种方法是分离参数,构造不含参数的函数,研究其单调性、极值、最值,判断y a =与其交点的个数,从而求出a 的取值范围;第二种方法是直接对含参函数进行研究,研究其单调性、极值、最值,注意点是若()f x 有2个零点,且函数先减后增,则只需其最小值小于0,且后面还需验证最小值两边存在大于0的点.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4−4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到l 距离的最大值为17,求a . 【解析】试题分析:(1)先将曲线C 和直线l 的参数方程化成普通方程,然后联立两方程即可求出交点坐标;(2)由直线l 的普通方程为440x y a +--=,设C 上的点为(3cos ,sin )θθ,易求得该点到l 的距离为|3cos 4sin 4|17a d θθ+--=.对a 再进行讨论,即当4a ≥-和4a <-时,求出a 的值.试题解析:(1)曲线C 的普通方程为2219x y +=. 当1a =-时,直线l 的普通方程为430x y +-=.由22430,19x y x y +-=⎧⎪⎨+=⎪⎩解得3,0x y =⎧⎨=⎩或21,2524.25x y ⎧=-⎪⎪⎨⎪=⎪⎩从而C 与l 的交点坐标为(3,0),2124(,)2525-. (2)直线l 的普通方程为440x y a +--=,故C 上的点(3cos ,sin )θθ到l 的距离为|3cos 4sin 4|17a d θθ+--=.当4a ≥-时,d 的最大值为917a +.由题设得91717a +=,所以8a =; 当4a <-时,d 的最大值为117a -+.由题设得11717a -+=,所以16a =-. 综上,8a =或16a =-. 【考点】坐标系与参数方程【名师点睛】化参数方程为普通方程的关键是消参,可以利用加减消元、平方消元、代入法等等;在极坐标方程与参数方程的条件下求解直线与圆的位置关系问题时,通常将极坐标方程化为直角坐标方程,参数方程化为普通方程来解决. 23.[选修4−5:不等式选讲](10分)已知函数2–4()x ax f x =++,11()x x g x =++-||||.(1)当a =1时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[–1,1],求a 的取值范围. 【解析】试题分析:(1)将1a =代入,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤,对x 按1x <-,11x -≤≤,1x >讨论,得出不等式的解集;(2)当[1,1]x ∈-时,()2g x =.若()()f xg x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.则()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,所以(1)2f -≥且(1)2f ≥,从而得11a -≤≤.试题解析:(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.① 当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而11712x -+<≤.- 21 - 所以()()f x g x ≥的解集为117{|1}2x x -+-≤≤.【考点】绝对值不等式的解法,恒成立问题【名师点睛】零点分段法是解答绝对值不等式问题常用的方法,也可以将绝对值函数转化为分段函数,借助图象解题.。
2017年普通高等学校招生全国统一考试英语(含答案)第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上,录音结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题,每小题1.5分,满分7.5分)听下面5段对话,每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳答案。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
例:How much is the shirt?A.£ 19.15B.£9.18C.£9.15答案是C。
1.What will the woman do this afternoon?A.Do some exercise.B.Go shopping. C.Wash her clothes.2.Why does the woman call the man?A .To cancel a flight. B.To make an apology. C.To put off a meeting.3.How much more does David need for the car?A.$ 5,000. B.$20,000. C.$25,000.4.What is Jane doing?A.Planning a tour. B.Calling her father. C.Asking for leave.5 .How does the man feel?A.Tied. B.Dizzy. C.Thirsty.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听第6段材料,回答第6、7题。
绝密★启用前2017年普通高等学校招生全国统一考试语文(全国Ⅰ卷)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
本试卷分第一部分(必考题)和第二部分(选考题)两部分。
共150分,考试用时150分钟。
一、现代文阅读(35分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。
气候正义是环境正义在气候变化领域的具体发展和体现。
2000年前后,一些非政府组织承袭环境正义运动的精神,开始对气候变化的影响进行伦理审视,气候正义便应运而生。
气候正义关注的核心主要是在气候容量有限的前提下,如何界定各方的权利和义务,主要表现为一种社会正义或法律正义。
从空间维度来看,气候正义涉及不同国家和地区之间公平享有气候容量的问题,也涉及一国内部不同区域之间公平享有气候容量的问题,因而存在气候变化的国际公平和国内公平问题。
公平原则应以满足人的基本需求作为首要目标,每个人都有义务将自己的“碳足迹”控制在合理范围之内。
比如说,鉴于全球排放空间有限,而发达国家已实现工业化,在分配排放空间时,就应首先满足发展中国家在衣食住行和公共基础设施建设等方面的基本发展需求,同时遏制在满足基本需求之上的奢侈排放。
从时间维度来看,气候正义涉及当代人与后代之间公平享有气候容量的问题,因而存在代际权利义务关系问题。
这一权利义务关系,从消极方面看,体现为当代人如何约束自己的行为来保护地球气候系统,以将同等质量的气候系统交给后代;从积极方面看,体现为当代人为自己及后代设定义务。
就代际公平而言,地球上的自然资源在代际分配问题上应实现代际共享,避免“生态赤字”。
因为,地球这个行星上的自然资源包括气候资源,是人类所有成员,包括上一代、这一代和下一代,共同享有和掌管的。
2017年普通高等学校招生全国统一考试生物试卷答案
一、选择题:本题共13个小题,每小题6分,共78分。
在每小题给出的四个选项中,只
有一项是符合题目要求的。
1.已知某种细胞有4条染色体,且两对等位基因分别位于两对同源染色体上。
某同学用示意图表示这种细胞在正常减数分裂过程中可能产生的细胞。
其中表示错误的是
2.在证明DNA是遗传物质的过程中,T
噬菌体侵染大肠杆菌的实验发挥了重要作用。
下列
2
与该噬菌体相关的叙述,正确的是
噬菌体也可以在肺炎双球菌中复制和增殖
A.T
2
噬菌体病毒颗粒内可以合成mRNA和蛋白质
B.T
2
噬菌体的核酸中
C.培养基中的32P经宿主摄取后可出现在T
2
噬菌体的核酸类型和增殖过程相同
D.人类免疫缺陷病毒与T
2
3.下列关于生物体中酶的叙述,正确的是
A.在细胞中,核外没有参与DNA合成的酶
B.由活细胞产生的酶在生物体外没有催化活性
C.从胃蛋白酶的提取液中沉淀该酶可用盐析的方法
D.唾液淀粉酶催化反应最适温度和保存温度是37℃
4.将某种植物的成熟细胞放入一定浓度的物质A溶液中,发现其原生质体(即植物细胞中细胞壁以内的部分)的体积变化趋势如图所示。
下列叙述正确的是
A.0~4h内物质A没有通过细胞膜进入细胞内
B.0~1h内细胞体积与原生质体体积的变化量相等
C.2~3h内物质A溶液的渗透压小于细胞液的渗透压
D.0~1h内液泡中液体的渗透压大于细胞质基质的渗透压
5.下列与人体生命活动调节有关的叙述,错误的是
A.皮下注射胰岛素可起到降低血糖的作用
B.大脑皮层受损的患者,膝跳反射不能完成
C.婴幼儿缺乏甲状腺激素可影响其神经系统的发育和功能
D.胰腺受反射弧传出神经的支配,其分泌胰液也受促胰液素调节
6.若某哺乳动物毛色由3对位于常染色体上的、独立分配的等位基因决定,其中:A基因编码的酶可使黄色素转化为褐色素;B基因编码的酶可使该褐色素转化为黑色素;D基因的表达产物能完全抑制A基因的表达;相应的隐性等位基因a、b、d的表达产物没有
上述功能。
若用两个纯合黄色品种的动物作为亲本进行杂交,F
1均为黄色,F
2
中毛色表
现型出现了黄∶褐∶黑=52∶3∶9的数量比,则杂交亲本的组合是A.AABBDD×aaBBdd,或AAbbDD×aabbdd
B.aaBBDD×aabbdd,或AAbbDD×aaBBDD
C.aabbDD×aabbdd,或AAbbDD×aabbdd
D.AAbbDD×aaBBdd,或AABBDD×aabbdd
29.(9分)下图是表示某植物叶肉细胞光合作用和呼吸作用的示意图。
据图回答下列问题:
(1)图中①、②、③、④代表的物质依次是_______________________、
_______________________、_______________________、_________________,[H]代表的物质主要是_________________。
(2)B代表一种反应过程,C代表细胞质基质,D代表线粒体,则ATP合成发生在A 过程,还发生在_________________(填“B和C”“C和D”或“B和D”)。
(3)C中的丙酮酸可以转化成酒精,出现这种情况的原因是_________________。
30.(9分)将室温(25 ℃)饲养的某种体温为37℃的哺乳动物(动物甲)随机分为两组,一组放入41 ℃环境中1 h(实验组)另一组仍置于室温环境中(对照组)。
期间连续观察并记录这两组动物的相关行为,如果:实验初期,实验组动物的静卧行为明显减少,焦虑不安行为明显增加,回答下列问题:
(1)实验中,实验组动物皮肤的毛细血管会___________,汗液分泌会___________,从而起到调节体温的作用。
(2)实验组动物出现焦虑不安行为时,其肾上腺髓质分泌的激素会__________。
(3)本实验中设置对照组的目的是__________。
(4)若将室温饲养的动物甲置于0 ℃的环境中,该动物会冷得发抖,耗氧量会
_________,分解代谢会_________。
31.(9分)
林场中的林木常遭到某种山鼠的危害。
通常,对于鼠害较为严重的林场,仅在林场的局部区域(苗圃)进行药物灭鼠,对鼠害的控制很难持久有效。
回答下列问题:
(1)在资源不受限制的理想条件下,山鼠种群的增长曲线呈___________型。
(2)在苗圃进行了药物灭鼠后,如果出现种群数量下降,除了考虑药物引起的死亡率升高这一因素外,还应考虑的因素是___________。
(3)理论上,除药物灭鼠外还可以采用生物防治的方法控制鼠害,如引入天地。
天敌和山鼠之间的种间关系是_________。
(4)通常,种群具有个体所没有的特征,如种群密度、年龄结构等。
那么种群的年龄结构是指_________。
32.(12分)
人血友病是伴X隐性遗传病。
现有一对非血友病的夫妇生出了两个非双胞胎女儿。
大女儿与一个非血友病的男子结婚并生出了一个患血友病的男孩。
小女儿与一个非血友病的男子结婚,并已怀孕。
回答下列问题:
(1)用“”表示尚未出生的孩子,请画出该家系的系谱图,以表示该家系成员血友病的患病情况。
(2)小女儿生出患血友病男孩的概率为_________;假如这两个女儿基因型相同,小女儿生出血友病基因携带者女孩的概率为______。
(3)已知一个群体中,血友病的基因频率和基因型频率保持不变,且男性群体和女性群体的该致病基因频率相等。
假设男性群体中血友病患者的比例为1%,则该男性群体中血友病致病基因频率为________;在女性群体中携带者的比例为______。
37.[生物——选修1:生物技术实践](15分)
豆豉是大豆经过发酵制成的一种食品。
为了研究影响豆豉发酵效果的因素,某小组将等量的甲、乙两菌种分别接入等量的A、B两桶煮熟大豆中并混匀,再将两者置于适宜条件下进行发酵,并在32 h内定期取样观测发酵效果。
回答下列问题:
(1)该实验的自变量是____________________、__________________________。
(2)如果发现发酵容器内上层大豆的发酵效果比底层的好,说明该发酵菌是
__________________________。
(3)如果在实验后,发现32 h内的发酵效果越来越好,且随发酵时间呈直线上升关系,则无法确定发酵的最佳时间;若要确定最佳发酵时间,还需要做的事情是
__________________________。
(4)从大豆到豆豉,大豆中的成分会发生一定的变化,其中,蛋白质转变为
__________________________,脂肪转变为__________________________。
38.[生物——选修3:现代生物科技专题](15分)
几丁质是许多真菌细胞壁的重要成分,几丁质酶可催化几丁质水解。
通过基因工程将几丁质酶基因转入植物体内,可增强其抗真菌病的能力。
回答下列问题:
(1)在进行基因工程操作时,若要从植物体中提取几丁质酶的mRNA,常选用嫩叶而不选用老叶作为实验材料,原因是__________________________。
提取RNA时,提取液中需添加RNA酶抑制剂,其目的是__________________________。
(2)以mRNA为材料可以获得cDNA,其原理是__________________________。
(3)若要使目的基因在受体细胞中表达,需要通过质粒载体而不能直接将目的基因导入受体细胞,原因是__________________________(答出两点即可)。
(4)当几丁质酶基因和质粒载体连接时,DNA连接酶催化形成的化学键是
__________________________。
(5)若获得的转基因植株(几丁质酶基因已经整合到植物的基因组中)抗真菌病的能力没有提高,根据中心法则分析,其可能的原因是__________________________。