圆锥曲线的定点定值和最值问题
- 格式:doc
- 大小:695.50 KB
- 文档页数:14
圆锥曲线三大难点难点一、最值与定值(定点)问题圆锥曲线的最值与定值(定点)问题一直是高考的一大难点. 最值问题求解策略是:几何法与代数法,前者用于条件与结论有明显几何意义,利用图形性质来解决的类型;后者则将结论转化为目标函数,结合配方法、判别式法、基本不等式及函数的单调性等知识求解.定值(定点)问题求解策略是:从特殊入手,求出定点或定值,再证明这个点(值)与变量无关.也可以在推理、计算过程中消去变量,直接得到定点(或定值). 例1 (江西卷理21)如图1,椭圆2222:1(0)x y Q a b a b+=>>的右焦点(0)F c ,,过点F 的一动直线m 绕点F 转动,并且交椭圆于A B ,两点,P 是线段AB 的中点. (1)求点P 的轨迹H 的方程;(2)在Q 的方程中,令21cos sin a θθ=++,2sin 0b θθπ⎛⎫=< ⎪2⎝⎭≤,确定θ的值,使原点距椭圆Q 的右准线l 最远,此时,设l 与x 轴交点为D .当直线m 绕点F 转动到什么位置时,ABD △的面积最大?分析:求轨迹方程可用“设而不求”法,考虑AB 的斜率是否存在,注意到AB 与PF 共线,得方程为222220b x a y b cx +-=;在第(2)问中,由2a 、2b 不难得到满足要求的1c =,为避免讨论直线m的斜率是否存在,可设m 的方程为1x ky =+,再利用三角函数求出θ,ABD △的面积用A B ,纵坐标可表示为1212S y y =-,当直线m 垂直于x 轴时,ABD △的面积最大.点评:本题集轨迹方程、最值问题、动态几何于一身,运用了点差法、分类讨论思想、二次方程根与系数的关系、三角函数的有界性、分离变量法、均值不等式法等,对各种能力的综合要求非常高.例2 (全国卷Ⅱ理21文22)已知抛物线24x y =的焦点为F ,A B ,是抛物线上的两动点,且(0)AF FB λλ=>.过A B ,两点分别作抛物线的切线,设其交点为M . (1)证明FM ·AB 为定值;(2)设ABM △的面积为S ,写出()S f λ=的表达式,并求S 的最小值.简解:(1)(01)F ,,设点A B ,的横坐标为12x x ,,则过点A B ,的切线分别为2111()42x x y x x -=-,2222()42x xy x x -=-,结合AF FB λ=,求得0FM AB =为定值;(2)FM AB =,则ABM△的面积33124222FM AB S 1==⨯=≥. 难点二、求参数范围(或值)问题求参数范围问题的求解策略是:根据题意结合图形列出所讨论参数适合的不等式(组),利用线性规划得出参数的取值范围.有时候需要研究由题设条件列出的目标函数的值域来确定参数的变化范围. 例3 (陕西卷理21)如图2,三定点(21)A ,、(01)B -,、(21)C -,;三动点DE M ,,满足A D t A B =,BE tBC =,DM tDE =,[01]t ∈,. (1)求动直线DE 斜率的变化范围; (2)求动点M 的轨迹方程.解:(1)设()D D D x y ,,()E E E x y ,,()M x y ,. 由AD t AB =,知(21)(22)D D x y t --=--,,, 即222 1.D D x t y t =-+⎧⎨=-+⎩,同理22 1.E Ex t y t =-⎧⎨=-⎩,∵12E DDE E Dy y k t x x -==--,且[01]t ∈,,∴[11]DE k ∈-,;(2)∵DM tDE =,即2(2221)(242)x t y t t t t +-+-=--,,.∴22(12)(12)x t y t =-⎧⎨=-⎩,,消去参数t ,得24x y =. ∵[01]t ∈,,∴2(12)[22]x t =-∈-,. 故24x y =,[22]x ∈-,. 点评:本题主要考查平面向量基本定理、斜率、轨迹等知识,以及依靠不变量(定点坐标和不变的向量共线)与变量的关系相互转化,综合运用各种知识解决问题的能力.难点三、存在与对称性问题存在与对称性试题是近几年高考大力推行改革与探索的结果. 存在性问题的求解策略是:一般先假设某数学对象存在,按照合情推理或计算,得到存在的依据或导出矛盾,从而肯定或否定假设,有时也可由特殊情况探索可能的对象,作出猜想,然后加以论证. 对称性问题的求解策略是:结合轴对称或中心对称.考虑斜率与中点或向量的数量积(可避开斜率存在性的讨论),常用“设而不求”、待定系数法等方法解决问题.例4 (湖南卷理21)如图3,已知椭圆221:143x y C +=,抛物线22:()2(0)C y m px p -=>,且1C 、2C 的公共弦AB 过椭圆1C 的右焦点.(1)当AB x ⊥轴时,求m p ,的值,并判断抛物线2C 的焦点是否在直线AB 上;(2)是否存在m p ,的值,使抛物线2C 的焦点恰在直线AB 上?若存在,求出符合条件的m p ,的值;若不存在,请说明理由.解:(1)当A B x ⊥轴时,0m =,直线AB 的方程是1x =,点A 为312⎛⎫⎪⎝⎭,或312⎛⎫- ⎪⎝⎭,. 代入抛物线方程,得98p =.此时2C 的焦点为9016⎛⎫⎪⎝⎭,,且焦点不在直线AB 上; (2)设11()A x y ,、22()B x y ,,2C 的焦点2pF m ⎛⎫' ⎪⎝⎭,,弦AB 的两端点在抛物线上,也在椭圆上,所以1212112222AB x x p x x ⎛⎫⎛⎫=++=-+- ⎪ ⎪⎝⎭⎝⎭,即122(4)3x x p +=-.由(1)知12x x ≠,2p ≠,故22AB mk p =-. 直线AB 的方程是2(1)2m y x p =--,则124(1)3(2)m p y y p -+=-. 因A B ,在1C 上,即2211222234123412x y x y ⎧+=⎪⎨+=⎪⎩,,两式相减,得211221123()4()y y x x x x y y -+=--+, 即223(4)(2)16(1)p p m p --=-.①又A B ,在2C 上,即211222()2()2y m px y m px ⎧-=⎪⎨-=⎪⎩,,两式相减,得21122122x x y y m py y -+-=-,即223(2)1610p p m p-=-.② 由①、②,得2320320p p +-=, 解得43p =或8p =-(舍). 由43p =,得m =或m =. 故满足条件的m p ,存在,且3m =或3m =-,43p =.点评:此题中抛物线的顶点不在原点,公共弦AB 既要与抛物线联系,也要用到椭圆的焦点弦,特别是把存在与对称性结合在一起,使难度和运算量都大大增加,解决问题需要有很强的逻辑推理能力和运算能力.。
圆锥曲线最值、定值、范围一、圆锥曲线的最值问题方法1:定义转化法①根据圆锥曲线的定义列方程;②将最值问题转化为距离问题求解.例1、已知点F是双曲线x24-y212=1的左焦点,定点A的坐标为(1,4),P是双曲线右支上的动点,则|PF|+|P A|的最小值为________.方法2:数形结合(切线法)当所求的最值是圆锥曲线上的点到某条直线的距离的最值时:①求与直线平行的圆锥曲线的切线;②求出两平行线的距离即为所求的最值.例2、求椭圆x22+y2=1上的点到直线y=x+23的距离的最大值和最小值,并求取得最值时椭圆上点的坐标.方法3:参数法(函数法)①选取合适的参数表示曲线上点的坐标;②求解关于这个参数的函数最值例3、在平面直角坐标系xOy中,点P(x,y)是椭圆x23+y2=1上的一个动点,则S=x+y的最大值为________.方法4:基本不等式法①将最值用变量表示.②利用基本不等式求得表达式的最值.例4、求椭圆x23+y2=1内接矩形ABCD面积的最大值.二、圆锥曲线的范围问题方法1:曲线几何性质法①由几何性质建立关系式;②化简关系式求解.例1、已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线中ac 的取值范围是________.方法2:判别式法当直线和圆锥曲线相交、相切和相离时,分别对应着直线和圆锥曲线方程联立消元后得到的一元二次方程的判别式大于零、等于零、小于零① 联立曲线方程,消元后求判别式;②根据判别式大于零、小于零或等于零结合曲线性质求解.例2、在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点P 和Q .(1)求k 的取值范围;(2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A ,B ,是否存在常数m ,使得向量OP→+OQ→与AB →共线?如果存在,求m 值;如果不存在,请说明理由.三、圆锥曲线的定值、定点问题方法1:特殊到一般法根据特殊情况能找到定值(或定点)的问题① 根据特殊情况确定出定值或定点;②对确定出来的定值或定点进行一般情况的证明.。
第九节 圆锥曲线中的定点、定值、范围、最值问题[考纲传真] 1.掌握解决直线与椭圆、抛物线的位置关系的思想方法;2.了解圆锥曲线的简单应用;3.理解数形结合的思想.定点问题【例1】 已知椭圆E :x 29+y 2b2=1(b >0)的一个焦点与抛物线Γ:y 2=2px (p >0)的焦点F 相同,如图,作直线AF 与x 轴垂直,与抛物线在第一象限交于A 点,与椭圆E 相交于C ,D 两点,且|CD |=103.(1)求抛物线Γ的标准方程;(2)设直线l 不经过A 点且与抛物线Γ相交于N ,M 两点,若直线AN ,AM 的斜率之积为1,证明l 过定点.[解] (1)由椭圆E :x 29+y 2b2=1(b >0),得b 2=9-c 2,由题可知F (c,0),p =2c ,把x =c 代入椭圆E 的方程,得y 2C =b 2⎝ ⎛⎭⎪⎫1-c 29, ∴y C =9-c 23.∴|CD |=103=-c 23,解得c =2.∴抛物线Γ的标准方程为y 2=4cx ,即y 2=8x . (2)证明:由(1)得A (2,4),设M ⎝ ⎛⎭⎪⎫y 218,y 1,N ⎝ ⎛⎭⎪⎫y 228,y 2, ∴k MA =y 1-4y 218-2=8y 1+4,k NA =8y 2+4, 由k MA ·k NA =8y 1+4·8y 2+4=1, 得y 1y 2+4(y 1+y 2)-48=0.(*)设直线l 的方程为x =my +t ,由⎩⎪⎨⎪⎧y 2=8x ,x =my +t ,得y 2-8my -8t =0,∴y 1+y 2=8m ,y 1y 2=-8t , 代入(*)式得t =4m -6,∴直线l 的方程为x =my +4m -6=m (y +4)-6, ∴直线l 过定点(-6,-4).过抛物线:=4的焦点且斜率为的直线交抛物线于,两点,且|AB |=8.(1)求l 的方程;(2)若A 关于x 轴的对称点为D ,求证:直线BD 过定点,并求出该点的坐标. [解] (1)易知点F 的坐标为(1,0),则直线l 的方程为y =k (x -1),代入抛物线方程y 2=4x 得k 2x 2-(2k 2+4)x +k 2=0,由题意知k ≠0,且Δ=[-(2k 2+4)]2-4k 2·k 2=16(k 2+1)>0, 设A (x 1,y 1),B (x 2,y 2),∴x 1+x 2=2k 2+4k2,x 1x 2=1,由抛物线的定义知|AB |=x 1+x 2+2=8, ∴2k 2+4k2=6,∴k 2=1,即k =±1, ∴直线l 的方程为y =±(x -1).(2)由抛物线的对称性知,D 点的坐标为(x 1,-y 1), 直线BD 的斜率k BD =y 2+y 1x 2-x 1=y 2+y 1y 224-y 214=4y 2-y 1, ∴直线BD 的方程为y +y 1=4y 2-y 1(x -x 1), 即(y 2-y 1)y +y 2y 1-y 21=4x -4x 1,∵y 21=4x 1,y 22=4x 2,x 1x 2=1,∴(y 1y 2)2=16x 1x 2=16, 即y 1y 2=-4(y 1,y 2异号),∴直线BD 的方程为4(x +1)+(y 1-y 2)y =0,恒过点(-1,0). 定值问题【例2】 已知动圆P 经过点N (1,0),并且与圆M :(x +1)2+y 2=16相切. (1)求点P 的轨迹C 的方程;(2)设G (m,0) 为轨迹C 内的一个动点,过点G 且斜率为k 的直线l 交轨迹C 于A ,B 两点,当k 为何值时,ω=|GA |2+|GB |2是与m 无关的定值?并求出该定值.[解] (1)由题意,设动圆P 的半径为r ,则|PM |=4-r ,|PN |=r ,可得|PM |+|PN |=4-r +r =4,∴点P 的轨迹C 是以M ,N 为焦点的椭圆,∴2a =4,2c =2,∴b =a 2-c 2=3,∴椭圆的方程为x 24+y 23=1.即点P 的轨迹C 的方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),由题意知-2<m <2,直线l :y =k (x -m ),由⎩⎪⎨⎪⎧y =k x -m ,x 24+y23=1,得(3+4k 2)x 2-8k 2mx +4k 2m 2-12=0,∴x 1+x 2=8mk 24k 2+3,x 1x 2=4m 2k 2-124k 2+3, ∴y 1+y 2=k (x 1-m )+k (x 2-m )=k (x 1+x 2)-2km =-6mk4k 2+3,y 1y 2=k 2(x 1-m )(x 2-m )=k 2x 1x 2-k 2m (x 1+x 2)+k 2m 2=3k2m 2-4k 2+3,∴|GA |2+|GB |2=(x 1-m )2+y 21+(x 2-m )2+y 22=(x 1+x 2)2-2x 1x 2-2m (x 1+x 2)+2m 2+(y 1+y 2)2-2y 1y 2=(k 2+1)[-6m2k 2-++4k2k 2+2.要使ω=|GA |2+|GB |2的值与m 无关,需使4k 2-3=0, 解得k =±32,此时ω=|GA |2+|GB |2=7.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线l 交椭圆于A ,B 两点,△ABF 1的周长为8,且△AF 1F 2的面积的最大时,△AF 1F 2为正三角形.(1)求椭圆C 的方程;(2)若MN 是椭圆C 经过原点的弦,MN ∥AB ,求证:|MN |2AB为定值.[解] (1)由已知A ,B 在椭圆上,可得|AF 1|+|AF 2|=|BF 1|+|BF 2|=2a , 又△ABF 1的周长为8,所以|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =8,即a =2.由椭圆的对称性可得,△AF 1F 2为正三角形当且仅当A 为椭圆短轴顶点, 则a =2c ,即c =1,b 2=a 2-c 2=3, 则椭圆C 的方程为x 24+y 23=1.(2)证明:若直线l 的斜率不存在,即l :x =1,求得|AB |=3,|MN |=23,可得|MN |2AB=4.若直线l 的斜率存在, 设直线l :y =k (x -1),设A (x 1,y 1),B (x 2,y 2),M (x 3,y 3),N (x 4,y 4),由⎩⎪⎨⎪⎧y =k x -,x 24+y23=1,可得(3+4k 2)x 2-8k 2x +4k 2-12=0, 有x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2,|AB |=1+k 2·x 1+x 22-4x 1x 2=+k 23+4k2,由y =kx 代入椭圆方程,可得x =±233+4k2,|MN |=21+k 2·233+4k2=4+k23+4k2, 即有|MN |2AB=4.综上可得,|MN |2AB为定值4.范围问题【例3】 已知m >1,直线l :x -my -m 22=0,椭圆C :x 2m2+y 2=1,F 1,F 2分别为椭圆C的左、右焦点.(1)当直线l 过右焦点F 2时,求直线l 的方程;(2)设直线l 与椭圆C 交于A ,B 两点,△AF 1F 2,△BF 1F 2的重心分别为G ,H ,若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.[解] (1)因为直线l :x -my -m 22=0经过F 2(m 2-1,0),所以m 2-1=m 22,得m 2=2.又因为m >1,所以m =2, 故直线l 的方程为x -2y -1=0. (2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x =my +m 22,x 2m 2+y 2=1,消去x ,得2y 2+my +m 24-1=0,则由Δ=m 2-8⎝ ⎛⎭⎪⎫m 24-1=-m 2+8>0,知m 2<8,且有y 1+y 2=-m 2,y 1y 2=m 28-12.由于F 1(-c,0),F 2(c,0),可知G ⎝ ⎛⎭⎪⎫x 13,y 13,H ⎝ ⎛⎭⎪⎫x 23,y 23.因为原点O 在以线段GH 为直径的圆内, 所以OH →·OG →<0, 即x 1x 2+y 1y 2<0.所以x 1x 2+y 1y 2=⎝ ⎛⎭⎪⎫my 1+m 22⎝ ⎛⎭⎪⎫my 2+m 22+y 1y 2=(m 2+1)·⎝ ⎛⎭⎪⎫m 28-12<0.解得m 2<4(满足m 2<8).又因为m >1,所以实数m 的取值范围是(1,2).(1)求椭圆C 的标准方程;(2)设直线l :y =kx +m 与椭圆C 交于M ,N 两点,O 为坐标原点,若k OM ·k ON =54,求原点O 到直线l 的距离的取值范围.[解] (1)由题意知2b =2,∴b =1.∵e =c a =32,a 2=b 2+c 2,∴a =2. 椭圆的标准方程为x 24+y 2=1.(2)设M (x 1,y 1),N (x 2,y 2),联立方程,得⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,消去y ,得(4k 2+1)x 2+8kmx+4m 2-4=0,Δ=(8km )2-4(4k 2+1)(4m 2-4)>0,化简得m 2<4k 2+1 ①,x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1,y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2.若k OM ·k ON =54,则y 1y 2x 1x 2=54,即4y 1y 2=5x 1x 2,∴4k 2x 1x 2+4km (x 1+x 2)+4m 2=5x 1x 2,∴(4k 2-5)·m 2-4k 2+1+4km ·⎝ ⎛⎭⎪⎫-8km 4k 2+1+4m 2=0,即(4k 2-5)(m 2-1)-8k 2m 2+m 2(4k 2+1)=0,化简得m 2+k 2=54 ②,由①②得0≤m 2<65,120<k 2≤54.∵原点O 到直线l 的距离d =|m |1+k2,∴d 2=m 21+k 2=54-k 21+k2=-1+9+k2.又120<k 2≤54,∴0≤d 2<87,∴0≤d <2147. ∴原点O 到直线l 的距离的取值范围是⎣⎢⎡⎭⎪⎫0,2147.最值问题【例4】 (2019·太原模拟)已知椭圆M :x 2a 2+y 23=1(a >0)的一个焦点为F (-1,0),左、右顶点分别为A , B .经过点F 的直线l 与椭圆M 交于C ,D 两点.(1)当直线l 的倾斜角为45°时,求线段CD 的长;(2)记△ABD 与△ABC 的面积分别为S 1和S 2,求|S 1-S 2|的最大值. [解] (1)由题意,c =1,b 2=3,所以a 2=4,所以椭圆M 的方程为x 24+y 23=1,易求直线方程为y =x +1,联立方程,得⎩⎪⎨⎪⎧x 24+y 23=1,y =x +1,消去y ,得7x 2+8x -8=0,设C (x 1,y 1),D (x 2,y 2),Δ=288,x 1+x 2=-87,x 1x 2=-87,所以|CD |=2|x 1-x 2|=2x 1+x 22-4x 1x 2=247. (2)当直线l 的斜率不存在时,直线方程为x =-1, 此时△ABD 与△ABC 面积相等,|S 1-S 2|=0;当直线l 的斜率存在时,设直线方程为y =k (x +1)(k ≠0),联立方程,得⎩⎪⎨⎪⎧x 24+y 23=1,y =k x +,消去y ,得(3+4k 2)x 2+8k 2x +4k 2-12=0, Δ>0,且x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k2,此时|S 1-S 2|=2||y 2|-|y 1||=2|y 2+y 1|=2|k (x 2+1)+k (x 1+1)|=2|k (x 2+x 1)+2k |=12|k |3+4k2, 因为k ≠0,上式=123|k |+4|k |≤1223|k |·4|k |=12212=3当且仅当k =±32时等号成立,所以|S 1-S 2|的最大值为 3.(2017·浙江高考)如图,已知抛物线x =y ,点A ⎝ ⎛⎭⎪⎫-12,14,B ⎝ ⎛⎭⎪⎫32,94,抛物线上的点P (x ,y )⎝ ⎛⎭⎪⎫-12<x <32.过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围; (2)求|PA |·|PQ |的最大值.[解](1)设直线AP 的斜率为k ,k =x 2-14x +12=x -12,因为-12<x <32,所以直线AP 斜率的取值范围是(-1,1).(2)联立直线AP 与BQ 的方程⎩⎪⎨⎪⎧kx -y +12k +14=0,x +ky -94k -32=0,解得点Q 的横坐标是x Q =-k 2+4k +3k 2+.因为|PA |=1+k 2⎝ ⎛⎭⎪⎫x +12=1+k 2(k +1),|PQ |=1+k 2(x Q -x )=-k -k +2k 2+1,所以|PA |·|PQ |=-(k -1)(k +1)3. 令f (k )=-(k -1)(k +1)3, 因为f ′(k )=-(4k -2)(k +1)2,所以f (k )在区间⎝ ⎛⎭⎪⎫-1,12上递增,⎝⎛⎭⎪⎫12,1上递减,因此当k =12时,|PA |·|PQ |取得最大值2716.1.(2017·全国卷Ⅰ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3⎝ ⎛⎭⎪⎫-1,32,P 4⎝⎛⎭⎪⎫1,32中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.[解] (1)由于P 3,P 4两点关于y 轴对称,故由题设知椭圆C 经过P 3,P 4两点. 又由1a 2+1b 2>1a 2+34b 2知,椭圆C 不经过点P 1,所以点P 2在椭圆C 上. 因此⎩⎪⎨⎪⎧1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.故椭圆C 的方程为x 24+y 2=1.(2)证明:设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B 的坐标分别为⎝⎛⎭⎪⎫t ,4-t 22,⎝ ⎛⎭⎪⎫t ,-4-t 22,则k 1+k 2=4-t 2-22t -4-t 2+22t =-1,得t =2,不符合题设.从而可设l :y =kx +m (m ≠1).将y =kx +m 代入x 24+y 2=1得(4k 2+1)x 2+8kmx +4m 2-4=0.由题设可知Δ=16(4k 2-m 2+1)>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.而k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2kx 1x 2+m -x 1+x 2x 1x 2.由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0.即(2k +1)·4m 2-44k 2+1+(m -1)·-8km 4k 2+1=0,解得k =-m +12.当且仅当m >-1时,Δ>0,于是l :y =-m +12x +m ,即y +1=-m +12(x -2),所以l 过定点(2,-1).2.(2013·全国卷Ⅰ)平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b2=1(a >b >0)右焦点的直线x +y -3=0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上两点,若四边形ABCD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值. [解] (1)设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,y 2-y 1x 2-x 1=-1, 由此可得b 2x 2+x 1a 2y 2+y 1=-y 2-y 1x 2-x 1=1.因为x 1+x 2=2x 0,y 1+y 2=2y 0,y 0x 0=12,所以a 2=2b 2.又由题意知,M 的右焦点为(3,0),故a 2-b 2=3. 因此a 2=6,b 2=3. 所以M 的方程为x 26+y 23=1.(2)由⎩⎪⎨⎪⎧x +y -3=0,x 26+y 23=1,解得⎩⎪⎨⎪⎧x =433,y =-33,或⎩⎨⎧x =0,y = 3.因此|AB |=463.由题意可设直线CD 的方程为y =x +n ⎝ ⎛⎭⎪⎫-533<n <3,设C (x 3,y 3),D (x 4,y 4).由⎩⎪⎨⎪⎧y =x +n ,x 26+y23=1,得3x 2+4nx +2n 2-6=0.于是x 3,4=-2n ±-n 23.因为直线CD 的斜率为1,所以|CD |=2|x 4-x 3|=43 9-n 2. 由已知,四边形ACBD 的面积S =12|CD |·|AB |=8699-n 2, 当n =0时,S 取得最大值,最大值为863. 所以四边形ACBD 面积的最大值为863.。
第3讲 圆锥曲线中的定点、定值、最值与范围问题高考定位 圆锥曲线中的定点与定值、最值与范围问题是高考必考的问题之一,主要以解答题形式考查,往往作为试卷的压轴题之一,一般以椭圆或抛物线为背景,试题难度较大,对考生的代数恒等变形能力、计算能力有较高的要求.真 题 感 悟(2018·北京卷)已知抛物线C :y 2=2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM →=λQO →,QN →=μQO →,求证:1λ+1μ为定值.解 (1)因为抛物线y 2=2px 过点(1,2), 所以2p =4,即p =2. 故抛物线C 的方程为y 2=4x .由题意知,直线l 的斜率存在且不为0. 设直线l 的方程为y =kx +1(k ≠0).由⎩⎪⎨⎪⎧y 2=4x ,y =kx +1得k 2x 2+(2k -4)x +1=0. 依题意Δ=(2k -4)2-4×k 2×1>0, 解得k <0或0<k <1.又PA ,PB 与y 轴相交,故直线l 不过点(1,-2). 从而k ≠-3.所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (2)设A (x 1,y 1),B (x 2,y 2). 由(1)知x 1+x 2=-2k -4k 2,x 1x 2=1k2.直线PA 的方程为y -2=y 1-2x 1-1(x -1). 令x =0,得点M 的纵坐标为y M =-y 1+2x 1-1+2=-kx 1+1x 1-1+2.同理得点N 的纵坐标为y N =-kx 2+1x 2-1+2. 由QM →=λQO →,QN →=μQO →得λ=1-y M ,μ=1-y N . 所以1λ+1μ=11-y M +11-y N=x 1-1(k -1)x 1+x 2-1(k -1)x 2=1k -1·2x 1x 2-(x 1+x 2)x 1x 2=1k -1·2k 2+2k -4k 21k 2=2.所以1λ+1μ为定值.考 点 整 合1.定点、定值问题(1)定点问题:在解析几何中,有些含有参数的直线或曲线的方程,不论参数如何变化,其都过某定点,这类问题称为定点问题.若得到了直线方程的点斜式:y -y 0=k (x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式:y =kx +m ,则直线必过定点(0,m ).(2)定值问题:在解析几何中,有些几何量,如斜率、距离、面积、比值等基本量和动点坐标或动直线中的参变量无关,这类问题统称为定值问题.2.求解圆锥曲线中的范围问题的关键是选取合适的变量建立目标函数和不等关系.该问题主要有以下三种情况:(1)距离型:若涉及焦点,则可以考虑将圆锥曲线定义和平面几何性质结合起来求解;若是圆锥曲线上的点到直线的距离,则可设出与已知直线平行的直线方程,再代入圆锥曲线方程中,用判别式等于零求得切点坐标,这个切点就是距离取得最值的点,若是在圆或椭圆上,则可将点的坐标以参数形式设出,转化为三角函数的最值求解.(2)斜率、截距型:一般解法是将直线方程代入圆锥曲线方程中,利用判别式列出对应的不等式,解出参数的范围,如果给出的只是圆锥曲线的一部分,则需要结合图形具体分析,得出相应的不等关系.(3)面积型:求面积型的最值,即求两个量的乘积的范围,可以考虑能否使用不等式求解,或者消元转化为某个参数的函数关系,用函数方法求解.热点一 定点与定值问题 [考法1] 定点的探究与证明【例1-1】 (2018·杭州调研)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.(1)求椭圆C 的标准方程;(2)若直线l :y =kx +m 与椭圆C 相交于A ,B 两点(A ,B 不是左、右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.(1)解 由e =c a =12,得a =2c ,∵a 2=b 2+c 2,∴b 2=3c 2,则椭圆方程变为x 24c 2+y 23c2=1.又由题意知(2+c )2+12=10,解得c =1, 故a 2=4,b 2=3,即得椭圆的标准方程为x 24+y 23=1.(2)证明 设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1,得(3+4k 2)x 2+8mkx +4(m 2-3)=0,则⎩⎪⎨⎪⎧Δ=64m 2k 2-16(3+4k 2)(m 2-3)>0,x 1+x 2=-8mk 3+4k 2,x 1·x 2=4(m 2-3)3+4k2.①∴y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=3(m 2-4k 2)3+4k 2. ∵椭圆的右顶点为A 2(2,0),AA 2⊥BA 2, ∴(x 1-2)(x 2-2)+y 1y 2=0, ∴y 1y 2+x 1x 2-2(x 1+x 2)+4=0,∴3(m 2-4k 2)3+4k 2+4(m 2-3)3+4k 2+16mk 3+4k 2+4=0,∴7m 2+16mk +4k 2=0,解得m 1=-2k ,m 2=-2k 7.由Δ>0,得3+4k 2-m 2>0,②当m 1=-2k 时,l 的方程为y =k (x -2), 直线过定点(2,0),与已知矛盾. 当m 2=-2k 7时,l 的方程为y =k ⎝ ⎛⎭⎪⎫x -27, 直线过定点⎝ ⎛⎭⎪⎫27,0,且满足②, ∴直线l 过定点,定点坐标为⎝ ⎛⎭⎪⎫27,0. 探究提高 (1)动直线l 过定点问题解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m ,0).(2)动曲线C 过定点问题解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.[考法2] 定值的探究与证明【例1-2】 (2018·金丽衢联考)已知O 为坐标原点,直线l :x =my +b 与抛物线E :y 2=2px (p >0)相交于A ,B 两点. (1)当b =2p 时,求OA →·OB →;(2)当p =12且b =3时,设点C 的坐标为(-3,0),记直线CA ,CB 的斜率分别为k 1,k 2,证明:1k 21+1k 22-2m 2为定值.解 设A (x 1,y 1),B (x 2,y 2),联立方程⎩⎪⎨⎪⎧y 2=2px ,x =my +b ,消元得y 2-2mpy -2pb =0,所以y 1+y 2=2mp ,y 1y 2=-2pb .(1)当b =2p 时,y 1y 2=-4p 2,x 1x 2=(y 1y 2)24p2=4p 2, 所以OA →·OB →=x 1x 2+y 1y 2=4p 2-4p 2=0.(2)证明 当p =12且b =3时,y 1+y 2=m ,y 1y 2=-3.因为k 1=y 1x 1+3=y 1my 1+6,k 2=y 2x 2+3=y 2my 2+6, 所以1k 1=m +6y 1,1k 2=m +6y 2.因此1k 21+1k 22-2m 2=⎝ ⎛⎭⎪⎫m +6y 12+⎝ ⎛⎭⎪⎫m +6y 22-2m 2=2m 2+12m ⎝ ⎛⎭⎪⎫1y 1+1y 2+36⎝ ⎛⎭⎪⎫1y 21+1y 22-2m 2=12m ×y 1+y 2y 1y 2+36×(y 1+y 2)2-2y 1y 2y 21y 22=12m ×-m 3+36×m 2+69=24,即1k 21+1k 22-2m 2为定值.探究提高 (1)求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.(2)定值问题求解的基本思路是使用参数表示要解决的问题,然后证明与参数无关,这类问题选择消元的方向是非常关键的.【训练1-1】 (2017·北京卷)已知抛物线C :y 2=2px 过点P (1,1),过点⎝ ⎛⎭⎪⎫0,12作直线l与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点.(1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.(1)解 把P (1,1)代入y 2=2px ,得p =12,所以抛物线C 的方程为y 2=x ,焦点坐标为⎝ ⎛⎭⎪⎫14,0,准线方程为x =-14. (2)证明 当直线MN 斜率不存在或斜率为零时,显然与抛物线只有一个交点不满足题意,所以直线MN (也就是直线l )斜率存在且不为零.由题意,设直线l 的方程为y =kx +12(k ≠0),l 与抛物线C 的交点为M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +12,y 2=x ,得4k 2x 2+(4k -4)x +1=0. 考虑Δ=(4k -4)2-4×4k 2=16(1-2k ), 由题可知有两交点,所以判别式大于零,所以k <12.则x 1+x 2=1-k k 2,x 1x 2=14k2.因为点P 的坐标为(1,1),所以直线OP 的方程为y =x ,点A 的坐标为(x 1,x 1). 直线ON 的方程为y =y 2x 2x ,点B 的坐标为⎝⎛⎭⎪⎫x 1,y 2x 1x 2. 因为y 1+y 2x 1x 2-2x 1=y 1x 2+y 2x 1-2x 1x 2x 2=⎝ ⎛⎭⎪⎫kx 1+12x 2+⎝⎛⎭⎪⎫kx 2+12x 1-2x 1x2x 2=(2k -2)x 1x 2+12(x 2+x 1)x 2=(2k -2)×14k 2+1-k 2k2x 2=0.所以y 1+y 2x 1x 2=2x 1.故A 为线段BM 的中点. 【训练1-2】 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a ,0),B (0,b ),O (0,0),△OAB 的面积为1. (1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |·|BM |为定值. (1)解 由已知ca =32,12ab =1. 又a 2=b 2+c 2,解得a =2,b =1,c = 3.∴椭圆方程为x 24+y 2=1.(2)证明 由(1)知A (2,0),B (0,1). 设椭圆上一点P (x 0,y 0),则x 204+y 0=1.当x 0≠0时,直线PA 方程为y =y 0x 0-2(x -2),令x =0得y M =-2y 0x 0-2.从而|BM |=|1-y M |=⎪⎪⎪⎪⎪⎪1+2y 0x 0-2. 直线PB 方程为y =y 0-1x 0x +1. 令y =0得x N =-x 0y 0-1. ∴|AN |=|2-x N |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1.∴|AN |·|BM |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1·⎪⎪⎪⎪⎪⎪1+2y 0x 0-2 =⎪⎪⎪⎪⎪⎪x 0+2y 0-2x 0-2·⎪⎪⎪⎪⎪⎪x 0+2y 0-2y 0-1=⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2 =⎪⎪⎪⎪⎪⎪4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2=4.当x 0=0时,y 0=-1,|BM |=2,|AN |=2, 所以|AN |·|BM |=4.故|AN |·|BM |为定值.热点二 最值与范围问题[考法1] 求线段长度、面积(比值)的最值【例2-1】 (2018·湖州调研)已知抛物线C :y 2=4x 的焦点为F ,直线l :y =kx -4(1<k <2)与y 轴、抛物线C 分别相交于P ,A ,B (自下而上),记△PAF ,△PBF 的面积分别为S 1,S 2.(1)求AB 的中点M 到y 轴的距离d 的取值范围; (2)求S 1S 2的取值范围.解 (1)联立⎩⎪⎨⎪⎧y =kx -4,y 2=4x ,消去y 得,k 2x 2-(8k +4)x +16=0(1<k <2).设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=8k +4k 2,x 1x 2=16k2,所以d =x 1+x 22=4k +2k2 =2⎝ ⎛⎭⎪⎫1k +12-2∈⎝ ⎛⎭⎪⎫52,6.(2)由于S 1S 2=|PA ||PB |=x 1x 2,由(1)可知S 1S 2+S 2S 1=x 1x 2+x 2x 1=(x 1+x 2)2-2x 1x 2x 1x 2=k 216·(8k +4)2k 4-2=⎝ ⎛⎭⎪⎫1k +22-2∈⎝ ⎛⎭⎪⎫174,7, 由S 1S 2+S 2S 1>174得,4⎝ ⎛⎭⎪⎫S 1S 22-17·S 1S 2+4>0, 解得S 1S 2>4或S 1S 2<14.因为0<S 1S 2<1,所以0<S 1S 2<14.由S 1S 2+S 2S 1<7得,⎝ ⎛⎭⎪⎫S 1S 22-7·S 1S 2+1<0, 解得7-352<S 1S 2<7+352,又S 1S 2<1,所以7-352<S 1S 2<1. 综上,7-352<S 1S 2<14,即S 1S 2的取值范围为⎝⎛⎭⎪⎫7-352,14. 探究提高 (1)处理求最值的式子常用两种方式:①转化为函数图象的最值;②转化为能利用基本不等式求最值的形式.(2)若得到的函数式是分式形式,函数式的分子次数不低于分母时,可利用分离法求最值;若分子次数低于分母,则可分子、分母同除分子,利用基本不等式求最值(注意出现复杂的式子时可用换元法).【训练2-1】 (2018·温州质检)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,且过点⎝⎛⎭⎪⎫1,63.(1)求椭圆C 的方程;(2)设与圆O :x 2+y 2=34相切的直线l 交椭圆C 与A ,B 两点,求△OAB 面积的最大值,及取得最大值时直线l 的方程.解 (1)由题意可得⎩⎪⎨⎪⎧1a 2+23b2=1,c a =63,a 2=b 2+c 2,解得a 2=3,b 2=1,∴x 23+y 2=1.(2)①当k 不存在时,直线为x =±32,代入x 23+y 2=1,得y =±32, ∴S △OAB =12×3×32=34;②当k 存在时,设直线为y =kx +m ,A (x 1,y 1),B (x 2,y 2),联立方程得⎩⎪⎨⎪⎧x 23+y 2=1,y =kx +m ,消y 得(1+3k 2)x 2+6kmx +3m 2-3=0,∴x 1+x 2=-6km1+3k2,x 1x 2=3m 2-31+3k2,直线l 与圆O 相切d =r 4m 2=3(1+k 2), ∴|AB |=1+k 2·⎝ ⎛⎭⎪⎫-6km 1+3k 22-12(m 2-1)1+3k 2=3·1+10k 2+9k41+6k 2+9k 4=3·1+4k21+6k 2+9k4 =3×1+41k 2+9k 2+6≤2.当且仅当1k 2=9k 2,即k =±33时等号成立,∴S △OAB =12|AB |×r ≤12×2×32=32,∴△OAB 面积的最大值为32, ∴m =±34⎝ ⎛⎭⎪⎫1+13=±1, 此时直线方程为y =±33x ±1. [考法2] 求几何量、某个参数的取值范围【例2-2】 已知椭圆E :x 2t +y 23=1的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (1)当t =4,|AM |=|AN |时,求△AMN 的面积; (2)当2|AM |=|AN |时,求k 的取值范围. 解 设M (x 1,y 1),则由题意知y 1>0.(1)当t =4时,E 的方程为x 24+y 23=1,A (-2,0).由|AM |=|AN |及椭圆的对称性知,直线AM 的倾斜角为π4. 因此直线AM 的方程为y =x +2.将x =y -2代入x 24+y 23=1得7y 2-12y =0,解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)由题意t >3,k >0,A (-t ,0),将直线AM 的方程y =k (x +t )代入x 2t +y 23=1得(3+tk 2)x2+2t ·tk 2x +t 2k 2-3t =0.由x 1·(-t )=t 2k 2-3t 3+tk 2得x 1=t (3-tk 2)3+tk2, 故|AM |=|x 1+t |1+k 2=6t (1+k 2)3+tk2. 由题设,直线AN 的方程为y =-1k(x +t ),故同理可得|AN |=6k t (1+k 2)3k 2+t. 由2|AM |=|AN |得23+tk 2=k3k 2+t , 即(k 3-2)t =3k (2k -1),当k =32时上式不成立,因此t =3k (2k -1)k 3-2.t >3等价于k 3-2k 2+k -2k 3-2=(k -2)(k 2+1)k 3-2<0,即k -2k 3-2<0. 由此得⎩⎪⎨⎪⎧k -2>0,k 3-2<0,或⎩⎪⎨⎪⎧k -2<0,k 3-2>0,解得32<k <2. 因此k 的取值范围是(32,2).探究提高 解决范围问题的常用方法:(1)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解.(2)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域. (3)数形结合法:利用待求量的几何意义,确定出极端位置后数形结合求解.【训练2-2】 (2018·台州调研)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F (-c ,0),离心率为33,点M 在椭圆上且位于第一象限,直线FM 被圆x 2+y 2=b 24截得的线段的长为c ,|FM |=433.(1)求直线FM 的斜率; (2)求椭圆的方程;(3)设动点P 在椭圆上,若直线FP 的斜率大于2,求直线OP (O 为原点)的斜率的取值范围.解 (1)由已知,有c 2a 2=13,又由a 2=b 2+c 2,可得a 2=3c 2,b 2=2c 2. 设直线FM 的斜率为k (k >0),F (-c ,0), 则直线FM 的方程为y =k (x +c ).由已知,有⎝ ⎛⎭⎪⎫kc k 2+12+⎝ ⎛⎭⎪⎫c 22=⎝ ⎛⎭⎪⎫b 22,解得k =33.(2)由(1)得椭圆方程为x 23c 2+y 22c 2=1,直线FM 的方程为y =33(x +c ),两个方程联立,消去y ,整理得3x 2+2cx -5c 2=0,解得x =-53c ,或x =c .因为点M 在第一象限,可得M 的坐标为⎝⎛⎭⎪⎫c ,233c .由|FM |=(c +c )2+⎝ ⎛⎭⎪⎫233c -02=433, 解得c =1,所以椭圆的方程为x 23+y 22=1.(3)设点P 的坐标为(x ,y ),直线FP 的斜率为t , 得t =yx +1,即y =t (x +1)(x ≠-1),与椭圆方程联立⎩⎪⎨⎪⎧y =t (x +1),x 23+y22=1,消去y ,整理得2x 2+3t 2(x +1)2=6, 又由已知,得t =6-2x23(x +1)2>2,解得-32<x <-1,或-1<x <0.设直线OP 的斜率为m ,得m =y x, 即y =mx (x ≠0),与椭圆方程联立, 整理得m 2=2x 2-23.①当x ∈⎝ ⎛⎭⎪⎫-32,-1时,有y =t (x +1)<0, 因此m >0,于是m =2x 2-23,得m ∈⎝ ⎛⎭⎪⎫23,233. ②当x ∈(-1,0)时,有y =t (x +1)>0. 因此m <0,于是m =-2x 2-23, 得m ∈⎝⎛⎭⎪⎫-∞,-233.综上,直线OP 的斜率的取值范围是 ⎝⎛⎭⎪⎫-∞,-233∪⎝ ⎛⎭⎪⎫23,233.1.解答圆锥曲线的定值、定点问题,从三个方面把握:(1)从特殊开始,求出定值,再证明该值与变量无关;(2)直接推理、计算,在整个过程中消去变量,得定值;(3)在含有参数的曲线方程里面,把参数从含有参数的项里面分离出来,并令其系数为零,可以解出定点坐标. 2.圆锥曲线的范围问题的常见求法(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决; (2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,在利用代数法解决范围问题时常从以下五个方面考虑: ①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; ④利用基本不等式求出参数的取值范围; ⑤利用函数的值域的求法,确定参数的取值范围.一、选择题1.F 1,F 2是椭圆x 24+y 2=1的左、右焦点,点P 在椭圆上运动,则PF 1→·PF 2→的最大值是( )A.-2B.1C.2D.4解析 设P (x ,y ),依题意得点F 1(-3,0),F 2(3,0),PF 1→·PF 2→=(-3-x )(3-x )+y 2=x 2+y 2-3=34x 2-2,注意到-2≤34x 2-2≤1,因此PF 1→·PF 2→的最大值是1.答案 B2.(2018·镇海中学二模)若点P 为抛物线y =2x 2上的动点,F 为抛物线的焦点,则|PF |的最小值为( ) A.2B.12C.14D.18解析 根据题意,设P 到准线的距离为d ,则有|PF |=d .抛物线的方程为y =2x 2,即x 2=12y ,其准线方程为y =-18,∴当点P 在抛物线的顶点时,d 有最小值18,即|PF |min =18.答案 D3.设A ,B 是椭圆C :x 23+y 2m=1长轴的两个端点.若C 上存在点M 满足∠AMB =120°,则m的取值范围是( ) A.(0,1]∪[9,+∞) B.(0,3]∪[9,+∞) C.(0,1]∪[4,+∞)D.(0,3]∪[4,+∞)解析 (1)当焦点在x 轴上,依题意得 0<m <3,且3m ≥tan ∠AMB 2= 3.∴0<m <3且m ≤1,则0<m ≤1. (2)当焦点在y 轴上,依题意m >3,且m3≥tan ∠AMB2=3,∴m ≥9,综上,m 的取值范围是(0,1]∪[9,+∞). 答案 A4.已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=( ) A.3B.5C.6D.10解析 因y 2=8x ,则p =4,焦点为F (2,0),准线l :x =-2.如图,M 为FN 中点, 故易知线段BM 为梯形AFNC 的中位线, ∵|CN |=2,|AF |=4, ∴|MB |=3,又由定义|MB |=|MF |, 且|MN |=|MF |,∴|NF |=|NM |+|MF |=2|MB |=6. 答案 C5.(2018·北京西城区调研)过抛物线y 2=43x 的焦点的直线l 与双曲线C :x 22-y 2=1的两个交点分别为(x 1,y 1),(x 2,y 2),若x 1·x 2>0,则直线l 的斜率k 的取值范围是( )A.⎝ ⎛⎭⎪⎫-12,12B.⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫12,+∞C.⎝ ⎛⎭⎪⎫-22,22D.⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫22,+∞ 解析 易知双曲线两渐近线为y =±22x ,抛物线的焦点为双曲线的右焦点,当k >22或k <-22时,l 与双曲线的右支有两个交点,满足x 1x 2>0. 答案 D6.在直线y =-2上任取一点Q ,过Q 作抛物线x 2=4y 的切线,切点分别为A ,B ,则直线AB 恒过的点的坐标为( ) A.(0,1)B.(0,2)C.(2,0)D.(1,0)解析 设Q (t ,-2),A (x 1,y 1),B (x 2,y 2),抛物线方程变为y =14x 2,则y ′=12x ,则在点A 处的切线方程为y -y 1=12x 1(x -x 1),化简得y =12x 1x -y 1,同理,在点B 处的切线方程为y =12x 2x -y 2,又点Q (t ,-2)的坐标适合这两个方程, 代入得-2=12x 1t -y 1,-2=12x 2t -y 2,这说明A (x 1,y 1),B (x 2,y 2)都满足方程-2=12xt -y ,即直线AB 的方程为y -2=12tx ,因此直线AB 恒过点(0,2).答案 B 二、填空题7.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线与圆x 2-4x +y 2+2=0相交,则双曲线的离心率的取值范围是______.解析 双曲线的渐近线方程为y =±b ax ,即bx ±ay =0,圆x 2-4x +y 2+2=0可化为(x -2)2+y 2=2,其圆心为(2,0),半径为 2. 因为直线bx ±ay =0和圆(x -2)2+y 2=2相交, 所以|2b |a 2+b2<2,整理得b 2<a 2.从而c 2-a 2<a 2,即c 2<2a 2,所以e 2<2.又e >1,故双曲线的离心率的取值范围是(1,2). 答案 (1,2)8.(2018·金华质检)已知椭圆x 24+y 2b 2=1(0<b <2)的左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是________,椭圆的离心率为________.解析 由椭圆的方程,可知长半轴长a =2;由椭圆的定义,可知|AF 2|+|BF 2|+|AB |=4a =8,所以|AB |=8-(|AF 2|+|BF 2|)≥3.由椭圆的性质,可知过椭圆焦点的弦中垂直于长轴的弦最短,即2b 2a=3,可求得b 2=3,即b=3,e =ca=1-⎝ ⎛⎭⎪⎫b a 2=1-34=12.答案3 129.已知抛物线C :x 2=8y 的焦点为F ,动点Q 在C 上,圆Q 的半径为1,过点F 的直线与圆Q 切于点P ,则FP →·FQ →的最小值为________,此时圆Q 的方程为________. 解析 如图,在Rt △QPF 中,FP →·FQ →=|FP →||FQ →|cos ∠PFQ =|FP →||FQ →||PF →||FQ →|=|FP →|2= |FQ →|2-1.由抛物线的定义知:|FQ →|=d (d 为点Q 到准线的距离),易知,抛物线的顶点到准线的距离最短,∴|FQ →|min =2, ∴FP →·FQ →的最小值为3. 此时圆Q 的方程为x 2+y 2=1. 答案 3 x 2+y 2=110.(2018·温州模拟)已知抛物线y 2=4x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作x 轴、y 轴的垂线,垂足分别为C ,D ,则|AC |+|BD |的最小值为________.解析 不妨设A (x 1,y 1)(y 1>0),B (x 2,y 2)(y 2<0). 则|AC |+|BD |=y 1+x 2=y 1+y 224.又y 1y 2=-p 2=-4,∴|AC |+|BD |=y 224-4y 2(y 2<0).设g (x )=x 24-4x (x <0),则g ′(x )=x 3+82x2,从而g (x )在(-∞,-2)递减,在(-2,0)递增.∴当x =-2时,|AC |+|BD |取最小值为3. 答案 311.如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.解析 联立方程组⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =b2,解得B ,C 两点坐标为B ⎝ ⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2,又F (c ,0), 则FB →=⎝ ⎛⎭⎪⎫-32a -c ,b 2,FC →=⎝ ⎛⎭⎪⎫3a 2-c ,b 2,又由∠BFC =90°,可得FB →·FC →=0,代入坐标可得: c 2-34a 2+b24=0,①又因为b 2=a 2-c 2,代入①式可化简为c 2a 2=23,则椭圆离心率为e =c a=23=63. 答案 63三、解答题12.(2018·北京海淀区调研)如图,椭圆E :x 2a 2+y 2b2=1(a >b >0)经过点A (0,-1),且离心率为22. (1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为定值. (1)解 由题设知c a =22,b =1, 结合a 2=b 2+c 2,解得a =2, 所以椭圆的方程为x 22+y 2=1.(2)证明 由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0,由已知Δ>0. 设P (x 1,y 1),Q (x 2,y 2),x 1x 2≠0, 则x 1+x 2=4k (k -1)1+2k 2,x 1x 2=2k (k -2)1+2k 2, 从而直线AP ,AQ 的斜率之和k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k +(2-k )⎝ ⎛⎭⎪⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k (k -1)2k (k -2)=2k -2(k -1)=2.故k AP +k AQ 为定值2.13.(2018·杭州调研)已知F 是抛物线T :y 2=2px (p >0)的焦点,点P ()1,m 是抛物线上一点,且|PF |=2,直线l 过定点(4,0),与抛物线T 交于A ,B 两点,点P 在直线l 上的射影是Q .(1)求m ,p 的值;(2)若m >0,且|PQ |2=|QA |·|QB |,求直线l 的方程. 解 (1)由|PF |=2得,1+p2=2,所以p =2,将x =1,y =m 代入y 2=2px 得,m =±2.(2)因为m >0,故由(1)知点P (1,2),抛物线T :y 2=4x .设直线l 的方程是x =ny +4,由⎩⎪⎨⎪⎧x =ny +4,y 2=4x 得,y 2-4ny -16=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4n ,y 1·y 2=-16. 因为|PQ |2=|QA |·|QB |,所以PA ⊥PB , 所以PA →·PB →=0,且1≠2n +4,所以(x 1-1)(x 2-1)+(y 1-2)(y 2-2)=0,且n ≠-32.由(ny 1+3)(ny 2+3)+(y 1-2)(y 2-2)=0得, (n 2+1)y 1y 2+(3n -2)(y 1+y 2)+13=0,-16(n 2+1)+(3n -2)·4n +13=0,4n 2+8n +3=0,解得,n =-32(舍去)或n =-12,所以直线l 的方程是:x =-12y +4,即2x +y -8=0.14.(2018·绍兴模拟)如图,已知函数y 2=x 图象上三点C ,D ,E ,直线CD 经过点(1,0),直线CE 经过点(2,0).(1)若|CD |=10,求直线CD 的方程; (2)当△CDE 的面积最小时,求点C 的横坐标. 解 设C (x 1,y 1),D (x 2,y 2),E (x 3,y 3), 直线CD 的方程为:x =my +1.由⎩⎪⎨⎪⎧x =my +1,y 2=x 得:y 2-my -1=0,从而⎩⎪⎨⎪⎧y 1y 2=-1,y 1+y 2=m . (1)由题意,得|CD |=1+m 2×m 2+4=10,得m =±1, 故所求直线方程为x =±y +1,即x ±y -1=0.(2)由(1)知y 2=-1y 1,同理可得y 3=-2y 1,E ⎝ ⎛⎭⎪⎫4y 21,-2y 1,并不妨设y 1>0,则E 到直线CD 的距离为d =⎪⎪⎪⎪⎪⎪4y 21+2m y 1-11+m2,S △CDE =121+m 2×m 2+4×⎪⎪⎪⎪⎪⎪4y 21+2m y 1-11+m2=12m 2+4×⎪⎪⎪⎪⎪⎪4y 21+2m y 1-1,而m =y 1+y 2=y 1-1y 1,所以S △CDE =12y 21+1y 21+2×⎪⎪⎪⎪⎪⎪2y 21+1=12⎪⎪⎪⎪⎪⎪⎝⎛⎭⎪⎫y 1+1y 1×⎝ ⎛⎭⎪⎫2y 21+1,得S △CDE =12⎝ ⎛⎭⎪⎫y 1+3y 1+2y 31.考虑函数f (x )=x +3x +2x3,令f ′(x )=1-3x 2-6x 4=x 4-3x 2-6x 4=0,得x 2=3+332时f (x )有最小值, 即x 1=y 21=3+332时,△CDE 的面积最小, 也即△CDE 的面积最小时,点C 的横坐标为3+332. 15.(2018·湖州调研)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,短轴长为2.直线l :y =kx +m 与椭圆C 交于M ,N 两点,又l 与直线y =12x ,y =-12x 分别交于A ,B 两点,其中点A 在第一象限,点B 在第二象限,且△OAB 的面积为2(O 为坐标原点).(1)求椭圆C 的方程;(2)求OM →·ON →的取值范围.解 (1)由于b =1且离心率e =22, ∴c a =a 2-1a =22,则a 2=2, 因此椭圆的方程为x 22+y 2=1. (2)联立直线l 与直线y =12x ,可得点A ⎝ ⎛⎭⎪⎫2m 1-2k ,m 1-2k , 联立直线l 与直线y =-12x ,可得点B ⎝ ⎛⎭⎪⎫-2m 1+2k ,m 1+2k , 又点A 在第一象限,点B 在第二象限,∴⎩⎪⎨⎪⎧2m 1-2k >0,-2m 1+2k <0⎩⎪⎨⎪⎧m (1-2k )>0,m (1+2k )>0, 化为m 2(1-4k 2)>0,而m 2≥0,∴1-4k 2>0.又|AB |=⎝ ⎛⎭⎪⎫2m 1-2k +2m 1+2k 2+⎝ ⎛⎭⎪⎫m 1-2k -m 1+2k 2=4|m |1-4k 21+k 2, 原点O 到直线l 的距离为|m |1+k 2,即△OAB 底边AB 上的高为|m |1+k 2, ∴S △OAB =124|m |1+k 21-4k 2·|m |1+k 2=2m 21-4k2=2,∴m 2=1-4k 2.设M (x 1,y 1),N (x 2,y 2),将直线l 代入椭圆方程,整理可得: (1+2k 2)x 2+4kmx +2m 2-2=0,∴x 1+x 2=-4km 1+2k 2,x 1·x 2=2m 2-21+2k 2, Δ=16k 2m 2-4(1+2k 2)(2m 2-2)=48k 2>0,则k 2>0,∴y 1·y 2=(kx 1+m )(kx 2+m )=m 2-2k 21+2k 2, ∴OM →·ON →=x 1x 2+y 1y 2=2m 2-21+2k 2+m 2-2k 21+2k 2=81+2k 2-7. ∵0<k 2<14,∴1+2k 2∈⎝ ⎛⎭⎪⎫1,32, ∴81+2k 2∈⎝ ⎛⎭⎪⎫163,8,∴OM →·ON →∈⎝ ⎛⎭⎪⎫-53,1. 故OM →·ON →的取值范围为⎝ ⎛⎭⎪⎫-53,1.。
探讨圆锥曲线的定值、最值与定点问题圆锥曲线中的最值与定值问题,是解析几何中的综合问题,是一种典型题型,将函数与解析融为一体,要求有较强的综合能力,例析如下: 【题型1】定值问题解决定值问题的方法:将问题涉及的几何式转化为代数式或三角式,证明该式的值与参数无关. 【例1】,A B 是抛物线22(0)y px p =>上的两点,且OA OB ⊥,求证:⑴,A B 两点的横坐标之积,纵坐标之积分别都是定值;⑵直线AB 经过一个定点。
【证明】⑴设1122(,),(,)A x y B x y ,则2222221122121212122,2,2244y px y px y y px px p x x p y y ==⋅=⋅==- 2124y y p =-为定值,212124x x y y p =-=也为定值;⑵222121************2()()2(),,,y y py y y y y y p x x x x x x y y --=+-=-≠∴=∴-+ 直线AB 的方程为:221112121212122242(2),y p p p py x y x x p y y y y y y y y y y =-+=-=-∴+++++直线AB 过定点(2,0)p 。
【例2】已知抛物线方程为212y x h =-+,点,A B 及点(2,4)P 都在抛物线上,直线PA 与PB 的倾斜角互补。
⑴试证明直线AB 的斜率为定值;⑵当直线AB 的纵截距为(0)m m >时,求PAB ∆的面积的最大值。
【分析】这类问题一般运算量大,要注意函数与方程、数形结合、分类讨论等思想方法的灵活运用。
【解析】⑴证明:把(2,4)P 代入212y x h =-+,得6h =,所以抛物线方程为:4(2)y k x -=-,由24(2)162y k x y x -=-⎧⎪⎨=-+⎪⎩,消去y ,得22440x k x k +--=,所以244222244A A k x k y k k --⎧==--⎪⎨⎪=-++⎩,因为PA 与PB 的倾角互补,所以PB PA k k k =-=-,用k -代k ,得222244B Bx k y k k =-⎧⎪⎨=-++⎪⎩,所以22448222(22)4B A AB A B y y k k k k x x k k k---+====-----。
解析几何【8】圆锥曲线的综合应用1、定值、最值、取值范围问题(1)在圆锥曲线中,还有一类曲线方程,对其变量取不同值时,曲线本身的性质不变;或形态发生某些变化,但其某些固有的共同性质始终保持着,这就是定值问题.(2)当变量取不同值时,相关几何量达到最大或最小,这就是最值问题.通常有两类:一类是有关长度和面积的最值问题;一类是圆锥曲线中有关的几何元素的最值问题,曲线遵循某种条件时,变量有相应的允许取值范围,即取值范围问题.求解时有两种方法:①代数法:引入新的变量,通过圆锥曲线的性质、韦达定理、方程思想等,用新的变量表示(计算)最值、范围问题,再用函数思想、不等式方法得到最值、范围.②几何法:若问题的条件和结论能明显地体现曲线几何特征,则利用图形性质来解决最值与取值范围问题.2、对称、存在性问题、圆锥曲线有关的证明问题涉及线段相等,角相等,直线平行、垂直的证明方法,及定点、定值问题的判断方法等.3、实际应用解决的关键是建立坐标系,合理选择曲线模型,然后转化为相应的数学问题,作出定量或定性分析与判断,解题的一般思想是【温馨点睛】1、圆锥曲线经常和函数、三角函数、平面向量、不等式等结合,还有解析思想的应用,这些问题有较高的能力要求,这是每年高考必考的一道解答题,平时加强训练,认真审题,挖掘题目的隐含条件作为解题的突破口.2、利用函数思想,讨论有关最值时,特别要注意圆锥曲线自身范围的限定条件.3、涉及弦长的问题时,在熟练地利用根与系数的关系,设而不求计算弦长;涉及垂直关系往往也是利用根与系数的关系设而不求简化运算;涉及过焦点的弦的问题,可考虑利用圆锥曲线的定义求解.4、圆锥曲线综合问题要四重视;①定义;②平面几何知识;③根与系数的关系;④曲线的几何特征与方程的代数特征.【例1】设1F 、2F 是椭圆22:12x C y 的左、右焦点,P 为椭圆C 上任意一点.(1)求12PF PF 的取值范围;(2)设过点1F 且不与坐标轴垂直的直线交椭圆C 于A 、B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围.设点1F C 上任意一点,且12PF PF (1)(2)满足AD BD ,【例2】如图,已知抛物线2:4C x y ,过点 0,2M 任作一直线与C 相交于A 、B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点).(1)证明:动点D 在定直线上;(2)作C 的任意一条切线l (不含x 轴)与直线2y 相交于点1N ,与(1)中的定直线相交于点2N ,证明:2221MN MN 为定值,并求此定值.(1)(2)C 、D 两点(A 、【例3】已知抛物线2y x 上的动点 00,M x y ,过M 分别作两条直线交抛物线于P 、Q 两点,交直线x t 于A 、B 两点.(1)若点M ,求M 与焦点的距离;(2)若1t , 1,1P , 1,1Q ,求证:A B y y 为常数;(3)是否存在t ,使得1A B y y 且P Q y y 为常数?若存在,求t 的所有可能值;若不存在,请说明理由.x .(1)(2)(3)使得PM PN 为【例4】为了考察冰川的融化状况,一支科考队在某冰川上相距8km 的A 、B 两点各建一个考察基地.视冰川面为平面形,以过A 、B 两点的直线为x 轴,线段AB 的垂直平分线为y 轴建立平面直角坐标系(如图).在直线2x 的右侧,考察范围为到点B 的距离不超过5km 的区域;在直线2x 的左侧,考察范围为到A 、B两点的距离之和不超过km 的区域.(1)求考察区域边界曲线的方程;(2)如图,设线段12PP 、23P P 是冰川的部分边界线(不考虑其他边界),当冰川融化时,边界线沿与其垂直的方向朝考察区域平行移动,第一年移动0.2km ,以后每年移动的距离为前一年的2倍,求冰川边界线移动到考察区域所需的最短时间.【同类变式】某市为改善市民出行,大力发展轨道交通建设,规划中的轨道交通s号线线路示意图如图,已知M、N是东西方向主干道边两个景点,P、Q是南北方向主干道边两个景点,四个景点距离城市中心O均为km,线路AB段上的任意一点到景点N的距离比到景点M的距离都多10km,线路BC段上的任意一点到O的距离都相等,线路CD段上的任意一点到景点Q的距离比到景点P的距离都多10km,以O为原点建立平面直角坐标系xOy.(1)求轨道交通s号线线路示意图所在曲线的方程;(2)规划中的线路AB段上需建一站点G到景点Q的距离最近,问如何设置站点G的位置?【真题自测】1.设A 、B 是椭圆22:13x y C m长轴的两个端点,若C 上存在点M 满足120AMB ,则m 的取值范围是().A 0,19, ;.B 9, ;.C 0,14, ;.D 4, .2.① ②P .A 13.②若 111,P x y 、 222,P x y 为曲线C 上任意两点,则有12120x x .下列判断正确的是().A ①和②均为真命题;.B ①和②均为假命题;.C ①为真命题,②为假命题;.D ①为假命题,②为真命题.4.设圆C 位于抛物线22y x 与直线3x 所围成的封闭区域(包含边界)内,则圆C 的半径能取到的最大值为.5.114c ,则c6.Q 使得AP AQ 07.如图,已知椭圆2221x y ,过原点的两条直线1l 和2l 分别与椭圆交于点A 、B 和C 、D ,记AOC 的面积为S .(1)设 11,A x y , 22,C x y ,用A 、C 的坐标表示点C 到直线1l 的距离,并证明122112S x y x y ;(2)设1:l y kx ,若,33C ,13S ,求k 的值.(3)设1l 与2l 的斜率之积为m ,求m 的值,使得无论1l 和2l 如何变动,面积S 保持不变.。
圆锥曲线中的定值、定点问题一、直线恒过定点问题例1. 已知动点E 在直线:2l y =-上,过点E 分别作曲线2:4C x y =的切线,EA EB , 切点为A 、B , 求证:直线AB 恒过一定点,并求出该定点的坐标;解:设),2,(-a E )4,(),4,(222211x x B x x A ,x y x y 214'2=∴=,)(2141121点切线过,的抛物线切线方程为过点E x x x x y A -=-),(21421121x a x x -=--∴整理得:082121=--ax x同理可得:222280x ax --=8,2082,2121221-=⋅=+∴=--∴x x a x x ax x x x 的两根是方程)24,(2+a a AB 中点为可得,又2212121212124442ABx x y y x x a k x x x x --+====-- 2(2)()22a a AB y x a ∴-+=-直线的方程为,2()2ay x AB =+∴即过定点0,2.例2. 已知点是椭圆22:12x E y +=上任意一点,直线l 的方程为0012x xy y +=, 直线0l 过P 点与直线l 垂直,点M (-1,0)关于直线0l 的对称点为N ,直线PN 恒过一定点G ,求点G 的坐标。
解:直线0l 的方程为0000()2()x y y y x x -=-,即000020y x x y x y --=设)0,1(-M 关于直线0l 的对称点N 的坐标为(,)N m n则0000001212022x nm y x n m y x y ⎧=-⎪+⎪⎨-⎪⋅--=⎪⎩,解得320002043200002002344424482(4)x x x m x x x x x n y x ⎧+--=⎪-⎪⎨+--⎪=⎪-⎩∴ 直线PN 的斜率为4320000032000042882(34)n y x x x x k m x y x x -++--==---+ 从而直线PN 的方程为: 432000000320004288()2(34)x x x x y y x x y x x ++---=---+ 即3200043200002(34)14288y x x x y x x x x --+=+++--从而直线PN 恒过定点(1,0)G 二、恒为定值问题例3. 已知椭圆两焦点1F 、2F 在y 轴上,短轴长为22,离心率为22,P 是椭圆在第一象限弧上一点,且121PF PF ⋅=,过P 作关于直线F 1P 对称的两条直线PA 、PB 分别交椭圆于A 、B 两点。
圆锥曲线中的定值与最值问题一.圆锥曲线中的定点、定值、定直线问题是高考命题的一个热点,也是圆锥曲线问题中的一个难点.解决这个难点的基本思想是函数思想,可以用变量表示问题中的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系等不受变量所影响的一个值,就是要求的定值.具体地说,就是将要证明或要求解的量表示为某个合适变量的函数,化简消去变量即得定值.在圆锥曲线中,某些几何量在特定的关系结构中,不受相关变元的制约而恒定不变,则称该变量具有定值特征.解答此类问题的基本策略有以下两种:1、把相关几何量的变元特殊化,在特例中求出几何量的定值,再证明结论与特定状态无关.2、把相关几何量用曲线系里的参变量表示,再证明结论与求参数无关.例1:过抛物线m :2y ax =(a >0)的焦点F 作直线l 交抛物线于,P Q 两点,若线段PF 与FQ 的长分别为,p q ,则11p q --+的值必等于( ). A.2a B.12aC.4aD.4a解法1:(特殊值法)令直线l 与x 轴垂直,则有l :14y a=12p q a ⇒==,所以有114p q a --+=解法2:(参数法)如图1,设11(,)P x y ,22(,)Q x y 且PM ,QN 分别垂直于准线于,M N .114p PM y a ==+,214q QN y a ==+抛物线2y ax =(a >0)的焦点1(0,)4F a,准线14y a =-. ∴ l :14y kx a =+又由m l ⋂,消去x 得222168(12)10a y a k y -++=∴212122121,216k y y y y a a ++==, ∴221212221111,()4164k k p q pq y y y y a a a a +++==+++=∴114p q a --+=. 例2:过抛物线22y px =(p >0)上一定点000(,)(P x y y >0),作两条直线分别交抛物线于11(,)A x y ,22(,)B x y ,求证:PA 与PB 的斜率存在且倾斜角互补时,直线AB 的斜率为非零常数.【解析】设直线PA 的斜率为PA K ,直线PB 的斜率为PB K .由2112y px = 2002y px =相减得,101010()()2()y y y y p x x -+=- 故1010102PAy y p K x x y y -==-+ 10()x x ≠同理可得,2020202PB y y p K x x y y -==-+ 20()x x ≠由,PA PB 倾斜角互补知:PA PB K K =-∴102022p p y y y y =-++∴ 1202y y y +=-由2222y px = 2112y px =相减得,212121()()2()y y y y p x x -+=-∴ 21211200222AB y y p p p K x x y y y y -====--+-∴直线AB 的斜率为非零常数. 例3:已知定点0,0()M x y 在抛物线m :22y px =(p >0)上,动点,A B m ∈且0=•MB MA .求证:弦AB 必过一定点.【解析】设AB 所在直线方程为:x my n =+.与抛物线方程22y px =联立,消去x 得2220y pmy pn --=.设11(,)A x y ,22(,)B x y 则122y y pm +=① 122y y pn =-②由已知0=•MB MA 得,1MA MB K K =-.即102010201y y y y x x x x --=---g ③∵221010101011()()()22x x y y y y y y p p -=-=-+ 222020202011()()()22x x y y y y y y p p-=-=-+∴③式可化为1020221p py y y y =-++g ,即221201204[()]p y y y y y y =-+++.将①②代入得,002n p my x =++.直线AB 方程化为:00002()2x my p x my m y y x p =+++=+++.∴直线AB 恒过点00(2,)x p y +-.【例4】(2012·湖南)在直角坐标系xOy 中,曲线C 1上的点均在圆C 2:(x -5)2+y 2=9外,且对C 1上任意一点M ,M 到直线x =-2的距离等于该点与圆C 2上点的距离的最小值.(1)求曲线C 1的方程;(2)设P (x 0,y 0)(y 0≠±3)为圆C 2外一点,过P 作圆C 2的两条切线,分别与曲线C 1相交于点A ,B 和C ,D .证明:当P 在直线x =-4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值.[审题视点] (1)直接根据曲线与方程的概念求解,或者转化为根据抛物线的定义求解均可;(2)首先建立圆的两条切线的斜率与点的坐标之间的关系,其次把圆的切线方程与抛物线方程联立消元,根据根与系数的关系得出纵坐标之和和纵坐标之积,最后从整体上消去参数(圆的切线斜率)即可得证.(1)解 法一 设M 的坐标为(x ,y ),由已知得|x +2|=x -52+y 2-3.易知圆C 2上的点位于直线x =-2的右侧,于是x +2>0,所以x -52+y 2=x +5.化简得曲线C 1的方程为y 2=20x .法二 由题设知,曲线C 1上任意一点M 到圆心C 2(5,0)的距离等于它到直线x =-5的距离.因此,曲线C 1是以(5,0)为焦点,直线x =-5为准线的抛物线.故其方程为y 2=20x .(2)证明 当点P 在直线x =-4上运动时,P 的坐标为(-4,y 0),又y 0≠±3,则过P 且与圆C 2相切的直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为y -y 0=k (x +4),即kx -y +y 0+4k =0.于是|5k +y 0+4k |k 2+1=3.整理得72k 2+18y 0k +y 20-9=0.①设过P 所作的两条切线PA ,PC 的斜率分别为k 1,k 2,则k 1,k 2是方程①的两个实根,故k 1+k 2=-18y 072=-y 04.②由⎩⎪⎨⎪⎧k 1x -y +y 0+4k 1=0,y 2=20x 得k 1y 2-20y +20(y 0+4k 1)=0.③设四点A ,B ,C ,D 的纵坐标分别为y 1,y 2,y 3,y 4,则y 1,y 2是方程③的两个实根,所以y 1y 2=20y 0+4k 1k 1.④同理可得y 3y 4=20y 0+4k 2k 2.⑤于是由②,④,⑤三式得y 1y 2y 3y 4=400y 0+4k 1y 0+4k 2k 1k 2=400[y 20+4k 1+k 2y 0+16k 1k 2]k 1k 2=400y 20-y 20+16k 1k 2k 1k 2=6 400.所以,当P 在直线x =-4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值6 400. 【例5】已知椭圆C 的离心率3e =,长轴的左右端点分别为()1A 2,0-,()2A 2,0。
最值、范围、证明问题典例精析:考点一最值问题圆锥曲线中的最值问题一直是高考命题的热点,各种题型都有,命题角度很广,归纳起来常见的命题角度有:(1)转化为函数利用基本不等式或二次函数求最值;(2)利用三角函数有界性求最值;(3)数形结合利用几何性质求最值.角度一转化为函数求最值例1:已知抛物线C的顶点为O(0,0),焦点为F(0,1).(1)求抛物线C的方程;(2) 过点F作直线交抛物线C于A,B两点.若直线AO,BO分别交直线l:y =x-2于M,N两点,求|MN|的最小值.角度二 利用有界性求最值例2:过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是坐标原点,则|AF |·|BF |的最小值是( )A .2 B.2C .4 D .2 2角度三 利用几何性质求最值例3:已知P 为双曲线C :x 29-y 216=1上的点,点M 满足|OM |=1,且OM ·PM =0,则当|PM |取得最小值时的点P 到双曲线C 的渐近线的距离为( )A.95B.125C.4D.5 [类题通法]圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何方法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.考点二 范围问题例4:已知椭圆C :x 2a 2+y 2b2=1(a >b >0)上的任意一点到它的两个焦点(-c,0),(c,0)的距离之和为22,且它的焦距为2.(1)求椭圆C 的方程;(2)已知直线x -y +m =0与椭圆C 交于不同的两点A ,B ,且线段AB 的中点不在圆x 2+y 2=59内,求m 的取值范围.[类题通法]求范围问题的关键是建立求解关于某个变量的目标函数,通过求这个函数的值域确定目标的范围.在建立函数的过程中要根据题目的其他已知条件,把需要的量都用我们选用的变量表示,有时为了运算的方便,在建立关系的过程中也可以采用多个变量,只要在最后结果中把多变量归结为单变量即可,同时要特别注意变量的取值范围.变式练习:设点A 1,A 2分别为椭圆x 2a 2+y 2b2=1(a >b >0)的左、右顶点,若在椭圆上存在异于点A 1、A 2的点P ,使得PO ⊥P A 2,其中O 为坐标原点,则椭圆的离心率e 的取值范围是________.考点三证明问题例5:设椭圆E :x 2a 2+y 21-a 2=1的焦点在x 轴上. (1)若椭圆E 的焦距为1,求椭圆E 的方程;(2)设F 1,F 2分别是椭圆E 的左、右焦点,P 为椭圆E 上第一象限内的点,直线F 2P 交y 轴于点Q ,并且F 1P ⊥F 1Q .证明:当a 变化时,点P 在某定直线上.[类题通法]圆锥曲线中的证明问题多涉及证明定值点在定直线上等,有时也涉及一些否定性命题,证明方法一般是采用直接法或反证法.变式训练:直线y =kx +m (m ≠0)与椭圆W :x 24+y 2=1相交于A ,C 两点,O 是坐标原点.(1)当点B的坐标为(0,1),且四边形OABC为菱形时,求AC的长;(2)当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形.第三课时定点、定值、探索性问题典例精析:考点一定点问题例1:已知动圆过定点A(4,0),且在y轴上截得弦MN的长为8.(1)求动圆圆心的轨迹C的方程;(2)已知点B(-1,0),设不垂直于x轴的直线l与轨迹C交于不同的两点P,Q,若x轴是∠PBQ的角平分线,证明直线l过定点.[类题通法]1.求解直线和曲线过定点问题的基本思路是:把直线或曲线方程中的变量x,y当作常数看待,把方程一端化为零,既然是过定点,那么这个方程就要对任意参数都成立,这时参数的系数就要全部等于零,这样就得到一个关于x,y的方程组,这个方程组的解所确定的点就是直线或曲线所过的定点.2.由直线方程确定定点,若得到了直线方程的点斜式:y-y0=k(x-x0),则直线必过定点(x0,y0);若得到了直线方程的斜截式:y=kx+m,则直线必过定点(0,m).变式训练:如图,已知抛物线C:y2=4x,过点A(1,2)作抛物线C的弦AP,AQ.若AP⊥AQ,证明:直线PQ过定点,并求出定点的坐标.考点二定值问题例2:椭圆C:x2a2+y2b2=1(a>b>0)的离心率e=32,a+b=3.(1)求椭圆C的方程;(2)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意一点,直线DP交x轴于点N,直线AD交BP于点M,设BP的斜率为k,MN的斜率为m.证明:2m-k为定值.[类题通法]1.解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等和题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值.2.求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.变式训练:已知抛物线y2=4x,过点M(0,2)的直线l与抛物线交于A,B两点,且直线l与x轴交于点C.(1)求证:|MA|,|MC|,|MB|成等比数列; (2)设MA =αAC ,MB =βBC ,试问α+β是否为定值?若是,求出此定值;若不是,请说明理由.考点三探究存在性问题 例3:已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)以抛物线y 2=8x 的焦点为顶点,且离心率为12. (1)求椭圆E 的方程;(2)若直线l :y =kx +m 与椭圆E 相交于A ,B 两点,与直线x =-4相交于Q 点,P 是椭圆E 上一点且满足OP =OA +OB (其中O 为坐标原点),试问在x 轴上是否存在一点T ,使得OP ·TQ 为定值?若存在,求出点T 的坐标及OP ·TQ 的值;若不存在,请说明理由.一题多变: 本例(2)中条件变为“过椭圆E 的右焦点F 2且与坐标轴不垂直的直线交椭圆于P ,Q 两点, 线段OF 2上是否存在点M (m,0)使得QP ·MP =PQ ·MQ ?若存在,求出实数m 的取值范围;若不存在,说明理由.[类题通法]解决存在性问题应注意以下几点存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论;(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件;(3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.。
圆锥曲线的定点、定值、围和最值问题会处理动曲线(含直线)过定点的问题;会证明与曲线上动点有关的定值问题;会按条件建“几法”求某些量的最值.一、主要知识及主要法:1.式出现,特殊法往往比较奏效。
2.对满足一定条件曲线上两点连结所得直线过定点或满足一定条件的曲线过定点问题,设该直线(曲线)上两点的坐标,利用坐标在直线(或曲线)上,建立点的坐标满足的程(组),求出相应的直线(或曲线),然后再利用直线(或曲线)过定点的知识加以解决。
3.解析几的最值和围问题,一般先根据条件列出所求目标的函数关系式,然后根据函数关系式的特征选用参数法、配法、判别式法、不等式法、单调性法、导数法以及三角函数最值法等求出它的最大值和最小值.二、精选例题分析【举例1】 (05改编)在平面直角坐标系xOy 中,抛物线2y x =上异于坐标原点O 的两不同动点A 、B 满足AO BO ⊥.(Ⅰ)求AOB △得重心G 的轨迹程;(Ⅱ)AOB △的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.【举例2】已知椭圆22142x y +=上的两个动点,P Q 及定点M ⎛ ⎝⎭,F 为椭圆的左焦点,且PF ,MF ,QF 成等差数列.()1求证:线段PQ 的垂直平分线经过一个定点A ;()2设点A 关于原点O 的对称点是B ,求PB 的最小值及相应的P 点坐标.【举例3】(06全国Ⅱ改编)已知抛物线24x y =的焦点为F ,A 、B 是抛物线上的两动点,且AF FB λ=(0λ>).过A 、B 两点分别作抛物线的切线(切线斜率分别为0.5x A ,0.5x B ),设其交点为M 。
(Ⅰ)证明FM AB ⋅为定值;(Ⅱ)设ABM △的面积为S ,写出()S f λ=的表达式,并求S 的最小值.问题4.直线m :1y kx =+和双曲线221x y -=的左支交于A 、B 两点,直线l 过点()2,0P -和线段AB 的中点M ,求l 在y 轴上的截距b 的取值围.(四)课后作业:1.已知椭圆22221x y a b+=(0a b >>)的右焦点为F ,过F 作直线与椭圆相交于A 、B 两点,若有2BF AF =,求椭圆离心率的取值围.2.过抛物线22y px =的顶点任意作两条互相垂直的弦OA 、OB求证:AB 交抛物线的对称轴上一定点.3.如图,在双曲线2211213y x -=的上支上有三点()11,A x y ()2,6B x ,()33,C x y ,它们与点()0,5F F AB C()1求13y y +的值;()2证明:线段AC 的垂直平分线经过某一定点,并求此点坐标.(六)走向高考:1.(05)已知椭圆1C 的程为1422=+y x ,双曲线2C 的左、右焦点分别为1C 的左、右顶点,而2C 的左、右顶点分别是1C 的左、右焦点.(Ⅰ)求双曲线2C 的程;(Ⅱ)若直线l :y kx =+1C 及双曲线2C 都恒有两个不同的交点,且l 与2C 的两个交点A 和B满足6<⋅OB OA (其中O 为原点),求k 的取值围.2.(06)P 是双曲线221916x y -=的右支上一点,,M N 分别是圆()2254x y ++= 和()2251x y -+=上的点,则PM PN -的最大值为.A 6 .B 7 .C 8 .D 93.(07)如图,中心在原点O 的椭圆的右焦点为()3,0F ,右准线l 的程为:12x =.()1求椭圆的程;()2在椭圆上任取三个不同点321,,P P P ,使133221FP P FP P FP P ∠=∠=∠证明:123111FP FP FP ++为定值,并求此定值.4.(05全国Ⅰ)已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OA OB +与(3,1)a =-共线。
第23讲圆锥曲线中定点定值定直线问题【考点分析】考点一:直线过定点问题①设直线为m kx y +=,根据题目给出的条件找出m 与k 之间的关系即可②求出两点的坐标(一般含参数),再求出直线的斜率,利用点斜式写出直线的方程,再化为()()n m x k f y +-=的形式,即可求出定点。
考点二:定值问题探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.③求斜率,面积等定值问题,把斜率之和,之积,面积化为坐标之间的关系,再用韦达定理带入化简一般即可得到定值考点三:定直线问题①一般设出点的坐标,写出两条直线的方程,两直线的交点及两个直线中的y x ,相同,然后再用韦达定理带入化简即可得y x ,的关系即为定直线【题型目录】题型一:直线圆过定点问题题型二:斜率面积等定值问题题型三:定直线问题【典型例题】题型一:直线过定点问题【例1】已知点()1,1P 在椭圆()2222:10x y C a b a b+=>>上,椭圆C 的左右焦点分别为1F ,2F ,12PF F △的面(1)求椭圆C 的方程;(2)设点A ,B 在椭圆C 上,直线PA ,PB 均与圆()222:01O x y r r +=<<相切,记直线PA ,PB 的斜率分别为1k ,2k .(i )证明:121k k =;(ii )证明:直线AB 过定点.若10m k +-=,则直线():111AB y kx k k x =+-=-+,此时AB 过点P ,舍去.若330m k ++=,则直线():3333AB ykx k k x =--=--,此时AB 恒过点()3,3-,所以直线AB 过定点()3,3-.【例2】已知椭圆()2222:10x y C a b a b +=>>,一个焦点1F 与抛物线2y =-的焦点重合.(1)求椭圆C 的方程;(2)若直线:l y kx m =+交C 于,A B 两点,直线1F A 与1F B 关于x 轴对称,证明:直线l 恒过一定点.【例3】已知椭圆22:1(0)C a b a b+=>>的上顶点为P ,右顶点为Q ,其中POQ △的面积为1(O 为原点),椭圆C(1)求椭圆C 的方程;(2)若不经过点P 的直线l 与椭圆C 交于A ,B 两点,且0PA PB ⋅=,求证:直线l 过定点.【例4】已知椭圆C :221(0)x y a b a b+=>>过点()2,0A -.右焦点为F ,纵坐标为2的点M 在C 上,且AF ⊥MF .(1)求C 的方程;(2)设过A 与x 轴垂直的直线为l ,纵坐标不为0的点P 为C 上一动点,过F 作直线PA 的垂线交l 于点Q ,证明:直线PQ 过定点.【点睛】求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;(2)“一般推理,特殊求解”即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.【例5】已知椭圆C :22221x y a b +=(0a b >>)的离心率为2,其左、右焦点分别为1F ,2F ,T 为椭圆C 上任意一点,12TF F △面积的最大值为1.(1)求椭圆C 的标准方程;(2)已知()0,1A ,过点10,2⎛⎫⎪⎝⎭的直线l 与椭圆C 交于不同的两点M ,N ,直线AM ,AN 与x 轴的交点分别为P ,Q ,证明:以PQ 为直径的圆过定点.【题型专练】1.已知椭圆()2222:10x y C a b a b+=>>的短轴长为A 到右焦点F 的距离为3.(1)求椭圆C 的方程(2)设直线l 与椭圆C 交于不同两点M ,N (不同于A ),且直线AM 和AN 的斜率之积与椭圆的离心率互为相反数,求证:l 经过定点.2.已知椭圆()2222:10x y C a b a b +=>>的离心率为3,且过点()3,1A .(1)求椭圆C 的方程;(2)点M ,N 在椭圆C 上,且AM AN ⊥.证明:直线MN 过定点,并求出该定点坐标.3.已知椭圆22:1(0)x y E a b a b+=>>的左,右焦点分别为1F ,2F ,且1F ,2F 与短轴的两个端点恰好为正方形的四个顶点,点2P ⎛ ⎝⎭在E 上.(1)求E 的方程;(2)过点2F 作互相垂直且与x 轴均不重合的两条直线分别交E 于点A ,B 和C ,D ,若M ,N 分别是弦AB ,CD 的中点,证明:直线MN 过定点.4.焦距为2c 的椭圆2222:1x y a bΓ+=(a >b >0),如果满足“2b =a +c ”,则称此椭圆为“等差椭圆”.(1)如果椭圆2222:1x y a b Γ+=(a >b >0)是“等差椭圆”,求b a的值;(2)对于焦距为12的“等差椭圆”,点A 为椭圆短轴的上顶点,P 为椭圆上异于A 点的任一点,Q 为P 关于原点O 的对称点(Q 也异于A ),直线AP 、AQ 分别与x 轴交于M 、N 两点,判断以线段MN 为直径的圆是否过定点?说明理由.题型二:斜率面积等定值问题【例1】动点M 与定点(1,0)A 的距离和M 到定直线4x =的距离之比是常数12.(1)求动点M 的轨迹G 的方程;(2)经过定点(2,1)M -的直线l 交曲线G 于A ,B 两点,设(2,0)P ,直线PA ,PB 的斜率分别为1k ,2k ,求证:12k k +恒为定值.【例2】已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F ,2F ,点()0,1Q x 在椭圆上且位于第一象限,12QF F 121QFQF ⋅=-.(1)求椭圆C 的标准方程;(2)若M ,N 是椭圆C 上异于点Q 的两动点,记QM ,QN 的倾斜角分别为α,β,当αβπ+=时,试问直线MN 的斜率是否为定值?若是,请求出该定值;若不是,请说明理由.【例3】已知点()2,1P -在椭圆2222:1(0)x yC a b a b +=>>上,C的长轴长为:l y kx m =+与C 交于,A B 两点,直线,PA PB 的斜率之积为14.(1)求证:k 为定值;(2)若直线l 与x 轴交于点Q ,求22||QA QB +的值.【例4】已知椭圆()22:10x y C a b a b+=>>的离心率23e =,且椭圆C 的右顶点与抛物线212y x =的焦点重合.(1)求椭圆C 的方程.(2)若椭圆C 的左、右顶点分别为12,A A ,直线():1l y k x =-与椭圆C 交于E ,D 两点,且点E 的纵坐标大于0,直线12,A E A D 与y 轴分别交于()()0,,0,P Q P y Q y 两点,问:P Qy y 的值是否为定值?若是,请求出该定值;若不是,请说明理由.【例5】已知椭圆()22:10x y C a b a b+=>>的左、右顶点分别为,A B ,且AB 4=,离心率为12,O 为坐标原点.(1)求椭圆C 的方程;(2)设P 是椭圆C 上不同于,A B 的一点,直线,PA PB 与直线4x =分别交于点,M N .证明:以线段MN 为直径作圆被x 轴截得的弦长为定值,并求出这个定值.【例6】已知P 为圆22:4M x y +=上一动点,过点P 作x 轴的垂线段,PD D 为垂足,若点Q 满足DQ =.(1)求点Q 的轨迹方程;(2)设点Q 的轨迹为曲线C ,过点()1,0N -作曲线C 的两条互相垂直的弦,两条弦的中点分别为E F 、,过点N 作直线EF 的垂线,垂足为点H ,是否存在定点G ,使得GH 为定值?若存在,求出点G 的坐标;若不存在,请说明理由..【点睛】方法点睛:直线与圆锥曲线位置关系的题目,往往需要联立两者方程,利用韦达定理解决相应关系,其中的计算量往往较大,需要反复练习,做到胸有成竹.【例7】已知椭圆C :()222210x y a b a b+=>>的右焦点为,F P 在椭圆C 上,PF 的最大值与最小值分别是6和2.(1)求椭圆C 的标准方程.(2)若椭圆C 的左顶点为A ,过点F 的直线l 与椭圆C 交于,B D (异于点A )两点,直线,AB AD 分别与直线8x =交于,M N 两点,试问MFN ∠是否为定值?若是,求出该定值;若不是,请说明理由.【题型专练】1.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,点(1,0)F 为椭圆的右焦点,点P 在椭圆上,且在x 轴上方,PF x ⊥轴,斜率为12的直线l 交C 于,M N 两点,(1)若直线l 过点F ,求PMN 的面积.(2)直线PM 和PN 的斜率分别为1k 和2k ,当直线l 平行移动时,12k k +是否为定值?若是,请求出该定值,若不是,请说明理由.【点睛】方法点睛:探究性问题求解的思路及策略:(1)思路:先假设存在,推证满足条件的结论,若结论正确则存在;若结论不正确则不存在.(2)策略:①当条件和结论不唯一时要分类讨论;②当给出结论而要推导出存在的条件时,先假设成立,再推出条件;③当条件和结论都不知,按常规法解题很难时,可先由特殊情况探究,再推广到一般情况.2.已知椭圆C :()222210x y a b a b+=>>过点()2,1D ,且该椭圆长轴长是短轴长的二倍.(1)求椭圆C 的方程;(2)设点D 关于原点对称的点为A ,过点()4,0B -且斜率存在的直线l 交椭圆C 于点M ,N ,直线MA ,NA 分别交直线4x =-于点P ,Q ,求证PBBQ为定值.3.如下图,过抛物线22(0)y px p =>上一定点000(,)(0)P x y y >,作两条直线分别交抛物线于11(,)A x y ,22(,)B x y .(1)求该抛物线上纵坐标为2p的点到其焦点F 的距离;(2)当PA 与PB 的斜率存在且倾斜角互补时,求12+y y y 的值,并证明直线AB 的斜率是非零常数.4.如图,椭圆214x y +=的左右焦点分别为1F ,2F ,点()00,P x y 是第一象限内椭圆上的一点,经过三点P ,1F ,2F 的圆与y 轴正半轴交于点()10,A y ,经过点(3,0)B 且与x 轴垂直的直线l 与直线AP 交于点Q .(1)求证:011y y =.(2)试问:x 轴上是否存在不同于点B 的定点M ,满足当直线MP ,MQ 的斜率存在时,两斜率之积为定值?若存在定点M ,求出点M 的坐标及该定值;若不存在,请说明理由.【答案】(1)证明见解析;(2)存在点4,03M ⎛⎫⎪⎝⎭,可使得直线MP 与MQ 的斜率之积为定值,该定值为920-.【分析】(1)设()00,P x y 、圆的方程222()(0)x y b r r +-=>,代入()3,0-、()00,x y 及()10,A y 可解得101y y =,即可证;(2)设(,0)(3)M m m ≠,由A ,P ,Q 三点共线AP AQ k k =得Q y ,即可表示出MP MQ k k ⋅讨论定值是否存在.【详解】(1)由2214x y +=可得()13,0F -,()23,0F 设()00,P x y ,则220044x y +=,设圆的方程为2220()(0)+-=>x y b r r ,代入()13,0F -及()00,x y ,得()2202220003b rx y b r⎧+=⎪⎨+-=⎪⎩,两式相减,得22220000000003443113222⎛⎫+--+-===- ⎪⎝⎭x y y y b y y y y ,所以圆的方程为022230+--=x y b y 即22001330x y y y y ⎛⎫++--= ⎪⎝⎭,令0x =,得2001330y y y y ⎛⎫+--= ⎪⎝⎭,由10y >,可得101y y =,即011y y =.5.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,点(1,0)F 为椭圆的右焦点,点P 在椭圆上,且在x 轴上方,PF x ⊥轴,斜率为12的直线l 交C 于,M N 两点,(1)若直线l 过点F ,求PMN 的面积.(2)直线PM 和PN 的斜率分别为1k 和2k ,当直线l 平行移动时,12k k +是否为定值?若是,请求出该定值,若不是,请说明理由.6.已知椭圆22Γ:1a b+=()0a b >>的左焦点为()1,0F -,左、右顶点及上顶点分别记为A 、B 、C ,且1CF CB ⋅= .(1)求椭圆Γ的方程;(2)设过F 的直线PQ 交椭圆Γ于P 、Q 两点,若直线PA 、QA 与直线l :40x +=分别交于M 、N 两点,l 与x 轴的交点为K ,则MK KN ⋅是否为定值?若为定值,请求出该定值;若不为定值,请说明理由.7.已知平面上一动点P 到()2,0F 的距离与到直线6x =的距离之比为3.(1)求动点P 的轨迹方程C ;(2)曲线C 上的两点()11,A x y ,()22,B x y ,平面上点()2,0E -,连结PE ,PF 并延长,分别交曲线C 于点A ,B ,若1PE EA λ= ,2PF FB λ=,问,12λλ+是否为定值,若是,请求出该定值,若不是,请说明理由.8.已知椭圆2:14x C y +=,过点0,2M ⎛⎫- ⎪⎝⎭直线1l ,2l 的斜率为1k ,2k ,1l 与椭圆交于()11,A x y ,()22,B x y 两点,2l 与椭圆交于()33,C x y ,()44,D x y 两点,且A ,B ,C ,D 任意两点的连线都不与坐标轴平行,直线12y =-交直线AC ,BD 于P ,Q .(1)求证:1122341234k x x k x x x x x x =++;(2)PM QM的值是否是定值,若是,求出定值;若不是,请说明理由.【答案】(1)证明见解析9.已知椭圆22:1(0)x y C a b a b+=>>的左、右焦点分别为12,,F F 且离心率为12,椭圆C 的长轴长为4.(1)求椭圆C 的标准方程;(2)设,A B 分别为椭圆的左、右顶点,过点B 作x 轴的垂线1l ,D 为1l 上异于点B 的一点,以线段BD 为直径作圆E ,若过点2F 的直线2l (异于x 轴)与圆E 相切于点H ,且2l 与直线AD 相交于点,P 试判断1PF PH +是否为定值,并说明理由.))可知()()()222,0,2,0,1,0A B F F H -=,112212PF PH PF PF F H PF PF +=+-=+()()2,0,E m m ≠则()2,2,D m 圆E 的半径为则直线AD 直线方程为(2)2my x =+,的方程为1,x ty =+10.已知椭圆()22:10x y C a b a b+=>>的左顶点和上顶点分别为A 、B ,直线AB 与圆22:3O x y +=相切,切点为M ,且2AM MB =.(1)求椭圆C 的标准方程;(2)过圆O 上任意一点P 作圆O 的切线,交椭圆C 于E 、F 两点,试判断:PE PF ⋅是否为定值?若是,求出该值,并证明;若不是,请说明理由.11.已知椭圆22:1(0)x y C a b a b+=>>,左、右焦点分别为()11,0F -、()21,0F ,左、右顶点分别为,A B ,若T 为椭圆上一点,12FTF ∠的最大值为π3,点P 在直线4x =上,直线PA 与椭圆C 的另一个交点为M ,直线PB 与椭圆C 的另一个交点为N ,其中,M N 不与左右顶点重合.(1)求椭圆C 的标准方程;(2)从点A 向直线MN 作垂线,垂足为Q ,证明:存在点D ,使得DQ 为定值.题型三:定直线问题【例1】已知如图,长为宽为12的矩形ABCD,以为,A B焦点的椭圆2222:1x yMa b+=恰好过,C D两点,(1)求椭圆M的标准方程;(2)根据(1)所得椭圆M的标准方程,若AB是椭圆M的左右顶点,过点(1,0)的动直线l交椭圆M与CD两点,试探究直线AC与BD的交点是否在一定直线上,若在,请求出该直线方程,若不在,请说明理由.【例2】已知椭圆:C22221x ya b+=(0a b>>)的离心率为23,且⎭为C上一点.(1)求C的标准方程;(2)点A,B分别为C的左、右顶点,M,N为C上异于A,B的两点,直线MN不与坐标轴平行且不过坐标原点O,点M关于原点O的对称点为M',若直线AM'与直线BN相交于点P,直线OP与直线MN相交于点Q,证明:点Q位于定直线上.【例3】已知1F 为椭圆2222:1(0)x y C a b a b+=>>的左焦点,直线y =与C 交于A ,B 两点,且1ABF 的周长为4+ 2.(1)求C 的标准方程;(2)若(2,1)P 关于原点的对称点为Q ,不经过点P 且斜率为12的直线l 与C 交于点D ,E ,直线PD 与QE 交于点M ,证明:点M 在定直线上.【答案】(1)22182x y +=(2)证明见解析【分析】(1)将22y b =代入曲线C 的方程中求得||2AB a =,继而由三角形的面积公式得4ab =.再由椭圆的对称性和椭圆的定义得()22442a +=+,由此可求得C 的标准方程;(2)设()11,D x y ,()22,E x y ,直线l 的方程为12y x m =+,0m ≠,联立直线l 与椭圆C 的方程,并消去y 得222240x mx m ++-=,得出直线PD 的方程,直线QE 的方程,联立直线PD 与直线QE 的方程,求得点M 的坐标,继而求得12M M y x =-,可得证.(1)解:将22y b =代入2222:1(0)x y C a b a b +=>>中,解得22x a =±,则||2AB a =,所以1ABF 的面积为1222222ab a b ⨯⨯==,所以4ab =.①设C 的右焦点为2F ,连接2AF ,由椭圆的对称性可知12BF AF =,所以1ABF 的周长为()1112||||22AB AF BF AB AF AF a ++=++=+,所以()22442a +=+,②由①②解得22a =,2b =,所以C 的标准方程为22182x y +=.(2)解:设()11,D x y ,()22,E x y ,直线l 的方程为12y x m =+,0m ≠,联立直线l 与椭圆C 的方程,并消去y 得222240x mx m ++-=,【题型专练】1.已知椭圆C :()222210x y a b a b +=>>2H ⎛ ⎝⎭是C 上一点.(1)求C 的方程.(2)设A ,B 分别为椭圆C 的左、右顶点,过点()1,0D 作斜率不为0的直线l ,l 与C 交于P ,Q 两点,直线AP 与直线BQ 交于点M ,记AP 的斜率为1k ,BQ 的斜率为2k .证明:①1k k 为定值;②点M 在定直线上.2.已知()()1,0,1,0B C -为ABC 的两个顶点,P 为ABC 的重心,边,AC AB 上的两条中线长度之和为6.(1)求点P 的轨迹T 的方程.(2)已知点()()()3,0,2,0,2,0N E F --,直线PN 与曲线T 的另一个公共点为Q ,直线EP 与FQ 交于点M ,试问:当点P 变化时,点M 是否恒在一条定直线上?若是,请证明;若不是,请说明理由.3.已知椭圆C :()222210x y a b a b +=>>的离心率为2,左顶点为1A ,左焦点为1F ,上顶点为1B ,下顶点为2B ,M 为C 上一动点,11M AF △1.(1)求椭圆C 的方程;(2)过()0,2P 的直线l 交椭圆C 于D ,E 两点(异于点1B ,2B ),直线1B E ,2B D 相交于点Q ,证明:点Q 在一条平行于x 轴的直线上.。
圆锥曲线中的最值与定值问题圆锥曲线中的最值问题【考点透视】圆锥曲线的最值问题,常用以下方法解决:当题目的条件和结论能明显体现几何特征及意义,可考虑利用数形结合法解;函数值域求解法:当题目的条件和结论能体现一种明确的函数关系,则可先建立目标函数,再求这个函数的最值. 利用代数基本不等式,结合参数方程,利用三角函数的有界性。
【题型分析】1.已知P 是椭圆2214x y +=在第一象限内的点,A (2,0),B (0,1),O 为原点,求四边形OAPB 的面积的最大值分析:设P (2cos θ,sin θ),(0)2πθ <<,点P 到直线AB :x+2y=2的距离|)2|d πθ+-==≤(椭圆参数方程,三角函数,最值问题的结合)2.已知点M (-2,0),N (2,0),动点P满足条件||||PM PN -=记动点P 的轨迹为W .(Ⅰ)求W 的方程;(Ⅱ)若A ,B 是W 上的不同两点,O 是坐标原点,求OA OB ⋅的最小值. 解:(Ⅰ)依题意,点P 的轨迹是以M ,N 为焦点的双曲线的右支,所求方程为:22x y 122-= (x >0)(Ⅱ)当直线AB 的斜率不存在时,设直线AB 的方程为x =x 0, 此时A (x 0,B (x 0),OA OB ⋅=2 当直线AB 的斜率存在时,设直线AB 的方程为y =kx +b ,代入双曲线方程22x y 122-=中,得:(1-k 2)x 2-2kbx -b 2-2=0依题意可知方程1︒有两个不相等的正数根,设A (x 1,y 1),B (x 2,y 2),则2222122212244(1)(2)0201201k b k b kb x x k b x x k ⎧⎪∆=--•--≥⎪⎪+=>⎨-⎪⎪+=>⎪-⎩解得|k |>1, 又OA OB ⋅=x 1x 2+y 1y 2=x 1x 2+(kx 1+b )(kx 2+b )=(1+k 2)x 1x 2+kb (x 1+x 2)+b 2=2222k 242k 1k 1+=+-->2 综上可知OA OB ⋅的最小值为23.给定点A (-2,2),已知B 是椭圆2212516x y +=上的动点,F 是右焦点,当53AB BF +取得最小值时,试求B 点的坐标。
圆锥曲线的解题方法导语:定义中提到的定点,称为圆锥曲线的焦点;定直线称为圆锥曲线的准线;固定的常数(即圆锥曲线上一点到焦点与准线的距离比值)称为圆锥曲线的离心率;焦点到准线的距离称为焦准距;焦点到曲线上一点的线段称为焦半径。
过焦点、平行于准线的直线与圆锥曲线相交于两点,此两点间的线段称为圆锥曲线的通径,物理学中又称为正焦弦。
第一、圆锥曲线的解题方法:一、求圆锥曲线方程(1)轨迹法:设点建立方程,化简证明求得。
例题:动点P(x,y)到定点A(3,0)的距离比它到定直线x=—5的距离少2、求动点P的轨迹方程。
解析:依题意可知,{C},由题设知{C},{C}{C}。
(2)定义法:根据圆锥曲线的定义确定曲线的形状。
上述例题同样可以由定义法求出曲线方程:作直线x=—3,则点P到定点A与到定直线x=—3的距离相等,所以点P的轨迹是以A为焦点,以x=—3为准线的抛物线。
(3)待定系数法:通过题设条件构造关系式,待定参数即可。
例1:已知点(—2,3)与抛物线{C}的焦点的距离是5,则P=_____。
解析:抛物线{C}的焦点为{C},由两点间距离公式解得P=4例2:设椭圆{C}的右焦点与抛物线{C}的焦点相同,离心率为{C},则椭圆的方程为_____。
解析:抛物线{C}的焦点坐标为(2,0),所以椭圆焦半径为2,故离心率{C}得m=4,而{C},所以椭圆方程为{C}。
二、圆锥曲线最值问题(1)化为求二次函数的最值根据已知条件求出一个参数表示的二次函数解析式,用配方法求出在一定范围自变量下函数的最值。
例题:曲边梯形由曲线{C}及直线x=1,x=2所围成,那么通过曲线上哪一点作切线,能使此切线从曲边梯形上切出一个最大面积的普通梯形。
解析:设切点{C},求出切线方程{C},再求出这条切线与直线x=1,x=2的交点纵坐标,根据梯形面积公式列出函数关系式:梯形面积={C},从而得出结论。
(2)利用圆锥曲线性质求最值先利用圆锥曲线的定义性质列出关系式,再用几何或代数方法求最值。
圆锥曲线的定点、定值、范围和最值问题
会处理动曲线(含直线)过定点的问题;会证明与曲线上动点有关的定值问题;会按条件建
立目标函数,研究变量的最值问题及变量的取值范围问题,注意运用“数形结合”“几何法”求某些量的最值.
一、主要知识及主要方法:
1.在几何问题中,有些几何量与参数无关,这就构成了定值问题,解决这类问题一种思路是进行一般计算
证明或计算,即将该问题涉及的几何式转化为代数式或三角形式,证明该式是恒定的。
如果试题以客观题形式出现,特殊方法往往比较奏效。
2.对满足一定条件曲线上两点连结所得直线过定点或满足一定条件的曲线过定点问题,设该直线(曲线)
上两点的坐标,利用坐标在直线(或曲线)上,建立点的坐标满足的方程(组),求出相应的直线(或曲线),然后再利用直线(或曲线)过定点的知识加以解决。
3.解析几何的最值和范围问题,一般先根据条件列出所求目标的函数关系式,然后根据函数关系式的特征
选用参数法、配方法、判别式法、不等式法、单调性法、导数法以及三角函数最值法等求出它的最大值和最小值.
二、精选例题分析
【举例1】 (05广东改编)在平面直角坐标系xOy 中,抛物线2y x =上异于坐标原点O 的两不同动
点A 、B 满足AO BO ⊥.
(Ⅰ)求AOB △得重心G 的轨迹方程;
(Ⅱ)AOB △的面积是否存在最小值?若存在,请求出最小值;
若不存在,请说明理由.
【举例2】已知椭圆
2214
2x y +=上的两个动点,P Q 及定点M ⎛ ⎝⎭
,F 为椭圆的左焦点,且PF ,MF ,QF 成等差数列.()1求证:线段PQ 的垂直平分线经过一个定点A ;
()2设点A 关于原点O 的对称点是B ,求PB 的最小值及相应的P 点坐标.
【举例3】(06全国Ⅱ改编)已知抛物线2
4x y =的焦点为F ,A 、B 是抛物线上的两动点,且
AF FB λ=u u u r u u u r
(0λ>).过A 、B 两点分别作抛物线的切线(切线斜率分别为0.5x A ,0.5x B ),设其交点
为M 。
(Ⅰ)证明FM AB ⋅u u u u r u u u r
为定值;
(Ⅱ)设ABM △的面积为S ,写出()S f λ=的表达式,并求S 的最小值.
问题4.直线m :1y kx =+和双曲线221x y -=的左支交于A 、B 两点,直线l 过点()2,0P -和线段
AB 的中点M ,求l 在y 轴上的截距b 的取值范围.
(四)课后作业:
1.已知椭圆22
221x y a b
+=(0a b >>)的右焦点为F ,过F 作直线与椭圆相交于A 、B 两点,若有
2BF AF =,求椭圆离心率的取值范围.
2.过抛物线22y px =的顶点任意作两条互相垂直的弦OA 、OB
求证:AB 交抛物线的对称轴上一定点.
3.如图,在双曲线
22
11213
y x -=的上支上有三点()11,A x y
()2,6B x ,()33,C x y ,它们与点()0,5F ()1求13y y +的值;()2证明:线段AC 某一定点,并求此点坐标.
(六)走向高考:
1.(05重庆)已知椭圆1C 的方程为14
22
=+y x ,双曲线2C 的左、右焦点分别为1C 的左、右顶点,而2C 的左、右顶点分别是1C 的左、右焦点.(Ⅰ)求双曲线2C 的方程;
(Ⅱ)若直线l :y kx =+1C 及双曲线2C 都恒有两个不同的交点,且l 与2C 的两个交点A 和B
满足6<⋅(其中O 为原点),求k 的取值范围.
2.(06江西)P 是双曲线221916
x y -
=的右支上一点,,M N 分别是圆()2
254x y ++= 和()2
2
51x y -+=上的点,则PM PN -的最大值为
.A 6 .B 7 .C 8 .D 9
3.(07重庆)如图,中心在原点O 的椭圆的右焦点为()3,0F ,右准线l 的方程为:12x =.
()1求椭圆的方程;()2在椭圆上任取三个不同点321,,P P P ,使133221FP P FP P FP P ∠=∠=∠
证明:1
23111FP FP FP ++为定值,并求此定值.
4.(05全国Ⅰ)已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于
A 、
B 两点,OA OB +u u u r u u u r 与(3,1)a =-r
共线。
(Ⅰ)求椭圆的离心率;
(Ⅱ)设M 为椭圆上任意一点,且OM OA OB λμ=+u u u u r u u u r u u u r (,)R λμ∈,证明2
2μλ+为定值.
5.(05全国Ⅱ)P 、Q 、M 、N 四点都在椭圆2
2
12
y x +=上,F 为椭圆在y 轴正半轴上的焦点.已知PF u u u r 与
FQ u u u r 共线,MF u u u u r 与FN u u u r 共线,且0PF MF ⋅=u u u r u u u u r
.求四边形PMQN 的面积的最小值和最大值.
6.(04浙江)已知双曲线的中心在原点,右顶点为()1,0A ,点P 、Q 在双曲线的右支上,点(),0M m 到
直线AP 的距离为1,
()
1若直线AP 的斜率为k ,且k ∈⎣, 求实数m 的取值范围; ()
2当1m =
时,APQ △的内心恰好是点M ,求此双曲线的方程.
7.
(07重庆文)如图,倾斜角为α的直线经过抛物线x y 82=的焦点F ,且与抛物线交于A 、B 两点.
()1求抛物线的焦点F 的坐标及准线l 的方程;
()2若α
为锐角,作线段AB 的垂直平分线m 交x 轴于点P ,证
明:cos2FP FP α-为定值,并求此定值.
8.(07山东)已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.
(Ⅰ)求椭圆C 的标准方程;
(Ⅱ)若直线l :y kx m =+与椭圆C 相交于A ,B 两点(,A B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.
9.(08上海)已知双曲线2
2: 14x C y -=,P 为C 上的任意点。
(1)求证:点P到双曲线C的两条渐近线的距离的乘积是一个常数;
PA的最小值;
(2)设点A的坐标为(3,0),求||
10.(08安徽文)设椭圆22
22:1(0)x y C a b a b +=>>其相应于焦点(2,0)F 的准线方程为4x =. (Ⅰ)求椭圆C 的方程; (Ⅱ)已知过点1(2,0)F -倾斜角为θ的直线交椭圆C 于,A B 两点,求证:
22AB COS θ=-; (Ⅲ)过点1(2,0)F -作两条互相垂直的直线分别交椭圆C 于,A B 和,D E ,求AB DE +
的最小值。