初一上数学期末复习总结
- 格式:doc
- 大小:62.00 KB
- 文档页数:5
鲁教版七年级上册期末复习考点总结第一章生活中的轴对称1、判断给你的图形是否是轴对称图形。
2、找图形的对称轴,需要注意的是不要遗漏,找全了。
3、牵涉到尺规作图(如作已知角的角平分线,线段的垂直平分线,画等腰三角形,等边三角形),明确已知,求作,作法步骤一定要详细,写清楚怎么作的,注意要保留作图痕迹。
4、定理,重要的结论记清楚等,对应角相等轴对称图形对应线段相被对称轴垂直平分轴对称图形对应点连线角对的边是斜边的一半直角三角形,等角对等边线合一)等腰三角形的性质(三垂直平分线305、区分开轴对称图形和图像关于对称轴对称6、细心一些,知识点简单但是琐碎,简单也不能马虎。
第二章勾股定理1、一定要清楚勾股定理的探索这一节内容,利用的是面积法。
2、清楚“勾股定理”是什么?3、勾股数不是唯一的,有无数组,只要满足a b c a 2+b 2=c 2,就是一组勾股数。
3、注意多解问题4、结合生活中的勾股定理。
第三章实数1、无理数,有理数的区别2、平方根,算数平方根的区别,立方根3、牵涉到形式的变化,如(-4)2的算术平方根是?,25的平方根是?25-)(=?(5)2=?等问题要会抓住问题考查的实质4、正数,负数,零,是否有平方根,算术平方根,立方根?有的话有几个?5、比较大小时的问题,要清楚2≈1.414 3≈1.732 5≈2.236,会前后看看如4<17<5(4=16,5=25) 6、注意22不是分数,a 有意义,则a 是非正数7、注意有绝对值的题目。
第四章概率的初步认识1、常研究的问题,对象,摸球问题,掷硬币问题,掷正方体问题,转盘问题,2、注意,不重不漏。
3、树状图帮助理解。
第五章平面直角坐标系1、找准位置,联系对称图形找点的坐标2、关于x轴对称,y轴对称点的坐标怎么变得?图像关于x轴对称,关于y轴对称的新坐标。
3、注意多解问题,容易遗漏。
第六章一次函数1、函数的概念,x的取值范围一定标注,否则函数表达式没意义。
学生期末考试总结11篇学生期末考试总结 (1) 光阴似箭,日月如梭。
转眼间,一学期的学习即将结束了。
是令人紧张而又兴奋的日子——期末考试。
那天,我早早地起了床。
默默地背诵比较重要的课文。
毕竟,是期末考试,我不得不紧张。
大脑中的“弦”始终绷得紧紧的。
不敢有一丝的放松。
但是,在这最后的时光中,我还是犯了老毛病——马虎。
“天哪,八点半了!”我在心中默默的“大喊”。
数学考试开始了。
我开始很认真的写着题目,一道又一道难题被我攻克了。
只剩下应用题了!我骄傲的情绪在我心中慢慢滋生:我都用最慢的速度做题了,都已经做到了应用题了。
这些人还在做计算题。
最后一道应用题了。
我马虎和骄傲的情绪达到了“极致”。
心里很瞧不起这些同学。
竟然把“144—8”算成了“126”。
你说我是不是太马虎了!考试结束了。
我和同学校对答案,发现了应用题和一道填空题的错误,起码要扣8分。
我原来的骄傲不见了。
耳边仿佛响起了同学们的嘲笑:“还说要考一百分,才90而已啊!哈哈哈哈哈哈……”语文考试,我不敢放松。
因为数学真的是考的太差了。
拿到考试卷,我傻眼了。
六面的试卷,密密麻麻的题目,看得我是目瞪口呆。
还想考到95分以上。
连九十分都不一定有。
我用尽所有的脑细胞,才勉强做完了题目。
考试结果出来了。
让我大吃一惊。
数学:90分;语文:95.5分;英语100分。
两点让我吃惊:1、语文竟然考了95分以上;2、数学竟然只考了90分,全班前十都进不去。
悔恨和泪水,在我的心中荡漾。
许久许久,我没有能重新拾起自己的自信,没能面对我的失败。
学生期末考试总结 (2) 期末考试很重要,有时还意义非凡。
考好了,心里甜滋滋的,随之而来的是老师的赞扬、同学们的羡慕和父母的喜悦;考得不号,老师会失望,父母会生气,还可能会面对同学轻视得眼光和讥讽的话语。
以我微薄之见,考好则已,考不好也别灰心,如果上要考虑长辈的夸奖,下要考虑同学的冷嘲热讽,则必败无疑。
考好不骄,考不好不气馁,以平平和和的心态应考,反而能考好。
数学考试总结数学考试总结(精选25篇)总结在一个时期、一个年度、一个阶段对学习和工作生活等情况加以回顾和分析的一种书面材料,写总结有利于我们学习和工作能力的提高,让我们一起认真地写一份总结吧。
总结一般是怎么写的呢?以下是小编为大家收集的数学考试总结,希望能够帮助到大家。
数学考试总结篇1这次数学期末考试,我考了95分,感到挺满意,不过还需继续努力。
最近,我总结了一些学习方法来学习数学。
首先,应科学的进行复习。
我们不得不提到德国著名心理学家艾宾浩斯记忆规律曲线。
他在1885年发表了他的实验报告,论述了人类记忆的遗忘规律。
经过大量的实验,他发现遗忘并不是均衡分布的,而是先多后少、先快后慢。
经过测试得到一组数据:时间间隔记忆量刚刚记忆完毕100分钟后58.2%1小时后44.2%8-9个小时后35.8%1天后33.7%2天后27.8%6天后25.4%一个月后21.1%根据遗忘曲线,科学家们对复习时间做了很巧妙的设计,就是七次复习,按照这个时间去复习,会产生很好的记忆效果。
第一次复习20分钟下课前第二次复习1小时课间第三次复习2小时课间操第四次复习1天写作业第五次复习1周周末第六次复习1个月月考第七次复习3个月期中(期末)科学研究表明,如果你严格按照这个时间去复习的话,可以节省70%的时间,保持的记忆量达到90%以上。
学习数学还需多做练习,每天限制做作业的时间,如果还有剩余时间,应多做课外习题,这点我在今年并没有做到,下半年要多严格要求自己。
还要做错题本,做错的题目应抄在专门的错题本中,并且要坚持下来,才能有效的学好数学,定期的查缺补漏,在考试前看看,促使自己做到:“做过一遍不再错”的使命。
还应当在题前做好标记,在“完全弄懂保证以后不会错”的题前标“”,在“不完全明白以后有可能再错”的题前标“?”,在“不知道为什么错一直没弄懂”的题前打“△”,定期复习并弄懂其做法,还可以进行总结。
我们每周都会进行一次周练,我们不仅要做错题本,还要进行反思,尽量把不懂的弄懂,如果还觉得困难,可以和同学、老师进行讨论,不能“不懂装懂”,这十分重要。
湘教版初一数学期末总复习——第一章至第三章一. 教学内容:期末总复习——第一章至第三章二. 重点、难点:重点:《有理数》一章的概念的理解,有理数大小的比较,有理数运算《代数式》一章的概念的理解与运用代数式的表示方法、列代数式、求代数式的值、去括号法则、一类代数式的加减、《图形欣赏与操作》这一章的概念及运用、简单几何体的对称性、三视图的画法、七巧板的拼摆。
难点:科学记数法,两负数的大小的比较、有理数的乘方与混合运算、用字母表示规律列代数式、去括号法则的运用、画三视图或通过立体图的三视图再去画立体图、拼七巧板、光源与投影的相关知识。
三. 教学知识要点:1. 第一章《有理数》知识网络的回忆①正数和负数可表示具有相反意义的量,假如向东走5米记为+5米,则向西走4米记作-4米,其中“+5米”与“-4米”是一对具有相反意义的量。
正数比0大,如4,6,19,π,……负数比0小,前面有一个“-”号,如-3,-7,-π,……0在此表示正数与负数的分界点,既不是正数,也不是负数。
②有理数分类⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧------⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧--- 08.523.15.0117542152.90.015.0001184531791980700131.a ,,,,,负分数,,,,,,正分数分数),,,负整数(如),,,,正整数(如整数有理数注意:分数中包含可以化成分数的小数。
无限不循环小数不可化成分数,它不包含在分数内,如π就是无限不循环小数,它不是分数,当然也不是整数,所以π不是有理数。
⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧------⎪⎩⎪⎨⎧),,,负分数(),,,负整数(负有理数),,,正分数(),,,,正整数(正有理数有理数 08.277.04110152007.71.0215421.b③数轴是规定了原点、正方向、单位长度的直线。
所有有理数可用数轴上的点表示,但数轴上的点表示的数不一定是有理数。
FB第一讲《全等三角形的性质和判定》1、知识点回顾:(1) 、全等三角形的性质:全等三角形的对应边相等,对应角相等;周长和面积相等;平移、旋转、对称前后的图形相等(2) 、全等三角形判定定理:SSS:两三角形三条边对应相等,那么这两个三角形全等SAS:如果两个三角形的两边及其这两边的夹角对应相等,那么这两个三角形全等 ASA:如果两个三角形的两个角及其夹边对应相等,那么这两个三角形全等 AAS:如果两个三角形的两个角及其一个角对应边对应相等,那么这两个三角形全等 HL :如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个三角形全等2、经典随堂测回顾复习【测 1】 如图,△ABC ≌△DEF ,∠A=35°,∠B=55°,求∠DFE 的度数.【测 2】 如图, AC ∥ DE , BC ∥ EF , AC = DE .求证: AF = BD .EADC3、复习题1.如图,两个三角形为全等三角形,则∠α的度数是()A.72° B.60° C.58° D.50°2.如图,在△ABC 中,D、E 分别是AC、AB 上的点,在△ADE≌△BDE≌△BDC,则∠A 的度数是()A.15° B.20° C.25° D.30°3.如图,Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∠D=28°,求∠GBF 的度数.4.如图,A、D、E 三点在同一直线上,且△BAD≌△ACE,试说明:(1)BD=DE+CE;(2)△ABD 满足什么条件时,BD∥CE?5.如图所示,△ABD≌△ACD,∠BAC=90°.(1)求∠B;(2)判断AD 与BC 的位置关系,并说明理由.第二讲《全等三角形的经典模型》1、知识点回顾:(1)、平移型全等模型:一个三角形经过平移所得另外一个三角形,则这两个三角形全等(2)、对称型全等模型:一个三角形经过一条对称轴翻折所得另外一个三角形,则这两个三角形全等(3)、旋转型全等模型:一个三角形经过一点旋转所得另外一个三角形,则这两个三角形全等(4)、全等三角形添加辅助线的基本作图方法:A、连接****B、延长**到**,使****=****C、延长***交****的延长线于**D、在***上,截取***=***,连接***E、过点*,作**的平行线,与***交于点*F、过点*,作**的垂线,垂足为点*2、经典随堂测回顾复习【测 1】(1)如图⑴,若AB =CD ,A、E、F、C 在一条直线上,AE =CF ,过E、F 分别作DE ⊥AC ,BF ⊥AC .求证:BD 平分EF .⑵ 若将△DEC 的边EC 沿AC 方向移动到图⑵的位置时,其他条件不变,上述结论是否成立?请说明理由.【测 2】如图,AB =AE ,∠ABC =∠AED ,BC =ED ,点F 是CD 的中点.求证:AF ⊥CD ;3、复习题1.如图:若△ABE≌△ACF,且AB=5,AE=2,则EC 的长为()A.2 B.3 C.5 D.2.52.如图,△AOC≌△BOD,点A 与点B 是对应点,那么下列结论中错误的是()A.∠A=∠BB.AO=BO C.AB=CD D.AC=BD3.如图,已知△ABC≌△ADC,∠BAD=120°,∠ACD=25°,求∠B 的大小.4.如图,已知△ABC≌△DBE,点D 在AC 上,BC 与DE 交于点P,若AD=DC=2.4,BC=4.1.(1)若∠ABE=162°,∠DBC=30°,求∠CBE 的度数;(2)求△DCP 与△BPE 的周长和.5.如图,AB、CD 相交于点O,△AOB≌△DOC,且∠A=80°,∠DOC=30°,BO=23,AO=18,求∠DC0 的度数和BD 的长度.第三讲《倍长中线和截长补短》1、知识点回顾:(1)、倍长中线:遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”(2)、截长法:在某条线段上截取一条线段与特定线段相等,构造全等三角形,多用于解决线段的和差、倍分等类的题目(3)、倍长法:将某条线段延长与特定线段相等,构造全等三角形,多用于解决线段的和差、倍分等类的题目注:截长补短是添加辅助线的一种重要思想,往往会与“旋转”和“轴对称”结合2、经典随堂测回顾复习【测1】在△ABC 中,AB=5,AC=9,则BC边上的中线AD的长的取值范围是什么?【测 2】如图,△ABC 中,∠BAC = 120︒,AD ⊥BC 于 D ,且AB +BD =DC ,求∠C 的度数.3、复习题1.已知:如图,ABCD 是正方形,∠FAD=∠FAE.求证:BE+DF=AE.2.△ABC 中,∠BAC=60°,∠C=40°,AP 平分∠BAC 交BC 于P,BQ 平分∠ABC 交AC 于Q,求证:AB+BP=BQ+AQ.(有多种辅助线作法)3.如图所示,∠BAC=∠DAE=90°,M 是BE 的中点,AB=AC,AD=AE,求证:AM⊥CD.第四讲《垂直平分线与角平线》1、知识点回顾(1)垂直平分线的性质:垂直平分线上一点到线段两端点的距离相等垂直平分线的判定:到线段两端点距离相等的点在这条线段的垂直平分线上(2)角平分线的性质:①如果一条射线是一个角的平分线,那么它把这个角分成的两个相等的角②角平分线上的点到角两边的距离相等2、经典随堂测回顾复习【测 1】在△ABC 中,E 为BC 边的中点,DE ⊥BC 于E 点,交AC 于D 点,求证:AB AC .ABE C【测 2】如图,已知∠1=∠2,P 为BN 上的一点,PF⊥BC 于F,PA=PC.求证:∠PCB+∠BAP=180°.3、复习题1.如图,OP 是∠AOB 的平分线,点P 到OA 的距离为3,点N 是OB 上的任意一点,则线段PN 的取值范围为()A.PN<3 B.PN>3 C.PN≥3 D.PN≤3D2.如图,在Rt△ABC 中,∠C=90°,AD 是△ABC 的角平分线,若CD=4,AC=12,AB=15,则△ABC 的面积为()A.48 B.50 C.54 D.603.已知:如图,四边形ABCD 中,对角线AC,BD 相交于点O,AB=AC=AD,∠DAC=∠ABC.(1)求证:BD 平分∠ABC;(2)若∠DAC=45°,OA=1,求OC 的长.4.如图,在Rt△ABC 中,∠ABC=90°,CD 平分∠ACB 交AB 于点D,DE⊥AC 于点E,BF∥DE 交CD 于点F.求证:DE=BF.5.如图,在△ABC 中,∠C=90°,AD 平分∠BAC,DE⊥AB,如果DE=5cm,∠CAD=32°,求CD 的长度及∠B 的度数.第五讲《全等三角形综合》1、知识点回顾(1)、全等三角形的性质:全等三角形的对应边相等,对应角相等;周长和面积相等;平移、旋转、对称前后的图形相等(2)、全等三角形判定定理:SSS:两三角形三条边对应相等,那么这两个三角形全等SAS:如果两个三角形的两边及其这两边的夹角对应相等,那么这两个三角形全等 ASA:如果两个三角形的两个角及其夹边对应相等,那么这两个三角形全等 AAS:如果两个三角形的两个角及其一个角对应边对应相等,那么这两个三角形全等 HL :如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个三角形全等 2、经典随堂测回顾复习【测 1】如图: BE ⊥ AC ,CF ⊥ AB , BM = AC ,CN = AB .求证:(1) AM = AN ;(2)AM ⊥ AN .【测 2】已知,如图,在四边形 ABCD 中, AC 平分∠BAD , CE ⊥ AB 于 E ,并且 AE = 1 ( AB +AD ) ,2求证: ∠B +∠D = 180︒ .3、复习题1.如图所示,要测量河两岸相对的两点A、B 的距离,在AB 的垂线BF 上取两点C、D,使BC=CD,过D 作BF 的垂线DE,与AC 的延长线交于点E,则∠ABC=∠CDE=90°,BC=DC,∠1= ,△ABC≌,若测得DE 的长为25 米,则河宽AB 长为.2.如图1,以△ABC 的边AB、AC 为边分别向外作等腰直角△ABD 和等腰直角△ACE,连接CD、BE、DE。
学生数学期末考试总结5篇篇1随着期末考试的结束,我们不禁思考这次考试所带来的启示和反思。
本文将围绕数学期末考试的特点、学生的表现、知识点掌握情况以及未来的学习建议等方面进行详细总结。
一、考试特点本次数学期末考试具有以下特点:1. 知识点覆盖全面:考试内容涵盖了本学期所学的各个知识点,包括基础概念、运算技巧以及实际问题解决能力等。
2. 题目表述清晰:考试题目表述明确,语言简洁明了,避免了歧义和误解。
3. 难度适中:考试难度与平时教学相匹配,既考察了学生的基础知识,又具有一定的深度和广度。
二、学生表现在本次考试中,学生们的表现呈现出以下特点:1. 基础知识扎实:大多数学生对基础概念和运算技巧掌握得较为扎实,能够熟练运用所学知识解决问题。
2. 解题能力有待提高:部分学生在解决实际问题时,缺乏灵活运用知识的能力,解题思路不够清晰。
3. 计算速度有待提升:个别学生在考试中存在计算速度慢、计算错误等问题,需要进一步加强计算能力的培养。
三、知识点掌握情况通过对本次考试的分析,我们发现学生在知识点掌握方面存在以下问题:1. 基础概念掌握不牢固:部分学生对基础概念的理解不够深入,容易出现混淆和误解。
2. 运算技巧掌握不熟练:部分学生在运算技巧方面存在短板,需要进一步加强练习和巩固。
3. 实际问题解决能力有待提高:部分学生在解决实际问题时,缺乏分析和解决问题的能力,需要进一步加强思维训练。
四、未来学习建议针对本次考试中存在的问题和不足,我们提出以下学习建议:1. 加强对基础概念的理解和掌握,夯实知识基础。
2. 注重运算技巧的训练和提升,提高解题速度和准确率。
3. 加强思维训练,提高分析问题和解决问题的能力。
4. 多做练习,尤其是针对薄弱环节进行专项训练,提高整体水平。
五、总结与展望本次数学期末考试不仅检验了学生的学习成果,也为我们提供了宝贵的反馈信息。
通过认真分析和总结,我们可以更好地了解学生的学习状况和需求,从而更有针对性地进行教学指导和帮助。
数学期末复习工作总结(通用6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、工作计划、策划方案、合同协议、条据文书、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, work plans, planning plans, contract agreements, documentary evidence, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!数学期末复习工作总结(通用6篇)数学期末复习工作总结篇1不知不觉这一学期即将过去,通过对教学的实践,对学生学情的掌握,以及对精讲多练教学要求的认识,我逐步适应了这个层次学生的接受能力,学生也慢慢适应了我的这种教学模式。
初一数学(上)期末复习资料1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数,整数(看作分母为1的分数)和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)自然数 0和正整数; a >0 a 是正数; a <0 a 是负数;a ≥0 a 是正数或0 a 是非负数; a ≤ 0 a 是负数或0 a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线./3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(3)相反数的和为0a+b=0 a 、b 互为相反数.(4)相反数的商为-1.(5)相反数的绝对值相等 4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;]注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;(3) 0a 1a a>⇔= ; 0a 1a a<⇔-=;(4) |a|是重要的非负数,即|a|≥0;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;&(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,,以上数据表示与标准质量的差, 绝对值越小,越接近标准质量的差6.倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若ab=1 a 、b 互为倒数; 若ab=-1 a 、b 互为负倒数.等于本身的数汇总:相反数等于本身的数:0 倒数等于本身的数:1,-1绝对值等于本身的数:正数和0平方等于本身的数:0,1 立方等于本身的数:0,1,-1.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).}9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。
11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .(简便运算)<12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则:(1)正数的任何次幂都是正数; (2)负数的奇次幂是负数;负数的偶次幂是正数;14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a 2是重要的非负数,即a 2≥0;若a 2+|b|=0 a=0,b=0;^(4)据规律 ⇒⎪⎪⎭⎪⎪⎬⎫⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===100101101.01.0222底数的小数点移动一位,平方数的小数点移动二位. 15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减; 注意:不省过程,不跳步骤。
19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.常用于填空,选择。
整式的加减1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。
2.单项式的系数与次数:单项式中的数字因数,称单项式的系数;单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;5.⎩⎨⎧多项式单项式整式 .6.同类项: 所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则: 系数相加,字母与字母的指数不变.8.去(添)括号法则:;去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:一找:(划线);二“+”(务必用+号开始合并)三合:(合并)10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).一元一次方程1.等式:用“=”号连接而成的式子叫等式.2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.$3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式: ax+b=0(x 是未知数,a 、b 是已知数,且a ≠0).8.一元一次方程解法的一般步骤:化简方程----------分数基本性质去 分母----------同乘(不漏乘)最简公分母,去 括号----------注意符号变化移 项----------变号(留下靠前)合并同类项--------合并后符号系数化为1---------除前面10.列一元一次方程解应用题:(1)读题分析法:………… 多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: ………… 多用于“行程问题”)利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11.列方程解应用题的常用公式:(1)行程问题: 距离=速度·时间 时间距离速度= 速度距离时间=; (2)工程问题: 工作量=工效·工时 工时工作量工效= 工效工作量工时=; 工程问题常用等量关系: 先做的+后做的=完成量(3)顺水逆水问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;水流速度=(顺水速度-逆水速度)÷2 顺水逆水问题常用等量关系: 顺水路程=逆水路程#(4)商品利润问题: 售价=定价10几折 , %100⨯-=成本成本售价利润率; 利润问题常用等量关系: 售价-进价=利润(5)配套问题:(6)分配问题:多姿多彩的图形现实生活中的物体我们只管它的形状、大小、位置而得到的图形,叫做几何图形。
1.立体图形与平面图形长方体、正方体、球、圆柱、圆锥等都是立体图形。
此外棱柱、棱锥也是常见的立体图形。
》长方形、正方形、三角形、圆等都是平面图形。
许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。
2.点、线、面、体几何体也简称体。
长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体。
包围着体的是面。
面有平的面和曲的面两种。
面和面相交的地方形成线。
线和线相交的地方是点。
几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。
直线、射线、线段经过两点有一条直线,并且只有一条直线。
两点确定一条直线。
点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。
类似的还有线段的三等分点、四等分点等。
直线桑一点和它一旁的部分叫做射线。
两点的所有连线中,线段最短。
简单说成:两点之间,线段最短。
角的比较与运算3.角的比较从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
4.余角和补角如果两个角的和等于90(直角),就说这两个角互为余角。
如果两个角的和等于180(平角),就说这两个角互为补角。
等角的补角相等。
等角的余角相等。