七年级上册数学第三章 总结与复习
- 格式:pptx
- 大小:1.05 MB
- 文档页数:19
北师大版七年级数学上册第三章知识点整理 北师大版七年级数学上册第三知识点整理 七上第三整式及其加减 1.字母表示数 1)字母表示运算律 2)字母表示计算公式 字母可以表示任何数 2.代数式 1)概念:像4+3(x-1),x+x+(x+1),a+b,ab,2(+n),s/t 等式子都是代数式,单独一个数或一个字母也是代数式,如-5,a,b等. 2)书写要求:①字母与字母相乘时,乘号通常简写作“ ”或省略不写;数字与字母相乘时,数字在前;带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘;数字与数字相乘仍用“×”. ②除法一般写成分数形式 ③如果代数式是积或商的形式,单位直接写在后面;如果是和或差的形式,必须先把代数式用括号括起再写单位。
3.整式 1)单项式:表示数字和字母的积,单独的一个数或一个字母也是单项式. ①系数:单项式中的数字因数(包括其前面的符号) ②次数:单项式中,所有字母的指数的和;单独的数字是0次单项式. 注意:(1)单项式中数与字母之间都是乘积关系,凡字母出现在分母中的式子一定不是单项式,如1/x不是单项式;(2)单项式中不含加减运算;(3)π是常数,在单项式中相当于数字因数;(4)定义中的“数”可以是小数,也可以是分数、整数. 2)多项式:几个单项式的和;在多项式中,每个单项式叫做多项式的项,不含字母的项叫常数项;一个多项式含有几项,就叫几项式; 次数:多项式里,次数最高项的次数,是多项式的次数; 注意:(1)确定多项式的项时,不要忽略它的符号;(2)关于某个字母的n次项式,要求是合并同类项后的最简多项式. 3) 整式:单项式和多项式统称为整式. 4)同类项:①概念:所含字母相同,并且相同字母的指数也相同的项;与它们的系数大小无关,与字母顺序无关;几个常数也是同类项. ②合并同类项法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变. 4.整式的加减: 1)整式加减是求几个整式的和或差的运算,其实质是去括号,合并同类项 2)法则:几个整式相加减,用括号把每一个整式括起,再用加减号连接,然后去括号,合并同类项. 3)化简求值:一是相加减化简,二是用具体数值代替整式中的字母,三是按式子的运算关系计算,计算其结果. 5.探索与表达规律:图形中的规律、数字中的规律、算式中的规律.。
人教版七年级上册数学第三章一元一次方程知识点总结归纳一元一次方程知识点总结一元一次方程1.方程的概念方程是含有未知数的等式,同时也是一个等式。
等式是由等号连接的两个式子。
2.一元一次方程的概念只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。
3.方程的解的概念能使方程中等号左右两边相等的未知数的值叫方程的解,也叫根。
4.主要性质等式的性质1:等式两边(或减)同一个数(或式子),结果仍相等。
等式的性质2:等式两边乘同一个数,或除以同一个不为零的数,结果仍相等。
5.解一元一次方程的步骤1) 去分母,去括号去分母:在方程的两边都乘以各自分母的最小公倍数。
去分母时不要漏乘不含分母的项。
当分母中含有小数时,先将小数化成整数。
去括号:先去大括号,在去中括号,最后小括号。
括号前负号时,去掉括号时里面各项应变号。
2) 移项方程中的任何一项,都可以在改变符号后,从方程的一边移到另一边。
这个法则叫做移项。
移项的根据是等式的性质。
注意:移项时一定要变号,不变号不能移项。
通过移项,含未知数的项与常数项分别列与方程的左右两边。
3) 合并同类项把两个能合并的式子的系数相加,字母和字母的指数不变。
4) 系数化为1指方程中未知数的系数化为1,他的理论依据是等式的性质。
实际问题与一元一次方程1.列方程解应用题的方法综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程,这是从部分到整体的一种思维过程,其思考方向是从已知到未知。
本文介绍了解一元一次方程的分析法,包括列方程解应用题的步骤。
首先要分析题意,确定已知条件和所求问题,然后设定未知数,并利用等量关系列出方程。
接着求解方程,将结果代回原题检验,得出答案。
文章还归纳了实际问题的分类,包括销售中盈亏问题、顺逆流问题、数字问题的应用题、工程效率问题、球赛积分问题和行程问题。
其中,销售中盈亏问题需要计算成本价、标价、打折和售价,利润率可以用利润除以进价乘以100%计算。