宜昌市初中数学有理数易错题汇编及答案解析
- 格式:doc
- 大小:421.00 KB
- 文档页数:10
初中数学有理数易错题汇编含解析一、选择题1.下列说法中不正确的是()A.-3 表示的点到原点的距离是|-3|B.一个有理数的绝对值一定是正数C.一个有理数的绝对值一定不是负数D.互为相反数的两个数的绝对值一定相等【答案】B【解析】【分析】根据绝对值的意义以及相反数的意义逐项进行分析即可得答案.【详解】A、根据绝对值的意义|-3|表示在数轴上表示-3的点到原点的距离,故A选项正确,不符合题意;B、若这个有理数为0,则0的绝对值还是0,故B选项错误,符合题意;C、根据绝对值的意义,|a|的绝对值表示在数轴上表示a的点到原点的距离,故任意有理数的绝对值都为非负数,所以不可能为负数,故C选项正确,不符合题意;D、根据相反数的定义可知:只有符号不同的两数互为相反数,可知互为相反数的两数到原点的距离相等,即互为相反数的两个数的绝对值相等,故D选项正确,不符合题意,故选B.【点睛】本题考查了绝对值的意义,绝对值的代数意义为:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值还是0;绝对值的几何意义为:|a|表示在数轴上表示a的这个点到原点的距离,熟练掌握绝对值的意义是解本题的关键.2.2019-的倒数是()A.2019 B.-2019 C.12019D.12019-【答案】C【解析】【分析】先利用绝对值的定义求出2019-,再利用倒数的定义即可得出结果.【详解】2019-=2019,2019的倒数为1 2019故选C【点睛】本题考查了绝对值和倒数的定义,熟练掌握相关知识点是解题关键.3.已知235280x y x y +-+-+=则xy 的值是( )A .19B .-6C .9D .1-6【答案】B【解析】【分析】根据非负数的应用,列出方程组,解方程组,即可求出x 、y 的值,然后得到答案.【详解】解:∵235280x y x y +-+-+=,∴2350280x y x y +-=⎧⎨-+=⎩, 解得:23x y =-⎧⎨=⎩, ∴236xy =-⨯=-;故选:B.【点睛】本题考查了非负数的应用,解二元一次方程组,解题的关键是正确求出x 、y 的值.4.如图,在数轴上,点A 表示1,现将点A 沿数轴做如下移动,第一次将点A 向左移动3个单位长度到达点A 1,第二次将点A 1向右移动6个单位长度到达点A 2,第三次将点A 2向左移动9个单位长度到达点A 3,…按照这种移动规律进行下去,第51次移动到点51A ,那么点A 51所表示的数为( )A .﹣74B .﹣77C .﹣80D .﹣83【答案】B【解析】【分析】序号为奇数的点在点A 的左边,各点所表示的数依次减少3 ,序号为偶数的点在点A 的右侧,各点所表示的数依次增加3,即可解答.【详解】解:第一次点A 向左移动3个单位长度至点1A ,则1A 表示的数,1−3=−2;第2次从点A 1向右移动6个单位长度至点2A ,则2A 表示的数为−2+6=4;第3次从点A 2向左移动9个单位长度至点3A ,则3A 表示的数为4−9=−5;第4次从点A 3向右移动12个单位长度至点4A ,则4A 表示的数为−5+12=7;第5次从点A 4向左移动15个单位长度至点5A ,则5A 表示的数为7−15=−8;…;则点51A 表示:()()511312631781772+⨯-+=⨯-+=-+=-, 故选B .5.已知整数1a ,2a ,3a ,4a ⋯满足下列条件:10a =,21|1|a a =-+,32|2|a a =-+,43|3|a a =-+⋯依此类推,则2017a 的值为( )A .1007-B .1008-C .1009-D .2016- 【答案】B【解析】【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于12n --;n 是偶数时,结果等于2n -;然后把n 的值代入进行计算即可得解. 【详解】解:10a =,21|1|011a a =-+=-+=-,32|2|121a a =-+=--+=-,43|3|132=-+=--+=-a a ,54|4|242=-+=--+=-a a ,……∴n 是奇数时,结果等于12n --;n 是偶数时,结果等于2n -; ∴20172017110082a -=-=-; 故选:B .【点睛】此题考查数字的变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.6.若关于x 的方程22(2)0x k x k +-+=的两根互为倒数,则k 的值为( )A .±1B .1C .-1D .0【答案】C【解析】【分析】根据已知和根与系数的关系12c x x a=得出k 2=1,求出k 的值,再根据原方程有两个实数根,即可求出符合题意的k 的值.【详解】 解:设1x 、2x 是22(2)0x k x k +-+=的两根,由题意得:121=x x ,由根与系数的关系得:212x x k =,∴k 2=1,解得k =1或−1,∵方程有两个实数根,则222=(2)43440∆--=--+>k k k k ,当k =1时,34430∆=--+=-<,∴k =1不合题意,故舍去,当k =−1时,34450∆=-++=>,符合题意,∴k =−1,故答案为:−1.【点睛】本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键.7.如果x 取任意实数,那么以下式子中一定表示正实数的是( )A .xB .C .D .|3x +2| 【答案】C【解析】【分析】利用平方根有意义的条件以及绝对值有意义的条件进而分析求出即可.【详解】A.x 可以取全体实数,不符合题意;B.≥0, 不符合题意; C.>0, 符合题意; D. |3x +2|≥0, 不符合题意.故选C.【点睛】本题考查了平方根和绝对值有意义的条件,正确把握平方根和绝对值有意义的条件是解题关键.8.下面说法正确的是( )A .1是最小的自然数;B .正分数、0、负分数统称分数C.绝对值最小的数是0;D.任何有理数都有倒数【答案】C【解析】【分析】0是最小的自然数,属于整数,没有倒数,在解题过程中,需要关注【详解】最小的自然是为0,A错误;0是整数,B错误;任何一个数的绝对值都是非负的,故绝对值最小为0,C正确;0无倒数,D错误【点睛】本题是有理数概念的考查,主要需要注意0的特殊存在9.下列说法中,正确的是()A.在数轴上表示-a的点一定在原点的左边B.有理数a的倒数是1 aC.一个数的相反数一定小于或等于这个数D.如果a a=-,那么a是负数或零【答案】D【解析】【分析】根据实数与数轴的对应关系、倒数、相反数、绝对值的定义来解答.【详解】解:A、如果a<0,那么在数轴上表示-a的点在原点的右边,故选项错误;B、只有当a≠0时,有理数a才有倒数,故选项错误;C、负数的相反数大于这个数,故选项错误;D、如果a a=-,那么a是负数或零是正确.故选D.【点睛】本题考查了数轴、倒数、相反数、绝对值准确理解实数与数轴的定义及其之间的对应关系.倒数的定义:两个数的乘积是1,则它们互为倒数;相反数的定义:只有符号不同的两个数互为相反数;绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.10.下列语句正确的是()A.近似数0.010精确到百分位B.|x-y|=|y-x|C.如果两个角互补,那么一个是锐角,一个是钝角D .若线段AP=BP ,则P 一定是AB 中点【答案】B【解析】【分析】A 中,近似数精确位数是看小数点后最后一位;B 中,相反数的绝对值相等;C 中,互补性质的考查;D 中,点P 若不在直线AB 上则不成立【详解】A 中,小数点最后一位是千分位,故精确到千分位,错误;B 中,x -y 与y -x 互为相反数,相反数的绝对值相等,正确;C 中,若两个角都是直角,也互补,错误;D 中,若点P 不在AB 这条直线上,则不成立,错误故选:B【点睛】概念的考查,此类题型,若能够举出反例来,则这个选项是错误的11.已知a 、b 、c 都是不等于0的数,求abcabca b c abc +++的所有可能的值有()个.A .1B .2C .3D .4【答案】C【解析】【分析】根据a b c 、、的符号分情况讨论,再根据绝对值运算进行化简即可得.【详解】由题意,分以下四种情况:①当a b c 、、全为正数时,原式11114=+++=②当a b c 、、中两个正数、一个负数时,原式11110=+--=③当a b c 、、中一个正数、两个负数时,原式11110=--+=④当a b c 、、全为负数时,原式11114=----=-综上所述,所求式子的所有可能的值有3个故选:C .【点睛】本题考查了绝对值运算,依据题意,正确分情况讨论是解题关键.12.12a =-,则a 的取值范围是( )A .12a ≥ B .12a > C .12a ≤ D .无解【答案】C【解析】【分析】=|2a-1|,则|2a-1|=1-2a ,根据绝对值的意义得到2a-1≤0,然后解不等式即可.【详解】=|2a-1|,∴|2a-1|=1-2a ,∴2a-1≤0, ∴12a ≤. 故选:C .【点睛】 此题考查二次根式的性质,绝对值的意义,解题关键在于掌握其性质.13.7-的绝对值是 ( )A .17-B .17C .7D .7-【答案】C【解析】【分析】负数的绝对值为这个数的相反数.【详解】|-7|=7,即答案选C.【点睛】掌握负数的绝对值为这个数的相反数这个知识点是解题的关键.14.若30,a -=则+a b 的值是( )A .2B 、1C 、0D 、1-【答案】B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B .考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.15.12的相反数与﹣7的绝对值的和是( )A .5B .19C .﹣17D .﹣5【答案】D【解析】【分析】根据绝对值和相反数的定义进行选择即可.【详解】-12+|-7|=-12+7=-5,故选D .【点睛】本题考查了绝对值和相反数的定义,掌握绝对值和相反数的求法是解题的关键.16.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0cm ”和“6cm ”分别对应数轴上表示﹣2和实数x 的两点,那么x 的值为( )A .3B .4C .5D .6【答案】B【解析】【分析】根据数轴的定义进行分析即可.【详解】∵由图可知,﹣2到x 之间的距离为6,∴x 表示的数为:﹣2+6=4,故选:B .【点睛】本题考查了用数轴表示实数,题目较为简单,解题的关键是根据如何根据一个已知点和两点的距离求另一个点.17.已知a ,b ,c 是有理数,当0a b c ++=,0abc <时,求a b c b c a c a b +-+++的值为( )A .1或-3B .1,-1或-3C .-1或3D .1,-1,3或-3 【答案】A【解析】【分析】根据0a b c ++=,0abc <,可知这三个数中只能有一个负数,另两个为正数,把0a b c ++=变形代入代数式求值即可.【详解】解:∵0a b c ++=,∴b c a +=-、a c b +=-、a b c +=-,∵0abc <,∴a 、b 、c 三数中有2个正数、1个负数,则a b c a b c b c a c a b a b c+-=+-+++---, 若a 为负数,则原式=1-1+1=1,若b 为负数,则原式=-1+1+1=1,若c 为负数,则原式=-1-1-1=-3,所以答案为1或-3. 故选:A . 【点睛】 本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,难点在于判断出负数的个数.18.若实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a <-5B .b +d <0C .||||a c <D .c d <【答案】D【解析】【分析】根据数轴得到-5<a<b<0<c<d ,且a d b c >>>,再依次判断各选项即可得到答案.【详解】由数轴得-5<a<b<0<c<d ,且a d b c >>>,∴A 错误;∵b+d>0,故B 错误;∵a c >,∴C 错误;∵d c >,c>0,∴c d <D 正确,故选:D.【点睛】此题考查数轴上数的大小关系,绝对值的性质,有理数的加法法则.19.1是0.01的算术平方根,③错误;在同一平面内,过定点有且只有一条直线与已知直线垂直,④错误故选:A【点睛】本题考查概念的理解,解题关键是注意概念的限定性,如④中,必须有限定条件:在同一平面内,过定点,才有且只有一条直线与已知直线垂直.20.已知实数a 满足2006a a -=,那么22006a -的值是( ) A .2005B .2006C .2007D .2008【答案】C【解析】【分析】先根据二次根式有意义的条件求出a 的取值范围,然后去绝对值符号化简,再两边平方求出22006a -的值.【详解】∵a-2007≥0,∴a ≥2007,∴2006a a -=可化为a 2006a -+=,2006=,∴a-2007=20062,∴22006a -=2007.故选C .【点睛】本题考查了绝对值的意义、二次根式有意义的条件,求出a 的取值范围是解答本题的关键.。
2020年湖北省宜昌市七上数学易错易混80题精粹word 含答案一、选择题1.下列式子中,正确的是 ( ) A.55-=-B.55-=-C.10.52=-D.1122--= 2.下列方程变形中,正确的是( ) A.方程3x-2=2x+1,移项,得3x-2x=-1+2 B.方程3-x=2-5(x-1),去括号,得3-x=2-5x-1 C.方程2332t =,未知数系数化为1,得t=1 D.方程110.20.5x x--=化成3x=6 3.近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到22000公里,将22000用科学记数法表示应为( ) A .2.2×104B .22×103C .2.2×103D .0.22×1054.根据图中箭头指向的规律,从2014到2015再到2016,箭头的方向( )A. B. C. D.5.若与互为相反数,则的值为( )A .-bB .C .-8D .86.小明做了以下4道计算题:①(-1)2010=2010;②0-(-1)=-l ;③-+=-;④÷(-)=-1. 其中做对的共有A .1道B .2道C .3道D .4道 7.在实数-2,2,0,-1中,最小的数是( ) A .-2 B .2 C .0 D .-1 8.下列说法正确的是( )①两个正数中倒数大的反而小,②两个负数中倒数大的反而小,③两个有理数中倒数大的反而小,④两个符号相同的有理数中倒数大的反而小. A.①②④B.①C.①②③D.①④9.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A ~F 共16个计数符号,这些符号与十进制的数的对应关系如下表:例如,用十六进制表示:C+F=1B ,19﹣F=A ,18÷4=6,则A×B=( )A.72 B.6E C.5F D.B0 10.若∣a∣=2,则a的值是()A.−2B.2C.12D.±211.如果水位升高1米记为+1米,那么水位下降2米应记为()A.﹣1米B.+1米C.﹣2米D.+2米12.41.立方是它本身的数是()A.1 B.0 C.-1 D.1,-1,013.质检员抽查4袋方便面,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的产品是()A.-3 B.-1 C.2 D.414.下列运算中,正确的是( )A.5a2-4a2=1 B.2a3+3a2=5a5C.4a2b-3ba2=a2b D.3a+2b=5ab15.下列代数式中:①3x2-1;②xyz;③12b;④32x y+,单项式的是()A.①B.②C.③D.④16.下列各组数中,互为相反数的有()①2和12;②-2和12;③2.25和−214;④+(-2)和(-2);⑤-2和-(-2);⑥+(+5)和-(-5)A.2组B.3组C.4组D.5组17.数轴A、B两点相距4个单位长度,且A,B两点表示的数的绝对值相等,那么A、B两点表示的数是()A.−4,4 B.−2,2 C.2,2 D.4,018.如图是“东方”超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请帮忙算一算,该洗发水的原价是()A.22元B.23元C.24元D.26元19.下列结论正确的是()A.两个负数,绝对值大的反而小 B.两数之差为负,则这两数异号C.任何数与零相加,都得零 D.正数的任何次幂都是正数;负数的偶次幂是负数20.有理数a、b在数轴上的位置如图所示,则下列各式中错误的是()A.b<aB.|b|>|a|C.a+b>0D.a-b>021.下列各组数中互为相反数的是()A.-2B.-2C.2与()2|22.在数轴上,实数a,b对应的点的位置如图所示,且这两个点到原点的距离相等,下列结论中,正确的是()A.0a b +=B.0a b -=C.a b <D.0ab >23.有理数a 、b 在数轴上对应的点的位置如图所示,下列各式正确的是( )A.0a b +<B.0a b +>C.0ab >D.ab >0 24.﹣3的相反数是( ) A.3B.13-C.13D.﹣325.若x 是2的相反数,|y|=4,且x+y<0,则x –y=( ) A .–6 B .6 C .–2 D .226.如图,有一个直径为1个单位长度的圆片,把圆片上的点A 放在-1处,然后将圆片沿数轴向右滚动1周,点A 到达点A´位置,则点A´表示的数是( ).A.-π +1B.2π-+1 C.2π-1 D.π-127.-0.2的相反数是( ) A.-2B.2C.0.2D.-528.在算式526--⊗中的“⊗”所在位置,填入下列哪种运算符号,能使最后计算出来的值最小( ). A.+B.-C.⨯D.÷29.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为( ) A .55×105B .5.5×104C .0.55×105D .5.5×10530.在数轴上的点A 、B 位置如图所示,则线段AB 的长是( )A.7.5B.-2.5C.2.5D.-7.531.一家商店将某种服装按成本价提高20%后标价,又以9折优惠卖出,结果每件服装仍可获利8元,则这种服装每件的成本是( ) A .100元B .105元C .110元D .115元32.数轴上的点A 表示的数是a ,当点A 在数轴上向右平移了6个单位长度后得到点B ,若点A 和点B 表示的数恰好互为相反数,则数a 是( ) A .6B .﹣6C .3D .﹣333.2018的相反数是( ) A.12018B.2018C.-2018D.12018-34.比﹣1小2的数是()A.3 B.1 C.﹣2 D.﹣335.如图,点A,B在数轴上,以AB为边作正方形,若正方形的面积是49,点A对应的数是-2,则点B 对应的数是( )A.3B.5C.7D.936.冰箱冷藏室的温度零上5℃,记作+5℃,保鲜室的温度零下7℃,记作A.7℃ B.-7℃ C.2℃ D.-12℃37.如果|a﹣1|+(b+2)2=0,则a﹣b的值是()A.-1B.1C.-3 D.338.实数a、b在数轴上的位置如图所示,则下列各式表示正确的是()A.b﹣a<0B.1﹣a>0C.b﹣1>0D.﹣1﹣b<039.如果温度上升10℃记作+10℃,那么温度下降5℃记作()A.+10℃ B.﹣10℃ C.+5℃ D.﹣5℃40.四个有理数a、b、c、d满足abcdabcd=﹣1,则a b c da b c d+++的最大值为()A.1B.2C.3D.441.如图所示,将一张长方形纸的一角斜折过去,使顶点A落在点A′处,BC为折痕,如果BD为∠A′BE的平分线,则∠CBD等于( )A.80°B.90°C.100°D.70°42.关于x的方程2x m3-=1的解为2,则m的值是()A.2.5 B.1 C.-1 D.3 43.如图,边长为a的正方形中阴影部分的面积为()A.a2﹣πa2B.πa2C.a2﹣πa2D.πa2 44.方程x﹣4=3x+5移项后正确的是( )A .x+3x =5+4B .x ﹣3x =﹣4+5C .x ﹣3x =5﹣4D .x ﹣3x =5+445.下列方程的变形中,正确的是( ) A .由3+x =5,得x =5+3B .由3x ﹣(1+x )=0,得3x ﹣1﹣x =0C .由102y =,得y =2 D .由7x =﹣4,得74x =-46.平面内有n 条直线(n≥2),这n 条直线两两相交,最多可以得到a 个交点,最少可以得到b 个交点,则a+b 的值是( ) A.()1n n -B.21n n -+C.22n n -D.222n n -+47.如图,C ,D ,E 是线段AB 的四等分点,下列等式不正确的是( )A .AB =4ACB .CE =12AB C .AE =34AB D .AD =12CB 48.高速公路的建设带动我国经济的快速发展.在高速公路的建设中,通常要从大山中开挖隧道穿过,把道路取直,以缩短路程.这样做包含的数学道理是( ) A .两点确定一条直线B .两点之间,线段最短C .两条直线相交,只有一个交点D .直线是向两个方向无限延伸的49.在有理数范围内定义运算“*”,其规则为a*b=﹣23a b+,则方程(2*3)(4*x )=49的解为( ) A.﹣3B.﹣55C.﹣56D.5550.下列图形不是正方体的展开图的是( )A .B .C .D .51.一列“动车组”高速列车和一列普通列车的车身长分别为80米与100米,它们相向行驶在平行的轨道上,若坐在高速列车上的旅客看见普通列车驶过窗口的时间是5秒,则坐在普通列车上的旅客看见高速列车驶过窗口的时间是( ) A .7.5秒B .6秒C .5秒D .4秒52.如图是某个几何体的展开图,该几何体是( )A.三棱柱B.圆锥C.四棱柱D.圆柱53.把图1所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图2,依次翻滚到第1格,第2格,第3格,第4格,此时正方体朝上一面的文字为()A.富B.强C.文D.民54.如图,甲从A点出发向北偏东60°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则 的度数是()BACA.105°B.115°C.125°D.135°55.如果一个角等于它的余角的2倍,那么这个角是它补角的()A.2倍B.0.5倍C.5倍D.0.2倍56.下列说法正确的是( )A.一个平角就是一条直线B.连结两点间的线段,叫做这两点的距离C.两条射线组成的图形叫做角D.经过两点有一条直线,并且只有一条直线57.下列几何体是棱锥的是( )A. B. C.D.58.锐角4720'的余角是()A.4240'B.4280'C.5240'D.13240'59.如图,两轮船同时从O点出发,一艘沿北偏西50°方向直线行驶,另一艘沿南偏东25°方向直线行驶,2小时后分别到达A ,B 点,则此时两轮船行进路线的夹角∠AOB 的度数是( )A.165°B.155°C.115°D.105°60.如图,点A 位于点O 的方向上.( )A .南偏东35°B .北偏西65°C .南偏东65°D .南偏西65°61.一项工程甲单独做要40天完成,乙单独做需要50天完成,甲先单独做4天,然后两人合作x 天完成这项工程,则可列的方程是()A.x x 1404050+=+ B.4x 1404050+=⨯ C.4x14050+=D.4x x 1404050++= 62.人类的遗传物质是DNA ,DNA 是一个很长的链,最短的22号染色体也长达30 000 000个核苷酸.30 000 000用科学记数法表示为( ) A .3×107B .30×106C .0.3×107D .0.3×108 63.已知﹣25a 2mb 和7b 3﹣n a 4是同类项,则m+n 的值是( )A .2B .3C .4D .664.下面四个整式中,不能表示图中阴影部分面积的是( )A.()()322x x x ++-B.()36x x ++C.()232x x ++D.25x x +65.已知322x y 与32mxy -的和是单项式,则式子4m-24的值是()A.20B.-20C.28D.-266.已知622x y 和312m nx y -是同类项,那么2m+n 的值( ) A.3B.4C.5D.667.下列各组的两项不是同类项的是 ( )A.2ax 2 与 3x 2B.-1 和 3C.2x 2y 和-2y xD.8xy 和-8xy68.化简:a ﹣(a ﹣3b )=_____. 69.方程3x -1=14x -去分母后,正确的是( ) A.4x ﹣1=3x ﹣3B.4x ﹣1=3x+3C.4x ﹣12=3x ﹣3D.4x ﹣12=3x+370.下列计算正确的是( )A.B.C.D.71.如图,∠AOB 是直角,OA 平分∠COD ,OE 平分∠BOD ,若∠BOE=23°,则∠BOC 的度数是( )A.113°B.134°C.136°D.144°72.运动会上,七年级(1)班的小王、小张、小李三人一起进行百米赛跑(假定三人均为匀速直线运动).如果当小李到达终点时,小张距终点还有4米,小王距终点还有12米.那么当小张到达终点时,小王距终点还有几米? A.8米B.183米 C.6米D.29373.若关于x 的方程(m ﹣2)x |m ﹣1|+5m+1=0是一元一次方程,则m 的值是( )A.0B.1C.2D.2或074.如果方程2x+1=3和203a x--=的解相同,则a 的值为( ) A.7 B.5C.3D.0 75.已知关于x 的方程2x-a=x-1的解是非负数,则a 的取值范围为( )A.1a ≥B.1a >C.1a ≤D.1a < 76.下列方程中,解为x =3的方是( )A .y-3=0B .x+2=1C .2x-2=3D .2x=x+377.用“∆”表示一种运算符号,其意义是2a b a b ∆=-,若(13)2x ∆∆=,则x 等于( ) A.1B.12C.32D.278.解方程()4.50.79x x +=,最简便的方法应该首先( ) A.去括号B.移项C.方程两边同时乘10D.方程两边同时除以4.5 79.下列结论错误的是( ) A .若a=b ,则a ﹣c=b ﹣c B .若a=b ,则ax=bx C .若x=2,则x 2=2xD .若ax=bx ,则a=b80.下列语句中错误的是( ) A .数字0也是单项式B .单项式﹣a 的系数与次数都是1C .2x 2﹣3xy ﹣1是二次三项式D .把多项式﹣2x 2+3x 3﹣1+x 按x 的降幂排列是3x 3﹣2x 2+x ﹣1【参考答案】一、选择题。
宜昌市中考数学有理数解答题专题练习(含答案)一、解答题1.已知a是最大的负整数,b、c满足,且a,b,c分别是点A,B,C在数轴上对应的数.(1)求a,b,c的值,并在数轴上标出点A,B,C;(2)若动点P从C出发沿数轴正方向运动,点P的速度是每秒2个单位长度,运动几秒后,点P到达B点?(3)在数轴上找一点M,使点M到A,B,C三点的距离之和等于13,请直接写出所有点M对应的数.(不必说明理由)2.已知式子M=(a+5)x3+7x2-2x+5是关于x的二次多项式,且二次项系数为b,数轴上A,B两点所对应的数分别是a和b.(1)a=________,b=________.A,B两点之间的距离=________;(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度……按照如此规律不断地左右运动,当运动到第2019次时,求点P所对应的有理数;(3)在(2)的条件下,点P会不会在某次运动时恰好到达某一位置,使点P到点B的距离是点P到点A的距离的3倍?若可能请求出此时点P的位置,若不可能请说明理由.3.已知有理数a,b,c在数轴上的位置如图所示:解答下列式子:(1)比较a,,c的大小(用“<”连接);(2)若,试化简等式的右边;(3)在(2)的条件下,求的值.4.已知数轴上的两点A、B所表示的数分别是a和b,O为数轴上的原点,如果有理数a,b 满足(1)求a和b的值;(2)若点P是一个动点,以每秒5个单位长度的速度从点A出发,沿数轴向右运动,请问经过多长时间,点P恰巧到达线段AB的三等分点?(3)若点C是线段AB的中点,点M以每秒3个单位长度的速度从点C开始向右运动,同时点P以每秒5个单位长度的速度从点A出发向右运动,点N以每秒4个单位长度的速度从点B开始向左运动,点P与点M之间的距离表示为PM,点P与点N之间的距离表示为PN,是否存在某一时刻使得PM+PN=12?若存在,请求出此时点P表示的数;若不存在,请说明理由.5.如图,点、、是数轴上三点,点表示的数为,, .(1)写出数轴上点、表示的数:________,________.(2)动点,同时从,出发,点以每秒个单位长度的速度沿数轴向右匀速运动,点以个单位长度的速度沿数向左匀速运动,设运动时间为秒.①求数轴上点,表示的数(用含的式子表示);② 为何值时,点,相距个单位长度.6.已知数轴上,一动点Q从原点O出发,沿数轴以每秒2个单位长度的速度来回移动,其移动的方式是:先向右移动1个单位长度,再向左移动2个单位长度,又向右移动3个单位长度,再向左移动4个单位长度,又向右移动5个单位长度…,(1)动点Q运动3秒时,求此时Q在数轴上表示的数?(2)当动点Q第一次运动到数轴上对应的数为10时,求Q运动的时间t;(3)若5秒时,动点Q激活所在位置P点,P点立即以0.1个单位长度/秒的速度沿数轴运动,试求点P激活后第一次与继续运动的点Q相遇时所在的位置.7.我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离。
最新初中数学有理数的运算易错题汇编附解析一、选择题1.x是最大的负整数,y是最小的正整数,则x-y的值为( )A.0 B.2 C.-2 D.±2【答案】C【解析】【分析】根据有理数的概念求出x、y,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【详解】∵x是最大的负整数,y是最小的正整数,∴x=-1,y=1,∴x-y=-1-1=-2.故选C.【点睛】本题考查了有理数的减法,熟记有理数的概念求出a、b的值是解题的关键.2.9万亿13==⨯,88900000000008.8910故选A.【点睛】本题主要考查科学记数法,科学记数法是指把一个数表示成a×10的n次幂的形式(1≤a<10,n 为正整数.)3.计算﹣6+1的结果为()A.﹣5 B.5 C.﹣7 D.7【答案】A【解析】【分析】根据有理数的加法法则,|﹣6|>|1|,所以结果为负号,并把它们的绝对值相减即可.【详解】解:﹣6+1=﹣(6﹣1)=﹣5故选:A.【点睛】本题考查了有理数的加法,注意区别同号相加与异号相加,把握运算法则是关键.4.现在网购是人们喜爱的一种消费方式,2018年天猫“双11”全球狂欢节某网店的总交易额超过1207000元,1207000用科学记数法表示为( )A.6⨯D.5⨯1.2071012.0710⨯C.5⨯B.71.207100.120710【答案】A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】1207000=1.207×106,故选A.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.2018年全国高考报名总人数是975万人,用科学记数法表示为()A.3⨯人D.70.97510⨯人9.75100.97510⨯人C.6⨯人B.29.7510【答案】C【解析】【分析】根据科学计数法的定义进行作答.【详解】A.错误,应该是6⨯;C.正确;D. 错误,应该是9.75109.7510⨯;B.错误,应该是669.7510⨯.综上,答案选C.【点睛】本题考查了科学计数法的定义:将一个数字表示成(a⨯10的n次幂的形式),其中1≤a<10,n表示整数,熟练掌握科学计数法的定义是本题解题关键.6.2018年汕头市龙湖区的GDP总量约为389亿元,其中389亿用科学记数法表示为() A.3.89×1011B.0.389×1011C.3.89×1010D.38.9×1010【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】389亿用科学记数法表示为89×1010.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.据民政部网站消息截至2018年底,我国60岁以上老年人口已经达到2.56亿人.其中2.56 亿用科学记数法表示为()A.2.56×107B.2.56×108C.2.56×l09D.2.56×l010【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【详解】解:2.56亿=256000000=2.56×108,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.为应对疫情,许多企业跨界抗疫,生产口罩.截至2月29日,全国口罩日产量达到116000000只.将116000000用科学记数法表示应为()A.611610⨯C.711.610⨯B.7⨯1.16101.1610⨯D.8【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将116000000用科学记数法表示应为1.16×108.故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是()A.﹣1 B.﹣2 C.﹣3 D.﹣6【答案】A【解析】【分析】由正方体各个面之间的关系知道,它的展开图中相对的两个面之间应该隔一个正方形,可以得到相对面的两个数,相加后比较即可.【详解】解:根据展开图可得,2和﹣2是相对的两个面;0和1是相对的两个面;﹣4和3是相对的两个面,∵2+(﹣2)=0,0+1=1,﹣4+3=﹣1,∴原正方体相对两个面上的数字和的最小值是﹣1.故选:A.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析解答问题.10.现有若干张卡片,分别是正方形卡片A、B和长方形卡片C,卡片大小如图所示.如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片张数为()A.1 B.2 C.3 D.4【答案】C【解析】试题分析:(a+2b)(a+b)=2232a ab b++,则C类卡片需要3张.考点:整式的乘法公式.11.-2的倒数是()A.-2 B.12-C.12D.2【答案】B【解析】【分析】根据倒数的定义求解.-2的倒数是-12故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握12.按如图所示的运算程序,能使输出结果为10的是( )A .x =7,y =2B .x =﹣4,y =﹣2C .x =﹣3,y =4D .x =12,y =3 【答案】D【解析】【分析】 根据运算程序,结合输出结果确定的值即可.【详解】解:A 、x =7、y =2时,输出结果为2×7+22=18,不符合题意;B 、x =﹣4、y =﹣2时,输出结果为2×(﹣4)﹣(﹣2)2=﹣12,不符合题意;C 、x =﹣3、y =4时,输出结果为2×(﹣3)﹣42=﹣22,不符合题意;D 、x =12、y =3时,输出结果为2×12+32=10,符合题意; 故选:D .【点睛】 此题考查了代数式的求值与有理数的混合运算,熟练掌握运算法则是解本题的关键.13.据资料显示,地球的海洋面积约为36000万平方千米,请用科学记数法表示地球海洋面积约为多少平方千米( ).A .73610⨯B .83.610⨯C .90.3610⨯D .43.610⨯【答案】B【解析】【分析】先将36000万平方千米化为360000000平方千米,再根据科学计数法的概念进行表示,即可得到答案.36000万平方千米=360000000平方千米,将360000000用科学记数法表示为83.610⨯,则用科学记数法表示地球海洋面积约为83.610⨯平方千米,故选:B .【点睛】本题考查科学计数法.科学记数法的形式为:10n a ⨯,其中110a ≤≤,n 为整数.14.现规定一种运算,a*b=ab-a+b ,计算(-3*5)等于多少?( )A .-7B .-15C .2D .7【答案】A【解析】【分析】根据题目所给的运算法则,代入具体数进行计算即可.【详解】解:(-3*5)=(-3×5)-(-3)+5=-7,故选:A .【点睛】此题主要考查了有理数的混合运算,关键是掌握有理数的加法、减法法则.15.下列运算,错误的是( ).A .236()a a =B .222()x y x y +=+C .01)1=D .61200 = 6.12×10 4 【答案】B【解析】【分析】【详解】A. ()326a a =正确,故此选项不合题意;B.()222 x y x 2y xy +=++,故此选项符合题意;C. )011=正确,故此选项不合题意; D. 61200 = 6.12×104正确,故此选项不合题意;故选B.16.若30,a -=则+a b 的值是( )A .2B 、1C 、0D 、1-【答案】B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B .考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.17.桂林是世界著名的风景旅游城市和历史文化名城,地处南岭山系西南部,广西东北部,行政区域总面积27 809平方公里.将27 809用科学记数法表示应为( ) A .0.278 09×105B .27.809×103C .2.780 9×103D .2.780 9×104【答案】D【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】27 809=2.780 9×410,故选D .【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值18.若实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a <-5B .b +d <0C .||||a c <D .c d <【答案】D【解析】【分析】根据数轴得到-5<a<b<0<c<d ,且a d b c >>>,再依次判断各选项即可得到答案.【详解】由数轴得-5<a<b<0<c<d ,且a d b c >>>,∴A 错误;∵b+d>0,故B 错误; ∵a c >,∴C 错误; ∵d c >,c>0, ∴c d <D 正确,故选:D.【点睛】此题考查数轴上数的大小关系,绝对值的性质,有理数的加法法则.19.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】460 000 000=4.6×108.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.20.0000084=8.4×10-6故选B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.。
一、解答题1.已知:A+2B=277a ab -,B=2467a ab --. (1)求A ;(2)若21(2)0a b ++-=计算A 的值. 2.712311263-+ 3.先化简,再求值:2(2)()()3a b a b a b ab +++--,其中12,2a b ==-. 4.先化简,再求值:2x 2–[3(–13x 2+23xy )–2y 2]–2(x 2–xy+2y 2),其中x =12,y =–1. 5.探索规律,观察下面算式,解答问题. 1+3=4=22; 1+3+5=9=32; 1+3+5+7=16=42; 1+3+5+7+9=25=52; ……(1)请猜想:1+3+5+7+9+…+19= ;(2)请猜想:1+3+5+7+9+…+(2n -1)+(2n +1)+(2n +3)= ; (3)试计算:101+103+…+197+199. 6.先化简,后求值:311(428)(1)42x x x -+---,其中x 在数轴上的对应点到原点的距离为12个单位长度. 7.化简求值:(x+2y )2﹣(x+y )(3x ﹣y )﹣5y 2,其中x=2,y=12. 8.化简求值:已知:(x ﹣3)2+|y+13|=0,求3x 2y ﹣[2xy 2﹣2(xy 232x y -)+3xy]+5xy 2的值.9.先化简,再求值: ()()22225,x y xy x y xy x y ----+-其中1,2x y =-=. 10.先化简,再求值:()()2222533--+a b ababa b ,其中11,23a b ==11.已知A=22x +3xy-2x-l ,B= -2x +xy-l . (1)求3A+6B ;(2)若3A+6B 的值与x 无关,求y 的值.12.计算:(1)1042115(2018)2π-⎛⎫-+-÷-+ ⎪⎝⎭;(2)2()()()x y x y x y +-+-;其中x=-1,y=3.13.先化简,再求值:2[(2)24]xy xy xy -+-÷,其中110,5x y ==-.14.某市水果批发部门欲将A 市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/时。
(易错题精选)初中数学有理数的运算易错题汇编及答案解析(1)一、选择题1.现规定一种运算,a*b=ab-a+b,计算(-3*5)等于多少?()A.-7 B.-15 C.2 D.7【答案】A【解析】【分析】根据题目所给的运算法则,代入具体数进行计算即可.【详解】解:(-3*5)=(-3×5)-(-3)+5=-7,故选:A.【点睛】此题主要考查了有理数的混合运算,关键是掌握有理数的加法、减法法则.2.9万亿1388900000000008.8910==⨯,故选A.【点睛】本题主要考查科学记数法,科学记数法是指把一个数表示成a×10的n次幂的形式(1≤a<10,n 为正整数.)3.计算12+16+112+120+130+……+19900的值为()A.1100B.99100C.199D.10099【答案】B【解析】分析:直接利用分数的性质将原式变形进而得出答案.详解:原式=11111 1223344599100 ++++⋯+⨯⨯⨯⨯⨯=111111112233499100 -+-+-+⋯+-,=1-1 100=99 100.故选B.点睛:此题主要考查了有理数的加法,正确分解分数将原式变形是解题关键.4.23+23+23+23=2n,则n=()【答案】C【解析】【分析】 原式可化为:23+23+23+23=4×23235222=⨯=,之后按照有理数乘方运算进一步求解即可.【详解】∵23+23+23+23=4×23235222=⨯=∴5n =,所以答案为C 选项.【点睛】本题主要考查了有理数的乘方运算,熟练掌握相关概念是解题关键.5.在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为12.5亿亿次/秒.这个数据以亿次/秒为单位用科学计数法可以表示为( )亿次/秒 A .81.2510⨯B .91.2510⨯C .101.2510⨯D .812.510⨯【答案】B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:12.5亿亿次/秒=1.25×109亿次/秒,故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.0000084=8.4×10-6故选B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.7.现有若干张卡片,分别是正方形卡片A 、B 和长方形卡片C ,卡片大小如图所示.如果要拼一个长为(a +2b ),宽为(a +b )的大长方形,则需要C 类卡片张数为( )【答案】C【解析】 试题分析:(a+2b )(a+b )=2232a ab b ++,则C 类卡片需要3张.考点:整式的乘法公式.8.地球上海洋面积约为361000000平方公里,361000000用科学记数法可表示为( ) A .90.36110⨯B .73.6110⨯C .83.6110⨯D .736110⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】 361000000=83.6110⨯,故选:C .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.9.2017年常州市实现地区生产总值约6622亿元,将6622用科学记数法表示为( ) A .40.662210⨯B .36.62210⨯C .266.2210⨯D .116.62210⨯【答案】B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将6622用科学记数法表示为:36.62210⨯.故选B.【点睛】本题考查科学计数法的表示方法. 科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值及n 的值.10.2019 年 1 月 3 日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为 384 000km ,把 384 000km 用科学记数法可以表示为( )A .38.4 ×10 4 kmB .3.84×10 5 kmC .0.384× 10 6 kmD .3.84 ×10 6 km【答案】B【解析】【分析】 科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】科学记数法表示:384 000=3.84×105km故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.11.2019年3月5日,第十三届全国人民代表大会第二次会议的《政府工作报告》中指出,我国经济运行保持在合理区间.城镇新增就业13610000、调查失业率稳定在5%左右的较低水平,数字13610000科学记数法表示为( )A .1.361×104B .1.361×105C .1.361×106D .1.361×107【答案】D【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:13610000用科学记数法表示为1.361×107,故选D .【点睛】考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.根据制定中的通州区总体规划,将通过控制人口总量上限的方式,努力让副中心远离“城市病”.预计到2035年,副中心的常住人口规模将控制在130万人以内,初步建成国际一流的和谐宜居现代化城区.130万用科学记数法表示为( )A .61.310⨯B .413010⨯C .51310⨯D .51.310⨯【答案】A【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于130万有7位,所以可以确定n=7-1=6.【详解】130万=1 300 000=1.3×106.故选A .【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.13.随着垃圾数量的不断增加,宁波从2013年开始启动生活废弃物收集循环利用示范目,总投资约为15.26亿元,以下用科学记数法表示15.26亿正确的是()A .815.2610⨯B .81.52610⨯C .90.152610⨯D .91.52610⨯【答案】D【解析】【分析】先把15.26亿写成1526000000的形式,再根据科学记数法的法则,把15.26亿用科学计数法表示成10n a ⨯的形式即可.【详解】解:15.26=1526000000∵1526000000有10位整数,∴可以确定指数n=10-1=9,即用科学记数法表示为91.52610⨯,故答案为D.【点睛】本题主要考查了科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 当原数的绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.14.若30,a -=则+a b 的值是( )A .2B 、1C 、0D 、1-【答案】B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B .考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.15.下面是一名学生所做的4道练习题:①224-=;②336a a a +=;③44144mm -=;④()3236xy x y =。
初中数学有理数易错题汇编含答案一、选择题1.在数轴上,与原点的距离是2个单位长度的点所表示的数是( )A .2B .2-C .2±D .12± 【答案】C【解析】【分析】与原点距离是2的点有两个,是±2.【详解】解:与原点距离是2的点有两个,是±2.故选:C.【点睛】本题考查数轴的知识点,有两个答案.2.若a 为有理数,且|a |=2,那么a 是( )A .2B .﹣2C .2或﹣2D .4 【答案】C【解析】【分析】利用绝对值的代数意义求出a 的值即可.【详解】若a 为有理数,且|a|=2,那么a 是2或﹣2,故选C .【点睛】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.3.已知a b >,下列结论正确的是( )A .22a b -<-B .a b >C .22a b -<-D .22a b >【答案】C【解析】【分析】直接利用不等式的性质分别判断得出答案.【详解】A. ∵a>b ,∴a −2>b −2,故此选项错误;B. ∵a>b ,∴|a|与|b|无法确定大小关系,故此选项错误;C.∵a>b ,∴−2a<−2b ,故此选项正确;D. ∵a>b,∴a 2与b 2无法确定大小关系,故此选项错误;故选:C.【点睛】此题考查绝对值,不等式的性质,解题关键在于掌握各性质定义.4.已知实数a ,b 在数轴上的位置如图所示,下列结论错误的是( )A .1a b <<B .11b <-<C .1a b <<D .1b a -<<-【答案】A【解析】【分析】首先根据数轴的特征,判断出a 、-1、0、1、b 的大小关系;然后根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,逐一判断每个选项的正确性即可.【详解】解:根据实数a ,b 在数轴上的位置,可得a <-1<0<1<b ,∵1<|a|<|b|,∴选项A 错误;∵1<-a <b ,∴选项B 正确;∵1<|a|<|b|,∴选项C 正确;∵-b <a <-1,∴选项D 正确.故选:A .【点睛】此题主要考查了实数与数轴,实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:实数与数轴上的点是一一对应关系.任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数.5.在实数-3、0、5、3中,最小的实数是( )A .-3B .0C .5D .3【答案】A【解析】试题分析:本题考查了有理数的大小比较法则的应用,注意:正数都大于0,负数都小于0,正数都大于一切负数,两个负数比较大小,其绝对值大的反而小.根据有理数大小比较的法则比较即可.解:在实数-3、0、5、3中,最小的实数是-3;故选A .考点:有理数的大小比较.6.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .n m ->C .m n ->D .m n <【答案】C【解析】【分析】从数轴上可以看出m 、n 都是负数,且m <n ,由此逐项分析得出结论即可. 【详解】解:因为m 、n 都是负数,且m <n ,|m|<|n|,A 、m >n 是错误的;B 、-n >|m|是错误的;C 、-m >|n|是正确的;D 、|m|<|n|是错误的.故选:C .【点睛】此题考查有理数的大小比较,关键是根据绝对值的意义等知识解答.7.有理数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .a b >B .a c a c -=-C .a b c -<-<D .b c b c +=+【答案】D【解析】【分析】根据数轴得出a <b <0<c ,|b |<|a |,|b |<|c |,再逐个判断即可.【详解】从数轴可知:a <b <0<c ,|b |<|a |,|b |<|c |.A .a <b ,故本选项错误;B .|a ﹣c |=c ﹣a ,故本选项错误;C .﹣a >﹣b ,故本选项错误;D .|b +c |=b +c ,故本选项正确.故选D .【点睛】本题考查了数轴和有理数的大小比较的应用,解答此题的关键是能根据数轴得出a <b <0<c ,|b |<|a |,|b |<|c |,用了数形结合思想.8.如图,在数轴上,点A 表示1,现将点A 沿数轴做如下移动,第一次将点A 向左移动3个单位长度到达点A 1,第二次将点A 1向右移动6个单位长度到达点A 2,第三次将点A 2向左移动9个单位长度到达点A 3,…按照这种移动规律进行下去,第51次移动到点51A ,那么点A 51所表示的数为( )A .﹣74B .﹣77C .﹣80D .﹣83 【答案】B【解析】【分析】序号为奇数的点在点A 的左边,各点所表示的数依次减少3 ,序号为偶数的点在点A 的右侧,各点所表示的数依次增加3,即可解答.【详解】解:第一次点A 向左移动3个单位长度至点1A ,则1A 表示的数,1−3=−2;第2次从点A 1向右移动6个单位长度至点2A ,则2A 表示的数为−2+6=4;第3次从点A 2向左移动9个单位长度至点3A ,则3A 表示的数为4−9=−5;第4次从点A 3向右移动12个单位长度至点4A ,则4A 表示的数为−5+12=7;第5次从点A 4向左移动15个单位长度至点5A ,则5A 表示的数为7−15=−8;…;则点51A 表示:()()511312631781772+⨯-+=⨯-+=-+=-, 故选B .9.若2(1)210x y -++=,则x +y 的值为( ).A .12B .12-C .32D .32- 【答案】A【解析】解:由题意得:x -1=0,2y +1=0,解得:x =1,y =12-,∴x +y =11122-=.故选A . 点睛:本题考查了非负数的性质.几个非负数的和为0,则每个非负数都为0.10.下列各数中,最大的数是( )A .12-B .14C .0D .-2【答案】B【解析】【分析】将四个数进行排序,进而确定出最大的数即可.【详解】 112024-<-<<, 则最大的数是14, 故选B .【点睛】此题考查了有理数大小比较,熟练掌握有理数大小比较的方法是解本题的关键.11.1是0.01的算术平方根,③错误;在同一平面内,过定点有且只有一条直线与已知直线垂直,④错误故选:A【点睛】本题考查概念的理解,解题关键是注意概念的限定性,如④中,必须有限定条件:在同一平面内,过定点,才有且只有一条直线与已知直线垂直.12.实数a b c d 、、、在数轴上的对应点的位置如图所示,则下列结论正确的是( )A .3a >-B .0bd >C .0b c +<D .a b < 【答案】C【解析】【分析】根据数轴上点的位置,可以看出a b c d <<<,43a -<<-,21b -<<-,01c <<,3d =,即可逐一对各个选项进行判断.【详解】解:A 、∵43a -<<-,故本选项错误;B 、∵0b <,0d >,∴0bd <,故本选项错误;C 、∵21b -<<-,01c <<,∴0b c +<,故本选项正确;D 、∵43a -<<-,21b -<<-,则34a <<,12<<b ,∴a b >,故本选项错误;故选:C.【点睛】本题考查了数轴和绝对值,利用数轴上的点表示的数右边的总比左边的大、有理数的运算、绝对值的意义是解题的关键.13.下列语句正确的是()A.近似数0.010精确到百分位B.|x-y|=|y-x|C.如果两个角互补,那么一个是锐角,一个是钝角D.若线段AP=BP,则P一定是AB中点【答案】B【解析】【分析】A中,近似数精确位数是看小数点后最后一位;B中,相反数的绝对值相等;C中,互补性质的考查;D中,点P若不在直线AB上则不成立【详解】A中,小数点最后一位是千分位,故精确到千分位,错误;B中,x-y与y-x互为相反数,相反数的绝对值相等,正确;C中,若两个角都是直角,也互补,错误;D中,若点P不在AB这条直线上,则不成立,错误故选:B【点睛】概念的考查,此类题型,若能够举出反例来,则这个选项是错误的14.已知|m+3|与(n﹣2)2互为相反数,那么m n等于()A.6 B.﹣6 C.9 D.﹣9【答案】C【解析】【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出m、n的值,然后代入代数式进行计算即可得解.【详解】∵|m+3|与(n﹣2)2互为相反数,∴|m+3|+(n﹣2)2=0,∴m+3=0,n﹣2=0,解得m=﹣3,n=2,所以,m n=(﹣3)2=9.故选C.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.15.若2(21)12a a -=-,则a 的取值范围是( )A .12a ≥ B .12a > C .12a ≤ D .无解【答案】C【解析】【分析】 根据二次根式的性质得2(21)a -=|2a-1|,则|2a-1|=1-2a ,根据绝对值的意义得到2a-1≤0,然后解不等式即可.【详解】解:∵2(21)a -=|2a-1|,∴|2a-1|=1-2a ,∴2a-1≤0,∴12a ≤. 故选:C .【点睛】 此题考查二次根式的性质,绝对值的意义,解题关键在于掌握其性质.16.如图,数轴上每相邻两点距离表示1个单位,点A ,B 互为相反数,则点C 表示的数可能是( )A .0B .1C .3D .5【答案】C【解析】【分析】根据相反数的几何意义:在数轴上,一组相反数所表示的点到原点的距离相等,即可确定原点的位置,进而得出点C 表示的数.【详解】∵点A ,B 互为相反数,∴AB 的中点就是这条数轴的原点,∵数轴上每相邻两点距离表示1个单位,且点C 在正半轴距原点3个单位长度, ∴点C 表示的数为3.故选C.【点睛】本题考查了相反数和数轴的知识.利用相反数的几何意义找出这条数轴的原点是解题的关键.17.12的相反数与﹣7的绝对值的和是( )A .5B .19C .﹣17D .﹣5 【答案】D【解析】【分析】根据绝对值和相反数的定义进行选择即可.【详解】-12+|-7|=-12+7=-5,故选D .【点睛】本题考查了绝对值和相反数的定义,掌握绝对值和相反数的求法是解题的关键.18.如果a+b >0,ab >0,那么( )A .a >0,b >0B .a <0,b <0C .a >0,b <0D .a <0,b >0【答案】A【解析】解:因为ab >0,可知ab 同号,又因为a +b >0,可知a >0,b >0.故选A .19.有理数,a b 在数轴上的位置如图所示,以下说法正确的是( )A .0a b +=B .0a b ->C .0ab >D .b a <【答案】D【解析】【分析】由图可判断a 、b 的正负性,a 、b 的绝对值的大小,即可解答.【详解】根据数轴可知:-2<a <-1,0<b <1,∴a+b <0,|a|>|b|,ab <0,a-b <0.所以只有选项D 成立.故选:D .【点睛】此题考查了数轴的有关知识,利用数形结合思想,可以解决此类问题.数轴上,原点左边的点表示的数是负数,原点右边的点表示的数是正数.20.若关于x 的方程22(2)0x k x k +-+=的两根互为倒数,则k 的值为( ) A .±1B .1C .-1D .0【答案】C【解析】【分析】 根据已知和根与系数的关系12c x x a=得出k 2=1,求出k 的值,再根据原方程有两个实数根,即可求出符合题意的k 的值.【详解】解:设1x 、2x 是22(2)0x k x k +-+=的两根,由题意得:121=x x ,由根与系数的关系得:212x x k =, ∴k 2=1,解得k =1或−1,∵方程有两个实数根,则222=(2)43440∆--=--+>k k k k ,当k =1时,34430∆=--+=-<,∴k =1不合题意,故舍去,当k =−1时,34450∆=-++=>,符合题意,∴k =−1,故答案为:−1.【点睛】本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键.。
第一章《有理数》易错题训练 (1)一、选择题(本大题共7小题,共21.0分)−(−5),−|+3|中,负数的个数有()1.在−15,−10,0,−13A. 2个B. 3个C. 4个D. 5个2.已知a、b互为相反数,c、d互为倒数,m的绝对值为1,p是数轴到原点距离为1的数,那么p2000−+m2+1的值是().cd+a+babcdA. 3B. 2C. 1D. 03.下列说法正确的是()A. 没有最大的正数,但有最大的负数;B. 没有最小的负数,但有最小的正数;C. 有最大的负整数,也有最小的正整数;D. 有最小的有理数是0。
4.在下列选项中,具有相反意义的量是()A. 胜二局与负三局B. 气温升高3℃与气温为−3°CC. 盈利5万元与支出5万元D. 甲、乙两队篮球比赛比分分别为66:63与63:665.在−(−2.5),3,0,−5,−0.25,−1中正整数有().2A. 1个B. 2个C. 3个D. 4个6.下列各组量中,具有相反意义的量的有()①“长3.2m与重5.2千克”;②水库水位“上升1.6米”与“下降1.8米”;③温度计上“零上4℃”与“零下5℃”;④−5与3.A. 4组B. 3组C. 2组D. 1组7.下列说法正确的是()A. 有理数a的相反数是−aB. 有理数a的倒数是1aC. 2.0197≈2.010(精确到千分位)D. |−a|=a二、填空题(本大题共12小题,共36.0分)8.8352.6保留两位有效数字是______;3.05万精确到_____位;近似数1.30所表示的准确数a的取值范围:_________9.国家统计局数据显示,截至2014年末全国商品房待售面积约为62200万平方米,该数据用科学记数法可表示为____平方米.10.报告显示,2018年中国家电市场规模达到8104亿元,同比增幅达到,将8104亿元用科学计数法表示为______________亿元.11.在数−32,|−7|,(−2)3,213,−43,0,−0.01,−10.1%中属于非正整数的有______.12.近似数6.30×104精确到________位.13.若|a−3|=4,则a=______.14.2020年五一节期间,渝中区共接待游客约1610000人次,请将数1610000用科学记数法表示为__________.15.根据教育部的消息,2019年参加高考的考生人数为1031万人,1031万用科学记数法表示为______.16.我区约有2930名学生参加本次模拟考试,这个数据用科学记数法可以表示为________.(精确到百位)17.近似数6.3×104精确到______位.18.若ab≠0,a+b=0,ab=___.19.把20056800精确到百万位是___________________.三、计算题(本大题共8小题,共48.0分)20.计算:−12009+(−2)3×(−12)−|1−5|21.计算:(1)−14+(−2)÷(+13)+|−9|(2)−34×[−32×(−23)3−2]22. 计算:②(112−58+712)÷(−124)−8×(−12)323. 计算(1)−12−2×(−2)3÷|−13|(2)(−1)4+(1−0.5)×13×【2−(−3)2】24. 计算:(1)3+50÷22×(−15)−1(2)[1−(1−0.5)×13)]×[2−(−3)2]25. 计算:(1)−14+(1−0.5)×13×[2−(−3)2];(2)(12+56−712)×(−36).26. 计算:(−1)2+[4−(1+12)×2]27. 有理数计算题(1)12−(−5)−(−18)+(−5)(2)−6.5+414+834−312(3)(512+23−34)×(−12) (4)32−50÷22×(−110)−1四、解答题(本大题共3小题,共24.0分)28. 把下列各数填入它所在的数集的括号里.−12,+4,−6.1,0,−1213,|−245|,5.9,−(+8),0.0·81·,−70% 正数集合:{_____________________…}非正整数集合:{__________________…}负分数集合:{___________________…}非负数集合:{____________________…}29. 如图,数轴上有四个数a 、b 、c 、d ,请用“<”把它们的绝对值连起来30. 计算:−14+(−2)3+|2−5|−6×(12−13)参考答案及解析1.答案:B解析:本题考查了正负数,有理数的减法.判断一个数是正数还是负数,要把它化简成最后形式再判断.此题要注意0既不是正数也不是负数.根据相反数、绝对值的概念,将相关数值化简,再根据负数的定义作出判断.解:−13−(−5)=−13+5=423,−|+3|=−3,在−15,−10,0,−13−(−5),−|+3|中,负数是:−15,−10,−|+3|,共3个,故选B.2.答案:B解析:本题考查了代数式求值,主要利用了相反数的定义,倒数的定义,绝对值的性质和数轴,熟记概念与性质是解题的关键.根据互为相反数的两个数的和等于0可得a+b=0,互为倒数的两个数的乘积是1可得cd=1,再根据绝对值的性质和数轴求出m、p,然后代入代数式进行计算即可得解.解:∵a、b互为相反数,∴a+b=0,∵c、d互为倒数,∴cd=1,∵m的绝对值为1,p是数轴到原点距离为1的数,∴m=±1,p=±1,∴p2000−cd+a+babcd+m2+1,=1−1+0+1+1,=2.故选B.3.答案:C解析:本题是考查自然数的意义、整数的意义、正、负数的意义、有理数的意义等.只有深刻理解意义才能作出判断.根据自然数的意义,0是最小的自然数,根据整数的意义,没有最小的整数;根据正数的意义,没有最小的正数,但有最小的正整数,是1;根据负数的意义,既没有最大的负数,也没有最小的负数;根据有理数的意义,没有最小的有理数.解:A.没有最大的正数,也没有最大的负数,故错误;B.没有最小的负数,也没有最大的负数,故错误;C.最大的负整数是−1,最小的正整数是1,故正确;D.有理数中没有最小的数,故错误.故选C.4.答案:A解析:此题考查了正数与负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解:A.胜二局与负三局,具有相反意义的量,故正确;B.升高与降低是具有相反意义,气温为−3℃只表示某一时刻的温度,故错误;C.盈利与亏损是具有相反意义,与支出5万元不具有相反意义,故错误;D.比分66:63与63:66不具有相反意义,故错误.故选A.5.答案:A解析:根据大于0的整数是正整数,可得答案.本题考查了有理数,大于0的整数是解题关键.解:3>0,故选:A.6.答案:C解析:此题考查了正数和负数的知识点,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,据此可以得到正确答案.解:①“长3.2m与重5.2千克”;不是相反意义的量,故本选项错误,②水库水位“上升1.6米”与“下降1.8米”,是相反意义的量,故本选项正确,③温度计上“零上4℃”与“零下5℃”,是相反意义的量,故本选项正确,④−5与3不是相反意义的量,故本选项错误,故选C.7.答案:A解析:解:A、有理数a的相反数是−a,正确;(a≠0),故此选项错误;B、有理数a的倒数是1aC、2.0197≈2.020(精确到千分位),故此选项错误;D、|−a|=a(a≥0),故此选项错误;故选:A.直接利用相反数的定义以及互为倒数的定义和近似数和绝对值的性质分别分析得出答案.此题主要考查了相反数的定义以及互为倒数的定义和近似数和绝对值的性质,正确把握相关定义是解题关键.8.答案:8.4×103;百;1.295≤a<1.305解析:本题考查了近似数和有效数字:经过四舍五入得到的数称为近似数;从一个近似数左边第一个不为0的数数起到这个数完,所以这些数字都叫这个近似数的有效数字.近似数精确到哪一位,应当看末位数字实际在哪一位,根据有效数字、近似数的相关知识求解.解:8352.6保留两位有效数字是8.4×103;3.05万精确到百位;近似数1.30所表示的准确数a的范围为1.295≤a<1.305.故答案为8.4×103;百;1.295≤a<1.305.9.答案:6.22×108解析:【试题解析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:62200万=622000000=6.22×108,故答案为6.22×108.10.答案:8.104×103解析:本题考查了用科学记数法表示较大的数.把一个绝对值小于1(或者大于等于10)的数记为a×10n的形式(其中1≤|a|<10),这种记数法叫做科学记数法.按照科学计数法的定义解答即可.解:8104=8.104×103.故答案为8.104×103.11.答案:−32,(−2)3,0解析:本题考查非正整数,属于基础题.根据题意,利用非正整数的定义,即可得解.解:由题意,这些数中属于非正整数的有−32、(−2)3、0,故答案为−32,(−2)3,0.12.答案:百解析:本题考查了近似数和有效数字,根据近似数的精确度求解.解:6.30×104精确到百位.故答案为百.13.答案:7或−1解析:解:∵|a−3|=4,∴a−3=4或a−3=−4,解得a=7或a=−1.故答案为:7或−1.根据互为相反的绝对值相等列式,然后求解即可.本题考查了绝对值的性质,需要注意,互为相反数的绝对值的相等.14.答案:1.61×106.解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.将“1610000”用科学记数法表示为1.61×106.故答案是:1.61×106.15.答案:1.031×107解析:解:1031万用科学记数法表示为1031×104=1.031×107.故答案为:1.031×107.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.答案:2.9×103解析:此题主要考查了科学记数法的表示方法和近似数.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值⩾10时,n是正数;当原数的绝对值<1时,n是负数.解:2930=2.93×103≈2.9×103.故答案为2.9×103.17.答案:千解析:解:近似数6.3×104精确到千位.故答案为:千.根据近似数的精确度进行判断.本题考查了近似数和有效数字.解题的关键是掌握近似数和有效数字的定义:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.18.答案:−1解析:此题主要考查相反数.根据a+b=0,可知a、b是互为相反数,互为相反数的两个数的商是−1.解:∵a+b=0,ab≠0,∴a、b是互为相反数,=−1,∴ab故答案为−1.19.答案:2.0×107解析:本题考查了近似数和有效数字:把数按要求进行四舍五入得到的数为近似数.根据20056800= 2.00568×107,精确到百万位是2.0×107,即可得出答案.解:20056800≈2.0×107(精确到百万位).故答案为2.0×107. 20.答案:解:原式样=−1+(−8)×(−1)−42=−1+4−4=−1.解析:本题考查有理数的混合运算,绝对值.注意运算顺序和熟练掌握有理数的运算法则是解题的关键.先计算乘方和绝对值,再计算乘法,最后计算加减即可.)+|−9|21.答案:解:(1)−14+(−2)÷(+13=−1+(−2)×(+3)+9 =−1−6+9=2;(2)原式=−34×[−9×(−827)−2]=−34×(83−2)=−34×23=−12.解析:本题主要考查有理数的混合运算,解题的关键是掌握有理数混合运算顺序和运算法则.(1)先计算乘方,再计算乘除,最后计算减法即可得;(2)先计算乘方,再计算乘除,最后计算减法即可得.22.答案:解:①原式=−1−16×(−7)×(−17)=−1−16=−116;②原式=(112−58+712)×(−24)−8×(−18)=−36+15−14+1=−34.解析:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.①原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;②原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.23.答案:解:(1)原式=−1−2×(−8)×3=−1+48=47;(2)原式==1+12×13×(2−9)=1+16×(−7)=1−76=−16.解析:本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.(1)根据有理数的乘方,乘除法和加减法可以解答本题;(2)根据有理数的乘方、有理数的乘法和加减法可以解答本题.24.答案:解:(1)原式=3+50÷4×(−15)−1=3−52−1=−12;(2)原式=[1−12×13]×(2−9)=(1−16)×(−7)=56×(−7)=−356.解析:本题主要考查的时有理数的混合运算的有关知识.(1)先将给出的式子进行变形,然后再计算即可;(2)先将给出的式子进行变形,然后再计算即可.25.答案:解:(1)原式=−1+12×13×(2−9)=−1+16×(−7)=−1−76=−136;(2)原式=−12×36−56×36+712×36=−18−30+21=−27.解析:此题考查的是有理数的混合运算,熟练掌握有理数的各种运算法则是关键.(1)按照先乘方,再乘除,最后加减的运算顺序计算,有括号的先算小括号,再算中括号;(2)根据有理数的乘法分配律变形后进行有理数的乘法运算,再进行有理数的加减运算即可.26.答案:解:原式=1+(4−112×2)=1+(4−32×2)=1+1 =2.解析:本题考查了有理数的混合运算,有理数的乘方,先算有理数的乘方,然后算小括号里面的,再算中括号里面的,最后算中括号外面的加法,注意运算顺序.27.答案:解:(1)原式=12+5+18−5,=30;(2)原式=−6.5−3.5+13,=−10+13,=3;(3)原式=−5−8+9,=−13+9,=−4;(4)原式=9−50×14×(−110)−1,=9+1.25−1,=9.25.解析:本题考查了有理数的混合运算,掌握有理数的各种运算法则是解决问题的关键.(1)根据有理数的加减运算法则进行计算即可;(2)根据有理数的加减运算法则进行计算即可;(3)根据有理数乘法的分配律进行计算即可;(4)根据有理数的混合运算顺序计算即可.28.答案:解:正数集合:{+4,|−245|,5.9,0.0˙81˙,…};非正整数集合:{0,−(+8),…};负分数集合:{−12,−6.1,−1213,−70%,…};非负数集合:{+4,|−245|,0,5.9,0.0˙81˙,…}.解析:本题考查了有理数的概念,按照有理数的分类填写:有理数认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.29.答案:解:由图可知:|b|<|c|<|d|<|a|解析:本题考查的是绝对值,数轴有关知识,根据绝对值越大,离原点越远进行判断即可.30.答案:解:原式=−1+(−8)+3−6×16=−9+3−1=−7.解析:根据有理数的混合运算顺序和运算法则计算可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.。
宜昌市中考数学有理数解答题专题练习(含答案)一、解答题1.如图,在数轴上点A表示数−20,点C表示数30,我们把数轴上两点之间的距离用表示两点的大写字母一起标记.比如,点A与点B之间的距离记作AB,点B与点C之间的距离记作BC…(1)点A与点C之间的距离记作AC,则AC的长为________;若数轴上有一点D满足CD=AD,则D点表示的数为________;(2)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度,同时点A、C在数轴上运动,点A、C 的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t秒.①若点A向右运动,点C向左运动,AB=BC,求t的值________;②若点A向左运动,点C向右运动,2AB−m×BC的值不随时间t的变化而改变,则2AB−m×BC的值为________(直接写出答案).2.已知数轴上三点A,O,B表示的数分别为6,0,-4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是________;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.3.(1)阅读下面材料:点、在数轴上分别表示实数,,、两点之间的距高表示为当、两点中有一点在原点时,不妨设点在原点,如图1,;当、都不在原点时,①如图2,点、都在原点的右侧,;②如图3,点、都在原点的左侧,;③如图4,点、在原点的两侧,;(1)回答下列问题:①数轴上表示2和5的两点间的距离是________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是________;②数轴上表示和-1的两点和之间的距离是________,如果,那么为________;③当代数式取最小值时,相应的的取值范围是________;④求的最小值,提示:.4.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示-12,点B表示10,点C表示20,我们称点A和点C在数轴上相距32个长度单位.动点P 从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着折线数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒。
宜昌市初中数学有理数易错题汇编及答案解析一、选择题1.实数a b c d 、、、在数轴上的对应点的位置如图所示,则下列结论正确的是( )A .3a >-B .0bd >C .0b c +<D .a b < 【答案】C【解析】【分析】根据数轴上点的位置,可以看出a b c d <<<,43a -<<-,21b -<<-,01c <<,3d =,即可逐一对各个选项进行判断.【详解】解:A 、∵43a -<<-,故本选项错误;B 、∵0b <,0d >,∴0bd <,故本选项错误;C 、∵21b -<<-,01c <<,∴0b c +<,故本选项正确;D 、∵43a -<<-,21b -<<-,则34a <<,12<<b ,∴a b >,故本选项错误;故选:C .【点睛】本题考查了数轴和绝对值,利用数轴上的点表示的数右边的总比左边的大、有理数的运算、绝对值的意义是解题的关键.2.若x <2()22x -+|3-x|的正确结果是( ) A .-1B .1C .2x -5D .5-2x 【答案】C【解析】 ()2a a = 的化简得出即可. 解析:∵x <2()22x -+|3﹣x|=2352x x x -+-=- . 故选D.3.若2(1)210x y -++=,则x +y 的值为( ).A .12B .12-C .32D .32- 【答案】A【解析】解:由题意得:x -1=0,2y +1=0,解得:x =1,y =12-,∴x +y =11122-=.故选A . 点睛:本题考查了非负数的性质.几个非负数的和为0,则每个非负数都为0.4.如图是一个22⨯的方阵,其中每行,每列的两数和相等,则a 可以是( )A .tan 60︒B .()20191-C .0D .()20201-【答案】D【解析】【分析】 根据题意列出等式,直接利用零指数幂的性质以及绝对值的性质和立方根的性质分别化简得出答案.【详解】解:由题意可得:03282a +-=+,则23a +=,解得:1a =, Q 3tan 60︒=,()201911-=-,()202011-= 故a 可以是2020(1)-.故选:D .【点睛】 此题考查了零指数幂、绝对值的性质、立方根的性质和实数的运算,理解题意并列出等式是解题关键.5.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .n m ->C .m n ->D .m n <【答案】C【解析】【分析】从数轴上可以看出m 、n 都是负数,且m <n ,由此逐项分析得出结论即可.【详解】解:因为m 、n 都是负数,且m <n ,|m|<|n|,A 、m >n 是错误的;B 、-n >|m|是错误的;C 、-m >|n|是正确的;D 、|m|<|n|是错误的.故选:C .【点睛】此题考查有理数的大小比较,关键是根据绝对值的意义等知识解答.6.已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为,f 的算术平方根是8,求2125c d ab e ++++( )A .92B .92C .92+92-D .132 【答案】D【解析】【分析】 根据相反数,倒数,以及绝对值的意义求出c+d ,ab 及e 的值,代入计算即可.【详解】由题意可知:ab=1,c+d=0,=e f=64,∴222e =±=(4=,∴2125c d ab e ++++=11024622+++=; 故答案为:D【点睛】 此题考查了实数的运算,算术平方根,绝对值,相反数以及倒数和立方根,熟练掌握运算法则是解本题的关键.7.下列等式一定成立的是( )A =B .11=C 3=±D .6=-【答案】B【解析】【分析】根据算术平方根、立方根、绝对值的性质逐项判断即可.【详解】321-=,故错误;B. 1331-=-,故正确;C. 93=, 故错误;D. ()321666--=--=,故错误;故答案为:B.【点睛】本题考查了算术平方根的概念、立方根的概念、绝对值的性质,解题的关键是熟练掌握其定义和性质.8.如果x 取任意实数,那么以下式子中一定表示正实数的是( )A .xB .C .D .|3x +2| 【答案】C【解析】【分析】利用平方根有意义的条件以及绝对值有意义的条件进而分析求出即可.【详解】A.x 可以取全体实数,不符合题意;B.≥0, 不符合题意; C.>0, 符合题意; D. |3x +2|≥0, 不符合题意.故选C.【点睛】本题考查了平方根和绝对值有意义的条件,正确把握平方根和绝对值有意义的条件是解题关键.9.如图,下列判断正确的是( )A .a 的绝对值大于b 的绝对值B .a 的绝对值小于b 的绝对值C .a 的相反数大于b 的相反数D .a 的相反数小于b 的相反数【答案】C【解析】【分析】根据绝对值的性质,相反数的性质,可得答案.【详解】解:没有原点,无法判断|a |,|b |,有可能|a |>|b |,|a |=|b |,|a |<|b |.由数轴上的点表示的数右边的总比左边的大,得a <b ,由不等式的性质,得﹣a >﹣b ,故C 符合题意;故选:C .【点睛】本题考查了数轴、绝对值、相反数,利用不等式的性质是解题关键,又利用了有理数大小的比较.10.若a 与b 互为相反数,则下列式子不一定正确的是( )A .0a b +=B .=-a bC .a b =D .a b = 【答案】C【解析】【分析】依据相反数的概念及性质可确定正确的式子,再通过举反例可证得不一定正确的式子.【详解】解:∵a 与b 互为相反数,∴0a b +=,∴=-a b , ∴a b =,故A 、B 、D 正确,当1a =时,1b =-,则1=b ,∴a b =;当1a =-时,1b =,则1=b ,∴a b ≠,故C 不一定正确,故选:C .【点睛】本题考查了相反数的定义.解此题的关键是灵活运用相反数的定义判定式子是否正确.11.不论a 取什么值,下列代数式的值总是正数的是( )A .1a +B .1a +C .2aD .2(1)a +【答案】B【解析】【分析】直接利用绝对值的性质以及偶次方的性质分别分析得出答案.【详解】A 、|a+1|≥0,故此选项错误;B 、|a|+1>0,故此选项正确;C 、a 2≥0,故此选项错误;D 、(a+1)2≥0,故此选项错误;故选B .【点睛】此题主要考查了偶次方的性质以及绝对值的性质,正确把握相关定义是解题关键.12.下列各组数中,互为相反数的组是( )A .2-B .2-C .12-与2D . 【答案】A【解析】【分析】根据相反数的概念及性质逐项分析得出答案即可.【详解】A 、-2=2,符合相反数的定义,故选项正确;B 、-2不互为相反数,故选项错误;C 、12-与2不互为相反数,故选项错误; D 、|-2|=2,2与2不互为相反数,故选项错误.故选:A .【点睛】此题考查相反数的定义,解题关键在于掌握只有符号不同的两个数互为相反数,在本题中要注意理解求|-2|的相反数就是求2的相反数,不要受绝对值中的符号的影响.13.下列语句正确的是( )A .近似数0.010精确到百分位B .|x-y |=|y-x |C .如果两个角互补,那么一个是锐角,一个是钝角D .若线段AP=BP ,则P 一定是AB 中点【答案】B【解析】【分析】A 中,近似数精确位数是看小数点后最后一位;B 中,相反数的绝对值相等;C 中,互补性质的考查;D 中,点P 若不在直线AB 上则不成立【详解】A 中,小数点最后一位是千分位,故精确到千分位,错误;B 中,x -y 与y -x 互为相反数,相反数的绝对值相等,正确;C 中,若两个角都是直角,也互补,错误;D 中,若点P 不在AB 这条直线上,则不成立,错误故选:B【点睛】概念的考查,此类题型,若能够举出反例来,则这个选项是错误的14.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.b>a B.ab>0 C.a>b D.|a|>|b|【答案】C【解析】【分析】本题要先观察a,b在数轴上的位置,得b<-1<0<a<1,然后对四个选项逐一分析.【详解】A、∵b<﹣1<0<a<1,∴b<a,故选项A错误;B、∵b<﹣1<0<a<1,∴ab<0,故选项B错误;C、∵b<﹣1<0<a<1,∴a>b,故选项C正确;D、∵b<﹣1<0<a<1,∴|b|>|a|,即|a|<|b|,故选项D错误.故选C.【点睛】本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.15.7-的绝对值是()A.17-B.17C.7D.7-【答案】C【解析】【分析】负数的绝对值为这个数的相反数.【详解】|-7|=7,即答案选C.【点睛】掌握负数的绝对值为这个数的相反数这个知识点是解题的关键.16.下列运算正确的是()A4 =-2 B.|﹣3|=3 C4=± 2 D39【答案】B【解析】【分析】A、根据算术平方根的定义即可判定;B、根据绝对值的定义即可判定;C、根据算术平方根的定义即可判定;D、根据立方根的定义即可判定.解:A 、C 2=,故选项错误;B 、|﹣3|=3,故选项正确;D 、9开三次方不等于3,故选项错误.故选B .【点睛】此题主要考查了实数的运算,注意,正数的算术平方根是正数.17.已知整数01234,,,,,L a a a a a 满足下列条件:01021320,1,2,3==-+=-+=-+L a a a a a a a 以此类推,2019a 的值为( ) A .1007-B .1008-C .1009-D .1010-【答案】D【解析】【分析】通过几次的结果,发现并总结规律,根据发现的规律推算出要求的字母表示的数值.【详解】解:00a =, 101011a a =-+=-+=-,212121a a =-+=--+=-,323132a a =-+=--+=-,434242a a =-+=--+=-,545253a a =-+=--+=-,656363a a =-+=--+=-,767374a a =-+=--+=-,……由此可以看出,这列数是0,-1,-1,-2,-2,-3,-3,-4,-4,……,(2019+1)÷2=1010,故20191010a =-,故选:D .【点睛】本题考查了绝对值的运算,对于计算规律的发现和总结.18.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直A .0个B .1个C .2个D .3个【解析】【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;19.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点M B.点N C.点P D.点Q【答案】C【解析】试题分析:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.考点:有理数大小比较.20.数轴上的A、B、C三点所表示的数分别为a、b、1,且|a﹣1|+|b﹣1|=|a﹣b|,则下列选项中,满足A、B、C三点位置关系的数轴为()A.B.C.D.【答案】A【解析】【分析】根据绝对值的意义,在四个答案中分别去掉绝对值进行化简,等式成立的即为答案;【详解】A中a<1<b,∴|a﹣1|+|b﹣1|=1﹣a+b﹣1=b﹣a,|a﹣b|=b﹣a,∴A正确;B中a<b<1,∴|a﹣1|+|b﹣1|=1﹣a+1﹣b=2﹣b﹣a,|a﹣b|=b﹣a,∴B不正确;C中b<a<1,∴|a﹣1|+|b﹣1|=1﹣a+1﹣b=2﹣b﹣a,|a﹣b|=a﹣b,∴C不正确;D中1<a<b,∴|a﹣1|+|b﹣1|=a﹣1+b﹣1=﹣2+b+a,|a﹣b|=b﹣a,∴D不正确;故选:A.【点睛】本题考查数轴和绝对值的意义;熟练掌握绝对值的意义是解题的关键.。