辽宁省葫芦岛市2018年中考数学试题(含解析)
- 格式:doc
- 大小:490.46 KB
- 文档页数:14
【母题来源】辽宁省葫芦岛市2018年中考数学试卷第22题【母题原题】如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=(a≠0)的图象在第二象限交于点A(m,2).与x轴交于点C(﹣1,0).过点A作AB⊥x轴于点B,△ABC的面积是3.(1)求一次函数和反比例函数的解析式;(2)若直线AC与y轴交于点D,求△BCD的面积.【分析】(1)由点A的坐标可得出点B的坐标,结合点C的坐标可得出AB、BC的长度,由△ABC的面积是3可得出关于m的一元一次方程,解之可得出点A的坐标,由点A、C的坐标利用反比例函数图象上点的坐标特征以及待定系数法,即可求出一次函数和反比例函数的解析式;(2)利用一次函数图象上点的坐标特征可求出点D的坐标,进而可得出OD的长度,再利用三角形的面积公式即可求出△BCD的面积.∵点A在反比例函数y=(a≠0)的图象上,∴a=﹣4×2=﹣8,∴反比例函数的解析式为y=﹣.将A(﹣4,2)、C(﹣1,0)代入y=kx+b,得:,解得:,∴一次函数的解析式为y=﹣x﹣.【命题意图】本题考查了反比例函数与一次函数的交点问题、反比例(一次)函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)由△ABC的面积是3求出m的值;(2)利用一次函数图象上点的坐标特征求出点D的坐标.【方法、技巧、规律】解决与函数相关的问题时,要结合图形进行解答,而且对于有待定系数时,要考虑可能出现的情况.一次函数与反比例函数问题中有时会出现几何图形问题.反比例函数与一次函数、三角形、四边形等的综合运用,充分利用各种图形的性质,表示出关键点的坐标及对应线段的长度是关键,灵活运用反比例函数性质,解答此类题目【母题1】已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数myx图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式0m kx b x+->的解集.【答案】(1)y =﹣x ﹣2,8y x=-;(2)6;(3)x <﹣4或0<x <2.(3)由图可得,不等式0m kx b x+->的解集为:x <﹣4或0<x <2.考点:反比例函数与一次函数的交点问题;待定系数法求一次函数解析式.【母题2】如图,直线y =kx (k 为常数,k ≠0)与双曲线m y x=(m 为常数,m >0)的交点为A 、B ,AC ⊥x 轴于点C ,∠AOC =30°,OA =2.(1)求m 的值;(2)点P 在y 轴上,如果3ABP S k ∆=,求P 点的坐标.【答案】(1;(2)P (0,1)或(0,﹣1).【分析】(1)求出点A 坐标利用待定系数法即可解决问题;(2)设P (0,n ),由A ,1),B ,﹣1),可得12•|n |12•|n |,解方程即可;点睛:本题考查反比例函数与一次函数的交点问题、待定系数法,三角形的面积等知识,解题的关键是灵活应用待定系数法确定函数的解析式,学会构建方程解决问题,属于中考常考题型.考点:反比例函数与一次函数的交点问题.【母题3】如图,一次函数1y x =+的图象与x 轴、y 轴分别交于点A 、B ,以线段AB 为边在第一象限作等边△ABC .(1)若点C 在反比例函数k y x=的图象上,求该反比例函数的解析式;(2)点P (,m )在第一象限,过点P 作x 轴的垂线,垂足为D ,当△PAD 与△OAB 相似时,P 点是否在(1)中反比例函数图象上?如果在,求出P 点坐标;如果不在,请加以说明.【答案】(1)y =(2)P (1)在反比例函数图象上. 【分析】(1)由直线解析式可求得A 、B 坐标,在Rt △AOB 中,利用三角函数定义可求得∠BAO =30°,且可求得AB 的长,从而可求得CA ⊥OA ,则可求得C 点坐标,利用待定系数法可求得反比例函数解析式;(2)分△PAD ∽△ABO 和△PAD ∽△BAO 两种情况,分别利用相似三角形的性质可求得m 的值,可求得P 点坐标,代入反比例函数解析式进行验证即可.(2)∵P (m )在第一象限,∴AD =OD ﹣OA =,PD =m ,当△ADP ∽△AOB 时,则有PD AD OB OA =,即1m =,解得m =1,此时P 点坐标为(1);当△PDA ∽△AOB 时,则有PD ADOA OB ==,解得m =3,此时P 点坐标为(,3);把P(,3)代入y 可得3,∴P(,3)不在反比例函数图象上,把P(1)代入反比例函数解析式得,∴P(1)在反比例函数图象上;综上可知P点坐标为(1).点睛:本题为反比例函数的综合应用,涉及待定系数法、等边三角形的性质、三角函数、勾股定理、相似三角形的性质及分类讨论思想等知识.在(1)中求得C点坐标是解题的关键,在(2)中利用相似三角形的性质得到m的方程是解题的关键,注意分两种情况.本题考查知识点较多,综合性较强,难度适中.考点:反比例函数综合题;分类讨论;综合题.母题二圆的有关计算与证明【母题来源】辽宁省葫芦岛市2018年中考数学试卷第23题【母题原题】如图,AB是⊙O的直径,=,E是OB的中点,连接CE并延长到点F,使EF=CE.连接AF 交⊙O于点D,连接BD,BF.(1)求证:直线BF是⊙O的切线;(2)若OB=2,求BD的长.【分析】(1)证明△OCE≌△BFE(SAS),可得∠OBF=∠COE=90°,可得结论;(2)由(1)得:△OCE≌△BFE,则BF=OC=2,根据勾股定理得:AF=2,利用面积法可得BD的长.(2)解:∵OB=OC=2,由(1)得:△OCE≌△BFE,∴BF=OC=2,∴AF===2,∴S△ABF=,4×2=2•BD,∴BD=.【命题意图】本题考查圆的有关知识,切线的判定,全等三角形的判定和性质等知识,解题的关键是熟练掌握这些知识的应用,学会条件常用辅助线,属于中考常考题型.【方法、技巧、规律】圆这部分内容主要有垂径定理、弧、弦、圆心角关系定理、圆周角和圆心角关系定理.这些定理都是圆中极其基础的知识,自身并不具有很强的纵深能力,成为主导圆与其它知识综合的核心载体,典型手法是以常见的中等试题设计展现.【母题1】如图,在△ABC 中,∠C =90°,D 、F 是AB 边上的两点,以DF 为直径的⊙O 与BC 相交于点E ,连接EF ,过F 作FG ⊥BC 于点G ,其中∠OFE =12∠A . (1)求证:B C 是⊙O 的切线;(2)若sinB =35,⊙O 的半径为r ,求△EHG 的面积(用含r 的代数式表示).【答案】(1)证明见解析;(2)2425r . 【分析】(1)首先连接OE ,由在△ABC 中,∠C =90°,FG ⊥BC ,可得FG ∥AC ,又由∠OFE =12∠A ,易得EF 平分∠BFG ,继而证得OE ∥FG ,证得OE ⊥BC ,则可得BC 是⊙O 的切线;(2)由在△OBE 中,sinB =35,⊙O 的半径为r ,可求得OB ,BE 的长,然后由在△BFG 中,求得BG ,FG 的长,则可求得EG 的长,易证得△EGH ∽△FGE ,然后由相似三角形面积比等于相似比的平方,求得答案.考点:切线的判定.【母题2】如图,的半径,AB是弦,直线EF经过点B,于点C,.求证:EF是的切线;若,求AB的长;在的条件下,求图中阴影部分的面积.【答案】(1)证明见解析(2)2(3)详解:证明:,,,,,,,是的切线;过点O作于点D,则,,∽,,即,;【母题3】如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.【答案】(1)AD为圆O的切线;(2)r=.(2)设圆O的半径为r,在Rt△ABC中,AC=BCtanB=4,根据勾股定理得:AB==4,∴OA=4﹣r,在Rt△ACD中,tan∠1=tanB=,∴CD=ACtan∠1=2,根据勾股定理得:AD2=AC2+CD2=16+4=20,在Rt△ADO中,OA2=OD2+AD2,即(4﹣r)2=r2+20,解得:r=.【名师点睛】此题考查了切线的判定与性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键.母题三二次函数的实际问题【母题来源】辽宁省葫芦岛市2018年中考数学试卷第24题【母题原题】某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他费用80元.(1)请直接写出y与x之间的函数关系式;(2)如果每天获得160元的利润,销售单价为多少元?(3)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?【分析】(1)根据每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,可设y=kx+b,再将x=3.5,y=280;x=5.5,y=120代入,利用待定系数法即可求解;(2)根据每天获得160元的利润列出方程(x﹣3)(﹣80x+560)﹣80=160,解方程并结合3.5≤x≤5.5即可求解;(3)根据每天的利润=每天每袋的利润×销售量﹣每天还需支付的其他费用,列出w关于x的函数解析式,再根据二次函数的性质即可求解.则y与x之间的函数关系式为y=﹣80x+560;(2)由题意,得(x﹣3)(﹣80x+560)﹣80=160,整理,得x2﹣10x+24=0,解得x1=4,x2=6.∵3.5≤x≤5.5,∴x=4.答:如果每天获得160元的利润,销售单价为4元;【命题意图】本题考查了二次函数的应用,一元二次方程的应用,待定系数法求一次函数的解析式,根据题意找出等量关系列出关系式是解题的关键.【方法、技巧、规律】在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.【母题1】我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为:,每件产品的利润z(元)与月份x(月)的关系如下表:(1)请你根据表格求出每件产品利润z(元)与月份x(月)的关系式;(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;(3)当x为何值时,月利润w有最大值,最大值为多少?【答案】(1);(2);(3)x=8时,w有最大值144万元.(2)当1≤x≤8时,w=(-x+20)(x+4)=-x2+16x+80当9≤x≤10时,w=(-x+20)(-x+20)=x2-40x+400;当11≤x≤12时,w=10(-x+20)=-10x+200;∴w与x的关系式为:;(3)当1≤x≤8时,w=-x2+16x+80=-(x-8)2+144,∴当x=8时,w取得最大值,此时w=144;当x=9时,w=121,当10≤x≤12时,w=-10x+200,则当x=10时,w取得最大值,此时w=100,由上可得,当x为8时,月利润w有最大值,最大值144万元.点睛:本题考查二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.【母题2】某公司生产并销售A,B两种品牌新型节能设备,第一季度共生产两种品牌设备20台,每台的成本和售价如下表:设销售A种品牌设备x台,20台A,B两种品牌设备全部售完后获得利润y万元.(利润=销售价-成本)(1)求y关于x的函数关系式;(2)若生产两种品牌设备的总成本不超过80万元,那么公司如何安排生产A,B两种品牌设备,售完后获利最多?并求出最大利润;(3)公司为营销人员制定奖励促销政策:第一季度奖金=公司总利润销售A种品牌设备台数,那么营销人员销售多少台A种品牌设备,获得奖励最多?最大奖金数是多少?【答案】(1) y;(2)公司生产A,B两种品牌设备各10台,售完后获利最大,最大利润为40万元;(3)营销人员销售15台A种品牌设备,获得第一季度奖金最多,最大奖金数为4.5万元.(3)设营销人员第一季度奖金为则%,即% , 故当x=15时,取最大值,为4.5.故营销人员销售15台A种品牌设备,获得第一季度奖金最多,最大奖金数为4.5万元.点睛:本题主要考查二次函数解决实际问题中的商品销售问题,解决本题的关键是要熟练掌握商品销售问题中的基本关系式列出函数关系式,并能对二次函数配方求最值.【母题3】某大学生利用暑假40天社会实践进行创业,他在网上开了一家微店,销售推广一种成本为25元/件的新型商品.在40天内,其销售单价n(元/件)与时间x(天)的关系式是:当1≤x≤20时,;当21≤x≤40时,.这40天中的日销售量m(件)与时间x(天)符合函数关系,具体情况记录如下表(天数为整数):(1)请求出日销售量m(件)与时间x(天)之间的函数关系式;(2)若设该同学微店日销售利润为w元,试写出日销售利润w(元)与时间x(天)的函数关系式;(3)求这40天中该同学微店日销售利润不低于640元有多少天?【答案】(1)m=-x+50;(2);(3)这40天中该同学微店日销售利润不低于640元有13天.(2)、当1≤x≤20时,w===,当21≤x≤40时,w===,∴w关于x的函数关系式为;。
2018年辽宁省葫芦岛市中考数学试题及参考答案与解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.如果温度上升10℃记作+10℃,那么温度下降5℃记作()A.+10℃B.﹣10℃C.+5℃D.﹣5℃2.下列几何体中,俯视图为矩形的是()A.B.C.D.3.下列运算正确的是()A.﹣2x2+3x2=5x2 B.x2•x3=x5C.2(x2)3=8x6D.(x+1)2=x2+14.下列调查中,调查方式选择最合理的是()A.调查“乌金塘水库”的水质情况,采用抽样调查B.调查一批飞机零件的合格情况,采用抽样调查C.检验一批进口罐装饮料的防腐剂含量,采用全面调查D.企业招聘人员,对应聘人员进行面试,采用抽样调查5.若分式211xx-+的值为0,则x的值为()A.0 B.1 C.﹣1 D.±16.在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是157.如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,则∠B的度数为()A.15°B.55°C.65°D.75°8.如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4的解集为()A .x >﹣2B .x <﹣2C .x >4D .x <49.如图,AB 是⊙O 的直径,C ,D 是⊙O 上AB 两侧的点,若∠D=30°,则tan ∠ABC 的值为( )A .12B C D 10.如图,在▱ABCD 中,AB=6,BC=10,AB ⊥AC ,点P 从点B 出发沿着B→A→C 的路径运动,同时点Q 从点A 出发沿着A→C→D 的路径以相同的速度运动,当点P 到达点C 时,点Q 随之停止运动,设点P 运动的路程为x ,y=PQ 2,下列图象中大致反映y 与x 之间的函数关系的是( )A .B .C .D .二、填空题(每题只有一个正确选项,本题共8小题,每题3分,共24分)11.分解因式:2a 3﹣8a= .12.据旅游业数据显示,2018年上半年我国出境旅游超过129 000 000人次,将数据129 000 000用科学记数法表示为 .13.有四张看上去无差别的卡片,正面分别写有“兴城首山”、“龙回头”、“觉华岛”、“葫芦山庄”四个景区的名称,将它们背面朝上,从中随机一张卡片正面写有“葫芦山庄”的概率是 .14.如图,在菱形OABC 中,点B 在x 轴上,点A 的标为(2,3),则点C 的坐标为 .15.如图,某景区的两个景点A 、B 处于同一水平地面上、一架无人机在空中沿MN 方向水平飞行进行航拍作业,MN 与AB 在同一铅直平面内,当无人机飞行至C 处时、测得景点A 的俯角为45°,景点B 的俯角为知30°,此时C 到地面的距离CD 为100米,则两景点A 、B 间的距离为 米(结果保留根号).16.如图,OP平分∠MON,A是边OM上一点,以点A为圆心、大于点A到ON的距离为半径作弧,交ON于点B、C,再分别以点B、C为圆心,大于12BC的长为半径作弧,两弧交于点D、作直线AD分别交OP、ON于点E、F.若∠MON=60°,EF=1,则OA=.17.如图,在矩形ABCD中,点E是CD的中点,将△BCE沿BE折叠后得到△BEF、且点F在矩形ABCD的内部,将BF延长交AD于点G.若17DGGA=,则ADAB=.18.如图,∠MON=30°,点B1在边OM上,且OB1=2,过点B1作B1A1⊥OM交ON于点A1,以A1B1为边在A1B1右侧作等边三角形A1B1C1;过点C1作OM的垂线分别交OM、ON于点B2、A2,以A2B2为边在A2B2的右侧作等边三角形A2B2C2;过点C2作OM的垂线分别交OM、ON于点B3、A3,以A3B3为边在A3B3的右侧作等边三角形A3B3C3,…;按此规律进行下去,则△A n B n+1C n的面积为.(用含正整数n的代数式表示)三、解答题(本题共8小题,共76分)19.(10分)先化简,再求值:2221211a a a aa a a a⎛⎫--÷⎪--++⎝⎭,其中a=3﹣1+2sin30°.20.(12分)“机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A.非常了解,B.比较了解,C.基本了解,D.不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图.请结合图中所给信息解答下列问题:(1)本次共调查名学生;扇形统计图中C所对应扇形的圆心角度数是;(2)补全条形统计图;(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有多少名?(4)通过此次调查,数学课外实践小组的学生对交通法规有了更多的认识,学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求甲和乙两名学生同时被选中的概率.21.(12分)某爱心企业在政府的支持下投入资金,准备修建一批室外简易的足球场和篮球场,供市民免费使用,修建1个足球场和1个篮球场共需8.5万元,修建2个足球场和4个篮球场共需27万元.(1)求修建一个足球场和一个篮球场各需多少万元?(2)该企业预计修建这样的足球场和篮球场共20个,投入资金不超过90万元,求至少可以修建多少个足球场?22.(12分)如图,一次函数y=kx+b(k≠0)的图象与反比例函数ayx=(a≠0)的图象在第二象限交于点A(m,2).与x轴交于点C(﹣1,0).过点A作AB⊥x轴于点B,△ABC的面积是3.(1)求一次函数和反比例函数的解析式;(2)若直线AC与y轴交于点D,求△BCD的面积.,E是OB的中点,连接CE并延长到点F,使23.(12分)如图,AB是⊙O的直径,AC BCEF=CE.连接AF交⊙O于点D,连接BD,BF.(1)求证:直线BF是⊙O的切线;(2)若OB=2,求BD的长.24.(12分)某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他费用80元.销售单价x(元) 3.5 5.5销售量y(袋)280 120(1)请直接写出y与x之间的函数关系式;(2)如果每天获得160元的利润,销售单价为多少元?(3)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?25.(12分)在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系;(2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由(3)若|CF﹣AE|=2,EF=POF为等腰三角形时,请直接写出线段OP的长.26.(14分)如图,抛物线y=ax2+4x+c(a≠0)经过点A(﹣1,0),点E(4,5),与y轴交于点B,连接AB.(1)求该抛物线的解析式;(2)将△ABO绕点O旋转,点B的对应点为点F.①当点F落在直线AE上时,求点F的坐标和△ABF的面积;②当点F到直线AE时,过点F作直线AE的平行线与抛物线相交,请直接写出交点的坐标.参考答案与解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.如果温度上升10℃记作+10℃,那么温度下降5℃记作()A.+10℃B.﹣10℃C.+5℃D.﹣5℃【知识考点】正数和负数.【思路分析】此题主要用正负数来表示具有意义相反的两种量:上升记为正,则下降就记为负,直接得出结论即可.【解答过程】解:如果温度上升10℃记作+10℃,那么下降5℃记作﹣5℃;故选:D.【总结归纳】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.下列几何体中,俯视图为矩形的是()A.B.C.D.【知识考点】简单几何体的三视图.【思路分析】根据常见几何体的三视图,可得答案.【解答过程】解:A、圆锥的俯视图是圆,故A不符合题意;B、圆柱的俯视图是圆,故B错误;C、长方体的主视图是矩形,故C符合题意;D、三棱柱的俯视图是三角形,故D不符合题意;故选:C.【总结归纳】本题考查了简单几何体的三视图,熟记常见几何题三视图是解题关键.3.下列运算正确的是()A.﹣2x2+3x2=5x2 B.x2•x3=x5C.2(x2)3=8x6D.(x+1)2=x2+1。
【中考数学试题汇编】2013—2018年辽宁省葫芦岛市中考数学试题汇编(含参考答案与解析)1、2013年辽宁省葫芦岛市中考数学试题及参考答案与解析 (2)2、2014年辽宁省葫芦岛市中考数学试题及参考答案与解析 (23)3、2015年辽宁省葫芦岛市中考数学试题及参考答案与解析 (44)4、2016年辽宁省葫芦岛市中考数学试题及参考答案与解析 (70)5、2017年辽宁省葫芦岛市中考数学试题及参考答案与解析 (94)6、2018年辽宁省葫芦岛市中考数学试题及参考答案与解析 (118)2013年辽宁省葫芦岛市中考数学试题及参考答案一.选择题(本大题共10小题,每小题2分,共20分)1.计算:2×(﹣3)=()A.﹣6 B.﹣5 C.﹣1 D.62.下列图形,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.下列运算中,正确的是()A.x3•x2=x5B.2x﹣x=2 C.x+y=xy D.(x3)2=x94.已知,则a+b=()A.8 B.0 C.﹣8 D.65.如图,AB是半圆的直径,AB=2,∠B=30°,则 BC的长为()A.13πB.23πC.πD.436.如图是反比例函数myx=的图象,下列说法正确的是()A.常数m<﹣1B.在每个象限内,y随x的增大而增大C.若A(﹣1,h),B(2,k)在图象上,则h<kD.若P(x,y)在图象上,则P′(﹣x,y)也在图象上7.甲车行驶30km与乙车行驶40km所用时间相同.已知乙车比甲车每小时多行驶15km,设甲车的速度为xkm/h,依题意,下面所列方程正确的是()A.304015x x=-B.304015x x=-C.304015x x=+D.304015x x=+8.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=()A.60°B.70°C.80°D.90°9.装有一些液体的长方体玻璃容器,水平放置在桌面上时,液体的深度为6,其正面如图1所示,将容器倾斜,其正面如图2所示.已知液体部分正面的面积保持不变,当AA1=4时,BB1=()A.10 B.8 C.6 D.410.如图,矩形ABCD的对角线交于点O,∠BOC=60°,AD=3,动点P从点A出发,沿折线AD ﹣DO以每秒1个单位长的速度运动到点O停止.设运动时间为x秒,y=S△POC,则y与x的函数关系大致为()A.B.C.D.二.填空题(本大题6小题,每小题3分,共18分)11.计算:(2π﹣4)0=.12.若∠α=70°,则∠α的补角为°.13.分解因式:a2﹣2ab=.14.三个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=°.15.如图,Rt△ABC中,∠ACB=90°,AC=4,将斜边AB绕点A逆时针旋转90°至AB′,连接B′C,则△AB′C的面积为.16.如图,一段抛物线C1:y=﹣x(x﹣3)(0≤x≤3)与x轴交于点O,A1;将C1向右平移得第2段抛物线C2,交x轴于点A1,A2;再将C2向右平移得第3段抛物线C3,交x轴于点A2,A3;又将C3向右平移得第4段抛物线C4,交x轴于点A3,A4,若P(11,m)在C4上,则m的值是.三.解答题(本大题共9小题,共82分)17.(8分)定义新运算:对于任意实数a,b,都有a⊕b=a﹣2b,等式右边是通常的减法及乘法运算,例如:3⊕2=3﹣2×2=﹣1.若3⊕x的值小于1,求x的取值范围,并在如图所示的数轴上表示出来.18.(8分)关于x,y的二元一次方程ax+by=10(ab≠0)的一个解为12xy=⎧⎨=⎩.求2444a b baa a⎛⎫--÷⎪⎝⎭的值.19.(8分)袋子中装有3个带号码的球,球号分别是2,3,5,这些球除号码不同外其他均相同.(1)从袋中随机摸出一个球,求恰好是3号球的概率;(2)从袋中随机摸出一个球,再从剩下的球中随机摸出一个球,用树形图列出所有可能出现的结果,并求两次摸出球的号码之和为5的概率.20.(8分)如图,四边形ABCD中,AD∥BC,BA⊥AD,BC=DC,BE⊥CD于点E.(1)求证:△ABD≌△EBD;(2)过点E作EF∥DA,交BD于点F,连接AF.求证:四边形AFED是菱形.21.(9分)某校要求340名学生进行社会调查,每人须完成3﹣6份报告.调查结束后随机抽查了20名学生每人完成报告的份数,并分为四类,A:3份;B:4份;C:5份;D:6份.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人完成报告份数的众数、中位数;(3)在求这20名学生每人完成报告份数的平均数时,小静是这样分析的:第一步求平均数的公式是=;第二步在该问题中,n=4,x1=3,x2=4,x3=5,x4=6;第三步:==4.5(份)①小静的分析是从哪一步开始出现错误的?②请你帮她计算出正确的平均数,并估计这340名学生共完成报告多少份.22.(10分)如图,一热气球在距地面90米高的P处,观测地面上点A的俯角为60°,气球以每秒9米的速度沿AB方向移动,5秒到达Q处,此时观测地面上点B的俯角为45°.(点P,Q,A,B 在同一铅直面上).(1)若气球从Q处继续向前移动,方向不变,再过几秒位于B点正上方?(2)求AB的长(结果保留根号).23.(9分)如图,A(1,0),B(4,0),M(5,3).动点P从点A出发,沿x轴以每秒1个单位长的速度向右移动,且过点P的直线l:y=﹣x+b也随之移动.设移动时间为t秒.(1)当t=1时,求l的解析式;(2)若l与线段BM有公共点,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在y轴上.24.(11分)如图,△ABC中,∠C=90°,BC=3,AC=4,点O在CB的延长线上,且OB=4,以O 为圆心,2为半径的半圆交CB的延长线于点D,E.点T在半圆上,连接TB并延长,交AC于点P.(1)若PT与半圆相切,求∠BPC的度数;(2)当△TOB的面积最大时,求PC的长;(3)直接写出点T到DE的距离为多少时,恰有AP=3.25.(11分)为衡量某特种车辆的性能,研究制定了行驶指数P,P=K+1000,而K的大小与平均速度v(km/h)和行驶路程s(km)有关(不考虑其他因素),K由两部分的和组成,一部分与v2成正比,另一部分与sv成正比.在实验中得到了表中的数据:(1)用含v和s的式子表示P;(2)当P=500,而v=50时,求s的值;(3)当s=180时,若P值最大,求v的值.参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,)参考答案与解析一.选择题(本大题共10小题,每小题2分,共20分)1.计算:2×(﹣3)=()A.﹣6 B.﹣5 C.﹣1 D.6【知识考点】有理数的乘法.【思路分析】根据有理数的乘法运算法则进行计算即可得解.【解答过程】解:2×(﹣3)=﹣6.故选:A.【总结归纳】本题考查了有理数的乘法,熟记运算法则是解题的关键.2.下列图形,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【知识考点】中心对称图形;轴对称图形.【思路分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答过程】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故此选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.【总结归纳】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.下列运算中,正确的是()A.x3•x2=x5B.2x﹣x=2 C.x+y=xy D.(x3)2=x9【知识考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【思路分析】根据同底数幂的乘法以及幂的乘方和合并同类项法则分别判断得出即可.【解答过程】解:A、x3•x2=x5,此选项正确;B、2x﹣x=x,故此选项错误;C、x+y无法计算,故此选项错误;D、(x3)2=x6,故此选项错误.故选:A.【总结归纳】此题主要考查了同底数幂的乘法以及幂的乘方和合并同类项法则等知识,熟练掌握相关法则是解题关键.4.已知,则a+b=()A.8 B.0 C.﹣8 D.6【知识考点】非负数的性质:算术平方根;非负数的性质:绝对值.【思路分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答过程】解:根据题意得,a+1=0,7﹣b=0,解得a=﹣1,b=7,所以,a+b=﹣1+7=6.故选:D.【总结归纳】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.5.如图,AB是半圆的直径,AB=2,∠B=30°,则 BC的长为()A.13πB.23πC.πD.43【知识考点】弧长的计算;圆周角定理.【思路分析】首先连接CO,再利用圆周角定理计算出圆心角∠COB的度数,然后利用弧长公式进行计算即可.【解答过程】解:连接CO,∵AB=2,∴OB=1,∵AB是半圆的直径,∴∠ACB=90°,∵∠B=30°,∴∠A=60°,∴∠COB=120°,∴==π,故选:B.【总结归纳】此题主要考查了圆周角定理,以及弧长计算,关键是掌握圆周角定理:在同圆或等圆。
2018 年辽宁省葫芦岛市中考数学试卷一、选择题(每题只有一个正确选项,本题共10 小题,每题3 分,共30 分)1.(3 分)如果温度上升10℃记作+10℃,那么温度下降5℃记作( )A.+10℃B.﹣10℃C.+5℃D.﹣5℃2.(3 分)下列几何体中,俯视图为矩形的是( )A.B.C.D.3.(3 分)下列运算正确的是( )A.﹣2x2+3x2=5x2 B.x2•x3=x5 C.2(x2)3=8x6 D.(x+1)2=x2+14.(3 分)下列调查中,调查方式选择最合理的是( )A.调查“乌金塘水库”的水质情况,采用抽样调查B.调查一批飞机零件的合格情况,采用抽样调查C.检验一批进口罐装饮料的防腐剂含量,采用全面调查D.企业招聘人员,对应聘人员进行面试,采用抽样调查x2 ‒ 15.(3 分)若分式x + 1 的值为0,则x 的值为( )A.0 B.1 C.﹣1 D.±16.(3 分)在“经典诵读”比赛活动中,某校10 名学生参赛成绩如图所示,对于这10 名学生的参赛成绩,下列说法正确的是( )A.众数是90 分B.中位数是95 分C.平均数是95 分D.方差是157.(3 分)如图,在△ABC 中,∠C=90°,点D 在AC 上,DE∥AB,若∠CDE=165°,则∠B 的度数为( )A.15°B.55°C.65°D.75°8.(3 分)如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4 的解集为( )A.x>﹣2 B.x<﹣2 C.x>4 D.x<439.(3 分)如图,AB 是⊙O 的直径,C,D 是⊙O 上AB 两侧的点,若∠D=30°,则tan∠ABC 的值为( )1A.23B.23C.D.310.(3 分)如图,在▱ABCD 中,AB=6,BC=10,AB⊥AC,点P 从点B 出发沿着B→A→C 的路径运动,同时点Q 从点A 出发沿着A→C→D 的路径以相同的速度运动,当点P 到达点C 时,点Q 随之停止运动,设点P 运动的路程为x,y=PQ2,下列图象中大致反映y 与x 之间的函数关系的是( )A.B.C.D.二、填空题(每题只有一个正确选项,本题共8 小题,每题3 分,共24 分)11.(3 分)分解因式:2a3﹣8a= .12.(3 分)据旅游业数据显示,2018 年上半年我国出境旅游超过129 000 000 人次,将数据129 000 000 用科学记数法表示为.13.(3 分)有四张看上去无差别的卡片,正面分别写有“兴城首山”、“龙回头”、“觉华岛”、“葫芦山庄”四个景区的名称,将它们背面朝上,从中随机一张卡片正面写有“葫芦山庄”的概率是.14.(3 分)如图,在菱形OABC 中,点B 在x 轴上,点A 的标为(2,3),则点C 的坐标为.15.(3 分)如图,某景区的两个景点A、B 处于同一水平地面上、一架无人机在空中沿MN 方向水平飞行进行航拍作业,MN 与AB 在同一铅直平面内,当无人机飞行至C 处时、测得景点A 的俯角为45°,景点B 的俯角为知30°,此时C 到地面的距离CD 为100 米,则两景点A、B 间的距离为米(结果保留根号).16.(3 分)如图,OP 平分∠MON,A 是边OM 上一点,以点A 为圆心、大于点A 到ON 的距离为半径作弧,交ON 于点B、C,1再分别以点B、C 为圆心,大于2BC 的长为半径作弧,两弧交于点D、作直线AD 分别交OP、ON 于点E、F.若∠MON=60°,EF=1,则OA= .17.(3 分)如图,在矩形ABCD 中,点E 是CD 的中点,将△BCE 沿BE 折叠后得到△BEF、且点F 在矩形ABCD 的内部,将BF DG 1 AD延长交AD 于点G.若GA=7,则AB= .18.(3 分)如图,∠MON=30°,点B1在边OM 上,且OB1=2,过点B1作B1A1⊥OM 交ON 于点A1,以A1B1为边在A1B1右侧作等边三角形A1B1C1;过点C1作OM 的垂线分别交OM、ON 于点B2、A2,以A2B2为边在A2B2的右侧作等边三角形A2B2C2;过点C2作OM 的垂线分别交OM、ON 于点B3、A3,以A3B3为边在A3B3的右侧作等边三角形A3B3C3,…;按此规律进行下去,则△A n A n+1C n的面积为.(用含正整数n 的代数式表示)三、解答题(每题只有一个正确选项,本题共2 小题,共76 分)2a 19.(10 分)先化简,再求值:(a‒ 1﹣2a 2 ‒a a)÷a + 1,其中a=3﹣1+2sin30°.a‒ 2a + 120.(12 分)“机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A.非常了解,B.比较了解,C.基本了解,D.不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图.请结合图中所给信息解答下列问题:(1)本次共调查名学生;扇形统计图中C 所对应扇形的圆心角度数是;(2)补全条形统计图;(3)该校共有800 名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有多少名?(4)通过此次调查,数学课外实践小组的学生对交通法规有了更多的认识,学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求甲和乙两名学生同时被选中的概率.四、解答题(第21 题12 分,第22 题12 分,共24 分)21.(12 分)某爱心企业在政府的支持下投入资金,准备修建一批室外简易的足球场和篮球场,供市民免费使用,修建1 个足球场和1 个篮球场共需8.5 万元,修建2 个足球场和4 个篮球场共需27 万元.(1)求修建一个足球场和一个篮球场各需多少万元?(2)该企业预计修建这样的足球场和篮球场共20 个,投入资金不超过90 万元,求至少可以修建多少个足球场?a22.(12 分)如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=x(a≠0)的图象在第二象限交于点A(m,2).与x 轴交于点C(﹣1,0).过点A 作AB⊥x 轴于点B,△ABC 的面积是3.(1)求一次函数和反比例函数的解析式;(2)若直线AC 与y 轴交于点D,求△BCD 的面积.五、解答题(满分12 分)23.(12 分)如图,AB 是⊙O 的直径,AC=BC,E 是OB 的中点,连接CE 并延长到点F,使EF=CE.连接AF 交⊙O 于点D,连接BD,BF.(1)求证:直线BF 是⊙O 的切线;(2)若OB=2,求BD 的长.24.(12 分)某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3 元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他各销售单价x(元) 3.5 5.5销售量y(袋) 280 120(1)请直接写出y 与x 之间的函数关系式;(2)如果每天获得160 元的利润,销售单价为多少元?(3)设每天的利润为w 元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?七、解答题(满分12 分)25.(12 分)在△ABC 中,AB=BC,点O 是AC 的中点,点P 是AC 上的一个动点(点P 不与点A,O,C 重合).过点A,点C 作直线BP 的垂线,垂足分别为点E 和点F,连接OE,OF.(1)如图1,请直接写出线段OE 与OF 的数量关系;(2)如图2,当∠ABC=90°时,请判断线段OE 与OF 之间的数量关系和位置关系,并说明理由(3)若|CF﹣AE|=2,EF=2 3,当△POF 为等腰三角形时,请直接写出线段OP 的长.26.(14 分)如图,抛物线y=ax2+4x+c(a≠0)经过点A(﹣1,0),点E(4,5),与y 轴交于点B,连接AB.(1)求该抛物线的解析式;(2)将△ABO 绕点O 旋转,点B 的对应点为点F.①当点F 落在直线AE 上时,求点F 的坐标和△ABF 的面积;②当点F 到直线AE 的距离为2时,过点F 作直线AE 的平行线与抛物线相交,请直接写出交点的坐标.2018 年辽宁省葫芦岛市中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10 小题,每题3 分,共30 分)1.(3 分)如果温度上升10℃记作+10℃,那么温度下降5℃记作( )A.+10℃ B.﹣10℃ C.+5℃D.﹣5℃【分析】此题主要用正负数来表示具有意义相反的两种量:上升记为正,则下降就记为负,直接得出结论即可.【解答】解:如果温度上升10℃记作+10℃,那么下降5℃记作﹣5℃;故选:D.2.(3 分)下列几何体中,俯视图为矩形的是( )A.B.C.D.【分析】根据常见几何体的三视图,可得答案.【解答】解:A、圆锥的俯视图是圆,故A 不符合题意;B、圆柱的俯视图是圆,故B 错误;C、长方体的主视图是矩形,故C 符合题意;D、三棱柱的俯视图是三角形,故D 不符合题意;故选:C.3.(3 分)下列运算正确的是( )A.﹣2x2+3x2=5x2 B.x2•x3=x5 C.2(x2)3=8x6 D.(x+1)2=x2+1【分析】根据合并同类项法则,单项式的乘法运算法则,完全平方公式,对各选项分析判断后利用排除法求解.【解答】解:A、﹣2x2+3x2=x2,错误;B、x2•x3=x5,正确;C、2(x2)3=2x6,错误;D、(x+1)2=x2+2x+1,错误;故选:B.4.(3 分)下列调查中,调查方式选择最合理的是( )A.调查“乌金塘水库”的水质情况,采用抽样调查B.调查一批飞机零件的合格情况,采用抽样调查C.检验一批进口罐装饮料的防腐剂含量,采用全面调查D.企业招聘人员,对应聘人员进行面试,采用抽样调查【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、了解“乌金塘水库”的水质情况,采用抽样调查,故A 正确;B、了解一批飞机零件的合格情况,适合全面调查,故B 错误;C、了解检验一批进口罐装饮料的防腐剂含量,调查范围广,适合抽样调查,故C 错误;D、企业招聘人员,对应聘人员进行面试,适合全面调查,故D 错误;故选:A.x2 ‒ 15.(3 分)若分式x + 1 的值为0,则x 的值为( )A.0 B.1 C.﹣1 D.±1【分析】根据分式为0 的条件列出关于x 的不等式组,求出x 的值即可.x2 ‒ 1【解答】解:∵分式x + 1 的值为零,x + 1 ≠ 0 10 ∴{x 2 ‒ 1 = 0,解得 x =1.故选:B .6.(3 分)在“经典诵读”比赛活动中,某校 10 名学生参赛成绩如图所示,对于这 10 名学生的参赛成绩,下列说法正确的是()A .众数是 90 分B .中位数是 95 分C .平均数是 95 分D .方差是 15【分析】根据众数、中位数、平均数、方差的定义和统计图中提供的数据分别列出算式,求出答案. 【解答】解:A 、众数是 90 分,人数最多,正确; B 、中位数是 90 分,错误; 1 × 100 + 2 × 85 + 2 × 95 + 5 × 90C 、平均数是10= 91分,错误;D 、方差是 1× [(85 ‒ 91)2 × 2 + (90 ‒ 91)2 × 5 + (100 ‒ 91)2 + 2(95 ‒ 91)2]=19,错误; 故选:A .7.(3 分)如图,在△ABC 中,∠C =90°,点 D 在 AC 上,DE ∥AB ,若∠CDE =165°,则∠B 的度数为()A .15°B .55°C .65°D .75°【分析】利用平角的定义可得∠ADE =15°,再根据平行线的性质知∠A =∠ADE =15°,再由内角和定理可得答案. 【解答】解:∵∠CDE =165°, ∴∠ADE =15°, ∵DE ∥AB , ∴∠A =∠ADE =15°,∴∠B =180°﹣∠C ﹣∠A =180°﹣90°﹣15°=75°. 故选:D .8.(3 分)如图,直线 y =kx +b (k ≠0)经过点 A (﹣2,4),则不等式 kx +b >4 的解集为()A .x >﹣2B .x <﹣2C .x >4D .x <4【分析】结合函数的图象利用数形结合的方法确定不等式的解集即可. 【解答】解:观察图象知:当 x >﹣2 时,kx +b >4, 故选:A .9.(3 分)如图,AB 是⊙O 的直径,C ,D 是⊙O 上 AB 两侧的点,若∠D =30°,则 tan ∠ABC 的值为()A1 3 3 3.2 B .2 C.D.3【分析】根据圆周角定理得出∠BAC=30°,进而得出∠ABC=60°,利用三角函数解答即可.【解答】解:∵∠D=30°,∴∠BAC=30°,∵AB 是⊙O 的直径,∴∠ABC+∠BAC=90°,∴∠ABC=60°,∴tan∠ABC= 3,故选:C.10.(3 分)如图,在▱ABCD 中,AB=6,BC=10,AB⊥AC,点P 从点B 出发沿着B→A→C 的路径运动,同时点Q 从点A 出发沿着A→C→D 的路径以相同的速度运动,当点P 到达点C 时,点Q 随之停止运动,设点P 运动的路程为x,y=PQ2,下列图象中大致反映y 与x 之间的函数关系的是( )C.D.【分析】在Rt△ABC 中,利用勾股定理可求出AC 的长度,分0≤x≤6、6≤x≤8 及8≤x≤14 三种情况找出y 关于x 的函数关系式,对照四个选项即可得出结论.【解答】解:在Rt△ABC 中,∠BAC=90°,AB=6,BC=10,∴AC= BC2‒ AB2=8.当0≤x≤6 时,AP=6﹣x,AQ=x,∴y=PQ2=AP2+AQ2=2x2﹣12x+36;当6≤x≤8 时,AP=x﹣6,AQ=x,∴y=PQ2=(AQ﹣AP)2=36;当8≤x≤14 时,CP=14﹣x,CQ=x﹣8,∴y=PQ2=CP2+CQ2=2x2﹣44x+260.A.B.故选:B.二、填空题(每题只有一个正确选项,本题共8 小题,每题3 分,共24 分)11.(3 分)分解因式:2a3﹣8a= 2a(a+2)(a﹣2) .【分析】原式提取2a,再利用平方差公式分解即可.【解答】解:原式=2a(a2﹣4)=2a(a+2)(a﹣2),故答案为:2a(a+2)(a﹣2)12.(3 分)据旅游业数据显示,2018 年上半年我国出境旅游超过129 000 000 人次,将数据129 000 000 用科学记数法表示为1.29×108 .【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.【解答】解:129000000=1.29×108,故答案为:1.29×108.13.(3 分)有四张看上去无差别的卡片,正面分别写有“兴城首山”、“龙回头”、“觉华岛”、“葫芦山庄”四个景区的名称,将它1们背面朝上,从中随机一张卡片正面写有“葫芦山庄”的概率是4.【分析】根据概率公式计算即可得.【解答】解:∵在这4 张无差别的卡片上,只有1 张写有“葫芦山庄”,1∴从中随机一张卡片正面写有“葫芦山庄”的概率是4,1故答案为:4.14.(3 分)如图,在菱形OABC 中,点B 在x 轴上,点A 的标为(2,3),则点C 的坐标为 (2,﹣3) .【分析】根据轴对称图形的性质即可解决问题;【解答】解:∵四边形OABC 是菱形,∴A、C 关于直线OB 对称,∵A(2,3),∴C(2,﹣3),故答案为(2,﹣3).15.(3 分)如图,某景区的两个景点A、B 处于同一水平地面上、一架无人机在空中沿MN 方向水平飞行进行航拍作业,MN 与AB A 的俯角为45°,景点B 的俯角为知30°,此时C 到地面的距离CD 为100 米,则两景点A、B 间的距离为 100+100 3 米(结果保留根号).【分析】根据三角函数和直角三角形的性质解答即可.【解答】解:∵∠MCA=45°,∠NCB=30°,∴∠ACD =45°,∠DCB =60°,∠B =30°,∵CD =100 米,∴AD =CD =100 米,DB = 3CD = 100 3米, ∴AB =AD +DB =100+100 3(米), 故答案为:100+100 16.(3 分)如图,OP 平分∠MON ,A 是边 OM 上一点,以点 A 为圆心、大于点 A 到 ON 的距离为半径作弧,交 ON 于点 B 、C , 1再分别以点 B 、C 为圆心,大于2BC 的长为半径作弧,两弧交于点 D 、作直线 AD 分别交 OP 、ON 于点 E 、F .若∠MON =60°,EF =1, 则 OA = 2 3 .【分析】利用基本作图得到∠AOF =90°,再根据角平分线的定义得到∠EOF =30°,然后根据含 30 度的直角三角形三边的关系先求出 OF ,再求出 OA 的长.【解答】解:由作法得 AD ⊥ON 于 F ,∴∠AOF =90°,∵OP 平分∠MON , 1 1 ∴∠EOF =2∠MON =2×60°=30°,在 Rt △OEF 中 ,OF = 3EF = 3,在 Rt △AOF 中,∠AOF =60°,∴OA =2OF =2 3.故答案为 2 3.17.(3 分)如图,在矩形 ABCD 中,点 E 是 CD 的中点,将△BCE 沿 BE 折叠后得到△BEF 、且点 F 在矩形 ABCD 的内部,将 BF 延长交 AD 于点 G DG 1 AD = ..若GA =7,则AB 【分析】由中点定义可得 DE =CE ,再由翻折的性质得出 DE =EF ,BF =BC ,∠BFE =∠D =90°,从而得到 DE =EF ,连接 EG , 利用“HL ”证明 Rt △EDG ≌Rt △EFG ,得出 DG =FG ,设 DG =a ,求出 GA 、AD ,再由矩形的对边相等得出 AD =BC ,求出 BF , 再求出 BG ,由勾股定理得出 AB ,再求比值即可.【解答】解:连接 GE ,∵点 E 是 CD 的中点,∴EC =DE ,∵将△BCE 沿 BE 折叠后得到△BEF 、且点 F 在矩形 ABCD 的内部,∴EF =DE ,∠BFE =90°,322 23 3 2 3 3 2 3 3 2 3 3 2 3 3 2 33 2 3 3 2 33 2 3 3 2 33 2 3 3 2 3 3 {, 故答案为: 2. 在 Rt △EDG 和 Rt △EFG 中 G E = G E D E = E F ∴Rt △EDG ≌Rt △EFG (HL ),∴FG =DG , DG 1∵GA =7,∴设 DG =FG =a ,则 AG =7a ,故 AD =BC =8a ,则 BG =BF +FG =9a ,∴AB = (9a )2 ‒ (7a )2=4 2a ,AD 8a故 AB =4 2a= .18.(3 分)如图,∠MON =30°,点 B 1 在边 OM 上,且 OB 1=2,过点 B 1 作 B 1A 1⊥OM 交 ON 于点 A 1,以 A 1B 1 为边在 A 1B 1 右侧作等边三角形 A 1B 1C 1;过点 C 1 作 OM 的垂线分别交 OM 、ON 于点 B 2、A 2,以 A 2B 2 为边在 A 2B 2 的右侧作等边三角形 A 2B 2C 2; 过点 C 2 作 OM 的垂线分别交 OM 、ON 于点 B 3、A 3,以 A 3B 3 为边在 A 3B 3 的右侧作等边三角形 A 3B 3C 3,…;按此规律进行下去, 3 3则△A n A n +1C n 的面积为 (2)2n ﹣2× 3 .(用含正整数 n 的代数式表示)2 33 2 3 3 【分析】由题意△A 1A 2C 1 是等边三角形,边长为 3 ,△A 2A 3C 2 是等边三角形,边长为2× 3 ,△A 3A 4C 3 是等边三角形,边长为2× 3 3 3 3 3 3 3 2× =(2)2× ,△A 4A 5C4 是等边三角形,边长为2×2×2×=(2)3× ,…,一次看到△A n B n +1C n 的边长为(2)n ﹣1× 即可解决问题; 【解答】解:由题意△A 1A 2C 1 是等边三角形,边长为 , 3 △A 2A 3C 2 是等边三角形,边长为2× , 3 3 2 3 3 △A 3A 4C 3 是等边三角形,边长为2×2× 3 =(2)2× ,3 3 3 3 △A 4A 5C4 是等边三角形,边长为2×2×2×=(2)3× , …, 3△A n A n +1C n 的边长为(2)n ﹣1×, 3 3 3 3 ∴△A n A n +1C n 的面积为 4 ×[(2)n ﹣1× ]2=(2)2n ﹣2× 3 .三、解答题(每题只有一个正确选项,本题共 2 小题,共 76 分)2a 19.(10 分)先化简,再求值:(a ‒ 1﹣ 2 a 2 ‒ aa)÷a + 1,其中 a =3﹣1+2sin 30°. a ‒ 2a + 1 【分析】根据分式的运算法则以及实数的运算法则即可求出答案.【解答】解:当 a =3﹣1+2sin 30°时,1 4 ∴a =3+1=3 2a a (a ‒ 1) a + 1 原式=[a ‒ 1 ‒ (a ‒ 1)2 ]• a 2a a a + 1 =(a ‒ 1 ‒ a ‒ 1)• aa =a ‒ 1•a + 1=a ‒ 1=7a + 1 a 20.(12 分)“机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A .非常了解,B .比较了解,C .基本了解,D .不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图.请结合图中所给信息解答下列问题:(1)本次共调查 60 名学生;扇形统计图中 C 所对应扇形的圆心角度数是 90° ; (2)补全条形统计图;(3) 该校共有 800 名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有多少名?(4) 通过此次调查,数学课外实践小组的学生对交通法规有了更多的认识,学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求甲和乙两名学生同时被选中的概率.【分析】(1)由 A 的人数及其所占百分比可得总人数,用 360°乘以 C 人数所占比例即可得;(2) 总人数乘以 D 的百分比求得其人数,再根据各类型人数之和等于总人数求得 B 的人数,据此补全图形即可得;(3) 用总人数乘以样本中 A 类型的百分比可得;(4) 画树状图列出所有等可能结果,再利用概率公式计算可得. 15【解答】解:(1)本次调查的学生总人数为 24÷40%=60 人,扇形统计图中 C 所对应扇形的圆心角度数是 360°×60=90°, 故答案为:60、90°;{, y = 5 (2)D 类型人数为 60×5%=3,则 B 类型人数为 60﹣(24+15+3)=18,补全条形图如下:(3)估计全校学生中对这些交通法规“非常了解”的有 800×40%=320 名;(4)画树状图为:共有 12 种等可能的结果数,其中甲和乙两名学生同时被选中的结果数为 2, 2 1所以甲和乙两名学生同时被选中的概率为12=6.四、解答题(第 21 题 12 分,第 22 题 12 分,共 24 分)21.(12 分)某爱心企业在政府的支持下投入资金,准备修建一批室外简易的足球场和篮球场,供市民免费使用,修建 1 个足球场和 1 个篮球场共需 8.5 万元,修建 2 个足球场和 4 个篮球场共需 27 万元.(1) 求修建一个足球场和一个篮球场各需多少万元?(2) 该企业预计修建这样的足球场和篮球场共 20 个,投入资金不超过 90 万元,求至少可以修建多少个足球场?【分析】(1)设修建一个足球场 x 万元,一个篮球场 y 万元,根据修建 1 个足球场和 1 个篮球场共需 8.5 万元,修建 2 个足球场和 4 个篮球场共需 27 万元,可得出方程组,解出即可;(2)设足球场 y 个,则篮球场(20﹣y )个,由投入资金不超过 90 万元,可得出不等式,解出即可.【解答】解:(1)设修建一个足球场 x 万元,一个篮球场 y 万元,根据题意可得: x + y = 8.5 2x + 4y = 27 解得:{x = 3.5, 答:修建一个足球场和一个篮球场各需 3.5 万元,5 万元;(2)设足球场 y 个,则篮球场(20﹣y )个,根据题意可得:3.5y +5(20﹣y )≤90, 2 解得:y ≥63,答:至少可以修建 7 个足球场.a22.(12 分)如图,一次函数 y =kx +b (k ≠0)的图象与反比例函数 y =x (a ≠0)的图象在第二象限交于点 A (m ,2).与 x 轴交于点 C (﹣1, 0).过点 A 作 AB ⊥x 轴于点 B ,△ABC 的面积是3. (1)求一次函数和反比例函数的解析式;(2)若直线 AC 与 y 轴交于点 D ,求△BCD 的面积.{,【分析】(1)由点 A 的坐标可得出点 B 的坐标,结合点 C 的坐标可得出 AB 、BC 的长度,由△ABC 的面积是 3 可得出关于 m 的一元一次方程,解之可得出点 A 的坐标,由点 A 、C 的坐标利用反比例函数图象上点的坐标特征以及待定系数法,即可求出一次函数和反比例函数的解析式;(2)利用一次函数图象上点的坐标特征可求出点 D 的坐标,进而可得出 OD 的长度,再利用三角形的面积公式即可求出△BCD 的面积.【解答】解:(1)∵AB ⊥x 轴于点 B ,点 A (m ,2),∴点 B (m ,0),AB =2.∵点 C (﹣1,0),∴BC =﹣1﹣m , 1∴S △ABC =2AB •BC =﹣1﹣m =3,∴m =﹣4,∴点 A (﹣4,2). a∵点 A 在反比例函数 y =x (a ≠0)的图象上,∴a =﹣4×2=﹣8, 8∴反比例函数的解析式为 y =﹣x . 将 A (﹣4,2)、C (﹣1,0)代入 y =kx +b ,得:{2 ‒ 4k + b = 2 ‒ k + b = 0,解得: k =‒3 2 b =‒ 3 2 2 ∴一次函数的解析式为 y =﹣3x ﹣3.2 2 2 (2)当 x =0 时,y =﹣3x ﹣3=﹣3, 2 ∴点 D (0,﹣3), 2 ∴OD =3, 1 12 ∴S △BCD =2BC •OD =2×3×3=1.五、解答题(满分 12 分)23.(12 分)如图,AB 是⊙O 的直径,AC =BC ,E 是 OB 的中点,连接 CE 并延长到点 F ,使 EF =CE .连接 AF 交⊙O 于点 D , 连接 BD ,BF .(1) 求证:直线 BF 是⊙O 的切线;{(2) 若 OB =2,求 BD 的长.【分析】(1)证明△OCE ≌△BFE (SAS ),可得∠OBF =∠COE =90°,可得结论;(2)由(1)得:△OCE ≌△BFE ,则 BF =OC =2,根据勾股定理得:AF =2 5,利用面积法可得 BD 的长.【解答】(1)证明:连接 OC ,∵AB 是⊙O 的直径,AC =BC ,∴∠BOC =90°,∵E 是 OB 的中点,∴OE =BE ,在△OCE 和△BFE 中, O E = B E∵ ∠O E C = ∠B E F , C E = E F ∴△OCE ≌△BFE (SAS ),∴∠OBF =∠COE =90°,∴直线 BF 是⊙O 的切线;(2)解:∵OB =OC =2,由(1)得:△OCE ≌△BFE ,∴BF =OC =2,∴AF = AB 2 + BF 2= 42 + 22=2 5, 1 1∴S △ABF =2AB ⋅ BF = 2AF ⋅ BD ,4×2=2 5•BD , 4 5∴BD = 5 .六、解答题(满分12 分)24.(12 分)某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3 元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他各(1)请直接写出y 与x 之间的函数关系式;(2)如果每天获得160 元的利润,销售单价为多少元?(3)设每天的利润为w 元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?【分析】(1)根据每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,可设y=kx+b,再将x=3.5,y=280;x=5.5,y=120 代入,利用待定系数法即可求解;(2)根据每天获得160 元的利润列出方程(x﹣3)(﹣80x+560)﹣80=160,解方程并结合3.5≤x≤5.5 即可求解;(3)根据每天的利润=每天每袋的利润×销售量﹣每天还需支付的其他费用,列出w 关于x 的函数解析式,再根据二次函数的性质即可求解.【解答】解:(1)设y=kx+b,将x=3.5,y=280;x=5.5,y=120 代入,得{3.5k + b = 280,解得{k=‒ 80,5.5k + b = 120 b = 560则y 与x 之间的函数关系式为y=﹣80x+560;(2)由题意,得(x﹣3)(﹣80x+560)﹣80=160,整理,得x2﹣10x+24=0,解得x1=4,x2=6.∵3.5≤x≤5.5,∴x=4.答:如果每天获得160 元的利润,销售单价为4 元;(3)由题意得:w=(x﹣3)(﹣80x+560)﹣80=﹣80x2+800x﹣1760=﹣80(x﹣5)2+240,∵3.5≤x≤5.5,∴当x=5 时,w 有最大值为240.故当销售单价定为5 元时,每天的利润最大,最大利润是240 元.七、解答题(满分12 分)25.(12 分)在△ABC 中,AB=BC,点O 是AC 的中点,点P 是AC 上的一个动点(点P 不与点A,O,C 重合).过点A,点C 作直线BP 的垂线,垂足分别为点E 和点F,连接OE,OF.(1)如图1,请直接写出线段OE 与OF 的数量关系;(2)如图2,当∠ABC=90°时,请判断线段OE 与OF 之间的数量关系和位置关系,并说明理由(3)若|CF﹣AE|=2,EF=2 3,当△POF 为等腰三角形时,请直接写出线段OP 的长.【分析】(1)如图1 中,延长EO 交CF 于K.首先证明△AOE≌△COK,推出OE=OK 即可解决问题;(2)如图2 中,延长EO 交CF 于K.由△ABE≌△BCF,推出BE=CF,AE=BF,由△AOE≌△COK,推出AE=CK,OE=OK,推出FK=EF,可得△EFK 是等腰直角三角形,延长即可解决问题;(3)分两种情形分别求解即可解决问题;【解答】解:(1)如图1 中,延长EO 交CF 于K.∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO,∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK,∵△EFK 是直角三角形,1∴OF=2EK=OE.(2)如图2 中,延长EO 交CF 于K.∵∠ABC=∠AEB=∠CFB=90°,∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∵AB=BC,∴△ABE≌△BCF,2∴BE=CF,AE=BF,∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF,∴△EFK 是等腰直角三角形,∴OF⊥EK,OF=OE.(3)如图3 中,延长EO 交CF 于K.作PH⊥OF 于H.∵|CF﹣AE|=2,EF=2 3,AE=CK,∴FK=2,3在Rt△EFK 中,tan∠FEK= 3 ,∴∠FEK=30°,∠EKF=60°,1∴EK=2FK=4,OF=2EK=2,∵△OPF 是等腰三角形,观察图形可知,只有OF=FP=2,在Rt△PHF 中,PH=1PF=1,HF= 3,OH=2﹣3,∴OP= 12+ (2 ‒ 3)2=如图4 中,当点P 在线段OC 上时,同法可得OP= 6﹣2,综上所述,OP 的长为6﹣2.八、解答题(满分14 分)26.(14 分)如图,抛物线y=ax2+4x+c(a≠0)经过点A(﹣1,0),点E(4,5),与y 轴交于点B,连接AB.(1)求该抛物线的解析式;(2)将△ABO 绕点O 旋转,点B 的对应点为点F.①当点F 落在直线AE 上时,求点F 的坐标和△ABF 的面积;②当点F 到直线AE 的距离为2时,过点F 作直线AE 的平行线与抛物线相交,请直接写出交点的坐标.6﹣2{ , { , 解得{, 解得{ ,【分析】(1)根据待定系数法,可得函数解析式;(2)根据旋转的性质,可得关于 n 的方程,根据自变量与函数值的对应关系,可得 F 点的坐标,根据面积的和差,可得答案;(3)根据相似三角形的判定与性质,可得 HG =CG = 2,根据勾股定理,可得 HC ,根据平移的规律,可得直线 l ,直线 l 1,根据解方程组,可得答案.【解答】解:(1)将 A ,E 点坐标代入函数解析式,得 a ‒ 4 + c = 0 16a + 16 + c = 5 a =‒ 1 c = 5 抛物线的解析式是 y =﹣x 2+4x +5,(2) 设 AE 的解析式为 y =kx +b ,将 A ,E 点坐标代入,得 ‒ k + b = 0 4k + b = 5 k = 1 b = 1AE 的解析式为 y =x +1,x =0 时,y =1 即 C (0,1),设 F 点坐标为(n ,n +1),由旋转的性质得,OF =OB =5,n 2+(n +1)2=25,解得 n 1=﹣4,n 2=3, F (﹣4,﹣3),F (3,4),当 F (﹣4,﹣3)时如图 1 , 11 1 S △ABF =S △BCF ﹣S △ABC =2BC •|x F |﹣2BC •|x A |=2BC •(x A ﹣x F )1 S △ABF =2×4(﹣1+4)=6;3 + 17 2 9 + 17 2 3 ‒ 17 2 3 + 33 2 1 + 33 2 1 ‒ 33 2当 F (3,4)时,如图 2 , 11 1 S △ABF =S △BCF +S △ABC =2BC •|x F |+2BC •|x A |=2BC •(x F ﹣x A ) 1 S △ABF =2×4(3+1)=8;(3) 如图 3 , ∵∠HCG =∠ACO ,∠HGC =∠COA ,∴△HGC ∽△COA ,∵OA =OC =1,∴CG =HG = 2, 由勾股定理,得直线 AE 向上平移 2 个单位或向下平移 2 个单位, l 的解析是为 y =x +3,l 1 的解析是为 y =x ﹣1,联立{ y = x + 3 3 + 17 3 ‒ 17 2 解得 x = ,x = , y =‒ x + 4x + 5 1 2 2 2y = x ‒ 1 3 + 33 3 ‒ 33 2 ,解得 x = ,x = , y =‒ x + 4x + 5 3 2 42 9 ‒ 173 ‒ 33F 点的坐标为( , ),( , 2 ),( , ),( 2 , ). HC = CG 2 +H G 2=2, {。
2018年辽宁省葫芦岛市中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)如果温度上升10C ︒记作10C ︒+,那么温度下降5C ︒记作( )A .10C ︒+B .10C ︒- C .5C ︒+D .5C ︒-2.(3分)下列几何体中,俯视图为矩形的是( )A .B .C .D .3.(3分)下列运算正确的是( )A .222235x x x -+=B .235x x x =C .2362()8x x =D .22(1)1x x +=+4.(3分)下列调查中,调查方式选择最合理的是( )A .调查“乌金塘水库”的水质情况,采用抽样调查B .调查一批飞机零件的合格情况,采用抽样调查C .检验一批进口罐装饮料的防腐剂含量,采用全面调查D .企业招聘人员,对应聘人员进行面试,采用抽样调查 5.(3分)若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .1- D .1±6.(3分)在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是( )A .众数是90分B .中位数是95分C .平均数是95分D .方差是157.(3分)如图,在ABC ∆中,90C ∠=︒,点D 在AC 上,//DE AB ,若165CDE ∠=︒,则B ∠的度数为( )A .15︒B .55︒C .65︒D .75︒8.(3分)如图,直线(0)y kx b k =+≠经过点(2,4)A -,则不等式4kx b +>的解集为( )A .2x >-B .2x <-C .4x >D .4x <9.(3分)如图,AB 是O 的直径,C ,D 是O 上AB 两侧的点,若30D ∠=︒,则t a n ABC∠的值为( )A .12BCD 10.(3分)如图,在ABCD 中,6AB =,10BC =,AB AC ⊥,点P 从点B 出发沿着B AC →→的路径运动,同时点Q 从点A 出发沿着A C D →→的路径以相同的速度运动,当点P 到达点C 时,点Q 随之停止运动,设点P 运动的路程为x ,2y PQ =,下列图象中大致反映y 与x 之间的函数关系的是( )A .B .C.D.二、填空题(每题只有一个正确选项,本题共8小题,每题3分,共24分)11.(3分)分解因式:328a a-=.12.(3分)据旅游业数据显示,2018年上半年我国出境旅游超过129 000 000人次,将数据129 000 000用科学记数法表示为.13.(3分)有四张看上去无差别的卡片,正面分别写有“兴城首山”、“龙回头”、“觉华岛”、“葫芦山庄”四个景区的名称,将它们背面朝上,从中随机一张卡片正面写有“葫芦山庄”的概率是.14.(3分)如图,在菱形OABC中,点B在x轴上,点A的标为(2,3),则点C的坐标为.15.(3分)如图,某景区的两个景点A、B处于同一水平地面上、一架无人机在空中沿MN 方向水平飞行进行航拍作业,MN与AB在同一铅直平面内,当无人机飞行至C处时、测得景点A的俯角为45︒,景点B的俯角为30︒,此时C到地面的距离CD为100米,则两景点A、B间的距离为米(结果保留根号).16.(3分)如图,OP平分MON∠,A是边OM上一点,以点A为圆心、大于点A到ON的距离为半径作弧,交ON于点B、C,再分别以点B、C为圆心,大于12BC的长为半径作弧,两弧交于点D、作直线AD分别交OP、ON于点E、F.若60MON∠=︒,1EF=,则OA=.17.(3分)如图,在矩形ABCD 中,点E 是CD 的中点,将BCE ∆沿BE 折叠后得到BEF ∆、且点F 在矩形ABCD 的内部,将BF 延长交AD 于点G .若17DG GA =,则AD AB= .18.(3分)如图,30MON ∠=︒,点1B 在边OM 上,且12OB =,过点1B 作11B A OM ⊥交ON于点1A ,以11A B 为边在11A B 右侧作等边三角形111A B C ;过点1C 作OM 的垂线分别交OM 、ON 于点2B 、2A ,以22A B 为边在22A B 的右侧作等边三角形222A B C ;过点2C 作OM 的垂线分别交OM 、ON 于点3B 、3A ,以33A B 为边在33A B 的右侧作等边三角形333A B C ,⋯;按此规律进行下去,则△1n n n A A C +的面积为 .(用含正整数n 的代数式表示)三、解答题(每题只有一个正确选项,本题共2小题,共76分)19.(10分)先化简,再求值:222()1211a a a a a a a a --÷--++,其中132sin30a -=+︒. 20.(12分)“机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A .非常了解,B .比较了解,C .基本了解,D .不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图.请结合图中所给信息解答下列问题:(1)本次共调查 名学生;扇形统计图中C 所对应扇形的圆心角度数是 ;(2)补全条形统计图;(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有多少名?(4)通过此次调查,数学课外实践小组的学生对交通法规有了更多的认识,学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求甲和乙两名学生同时被选中的概率.四、解答题(第21题12分,第22题12分,共24分)21.(12分)某爱心企业在政府的支持下投入资金,准备修建一批室外简易的足球场和篮球场,供市民免费使用,修建1个足球场和1个篮球场共需8.5万元,修建2个足球场和4个篮球场共需27万元.(1)求修建一个足球场和一个篮球场各需多少万元?(2)该企业预计修建这样的足球场和篮球场共20个,投入资金不超过90万元,求至少可以修建多少个足球场?22.(12分)如图,一次函数(0)y kx b k =+≠的图象与反比例函数(0)a y a x=≠的图象在第二象限交于点(,2)A m .与x 轴交于点(1,0)C -.过点A 作AB x ⊥轴于点B ,ABC ∆的面积是3.(1)求一次函数和反比例函数的解析式;(2)若直线AC 与y 轴交于点D ,求BCD ∆的面积.五、解答题(满分12分)23.(12分)如图,AB 是O 的直径,AC BC =,E 是OB 的中点,连接CE 并延长到点F ,使EF CE =.连接AF 交O 于点D ,连接BD ,BF .(1)求证:直线BF 是O 的切线;(2)若2OB =,求BD 的长.六、解答题(满分12分)24.(12分)某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y (袋)与销售单价x (元)之间满足一次函数关系,部分数据如表所示,其中3.5 5.5x 剟,另外每天还需支付其他各项费用80元.(1)请直接写出y 与x 之间的函数关系式;(2)如果每天获得160元的利润,销售单价为多少元?(3)设每天的利润为w 元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?七、解答题(满分12分)25.(12分)在ABC ∆中,AB BC =,点O 是AC 的中点,点P 是AC 上的一个动点(点P 不与点A ,O ,C 重合).过点A ,点C 作直线BP 的垂线,垂足分别为点E 和点F ,连接OE ,OF .(1)如图1,请直接写出线段OE 与OF 的数量关系;(2)如图2,当90ABC ∠=︒时,请判断线段OE 与OF 之间的数量关系和位置关系,并说明理由(3)若||2CF AE -=,EF =,当POF ∆为等腰三角形时,请直接写出线段OP 的长.八、解答题(满分14分)26.(14分)如图, 抛物线24(0)y ax x c a =++≠经过点(1,0)A -,点(4,5)E ,与y 轴交于点B ,连接AB .(1) 求该抛物线的解析式;(2) 将ABO ∆绕点O 旋转, 点B 的对应点为点F .①当点F 落在直线AE 上时, 求点F 的坐标和ABF ∆的面积;②当点F 到直线AE 时, 过点F 作直线AE 的平行线与抛物线相交,请直接写出交点的坐标 .2018年辽宁省葫芦岛市中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)如果温度上升10C ︒记作10C ︒+,那么温度下降5C ︒记作( )A .10C ︒+B .10C ︒- C .5C ︒+D .5C ︒-【解答】解:如果温度上升10C ︒记作10C ︒+,那么下降5C ︒记作5C ︒-;故选:D .2.(3分)下列几何体中,俯视图为矩形的是( )A .B .C .D .【解答】解:A 、圆锥的俯视图是圆,故A 不符合题意;B 、圆柱的俯视图是圆,故B 错误;C 、长方体的主视图是矩形,故C 符合题意;D 、三棱柱的俯视图是三角形,故D 不符合题意;故选:C .3.(3分)下列运算正确的是( )A .222235x x x -+=B .235x x x =C .2362()8x x =D .22(1)1x x +=+【解答】解:A 、22223x x x -+=,错误; B 、235x x x =,正确;C 、2362()2x x =,错误;D 、22(1)21x x x +=++,错误;故选:B .4.(3分)下列调查中,调查方式选择最合理的是( )A .调查“乌金塘水库”的水质情况,采用抽样调查B .调查一批飞机零件的合格情况,采用抽样调查C .检验一批进口罐装饮料的防腐剂含量,采用全面调查D .企业招聘人员,对应聘人员进行面试,采用抽样调查【解答】解:A 、了解“乌金塘水库”的水质情况,采用抽样调查,故A 正确; B 、了解一批飞机零件的合格情况,适合全面调查,故B 错误;C 、了解检验一批进口罐装饮料的防腐剂含量,调查范围广,适合抽样调查,故C 错误;D 、企业招聘人员,对应聘人员进行面试,适合全面调查,故D 错误;故选:A .5.(3分)若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .1- D .1±【解答】解:分式211x x -+的值为零, ∴21010x x ⎧-=⎨+≠⎩,解得1x =. 故选:B .6.(3分)在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是( )A .众数是90分B .中位数是95分C .平均数是95分D .方差是15【解答】解:A 、众数是90分,人数最多,正确;B 、中位数是90分,错误;C 、平均数是11002852955909110⨯+⨯+⨯+⨯=分,错误; D 、方差是22221[(8591)2(9091)5(10091)2(9591)]1910⨯-⨯+-⨯+-+-=,错误; 故选:A .7.(3分)如图,在ABC ∆中,90C ∠=︒,点D 在AC 上,//DE AB ,若165CDE ∠=︒,则B ∠的度数为( )A .15︒B .55︒C .65︒D .75︒【解答】解:165CDE ∠=︒,15ADE ∴∠=︒,//DE AB ,15A ADE ∴∠=∠=︒,180180901575B C A ∴∠=︒-∠-∠=︒-︒-︒=︒.故选:D .8.(3分)如图,直线(0)y kx b k =+≠经过点(2,4)A -,则不等式4kx b +>的解集为( )A .2x >-B .2x <-C .4x >D .4x <【解答】解:观察图象知:当2x >-时,4kx b +>,故选:A .9.(3分)如图,AB 是O 的直径,C ,D 是O 上AB 两侧的点,若30D ∠=︒,则t a n ABC∠的值为( )A .12BCD 【解答】解:30D ∠=︒,30BAC ∴∠=︒, AB 是O 的直径,90ABC BAC ∴∠+∠=︒,60ABC ∴∠=︒,tan ABC ∴∠=故选:C .10.(3分)如图,在ABCD 中,6AB =,10BC =,AB AC ⊥,点P 从点B 出发沿着B AC →→的路径运动,同时点Q 从点A 出发沿着A C D →→的路径以相同的速度运动,当点P 到达点C 时,点Q 随之停止运动,设点P 运动的路程为x ,2y PQ =,下列图象中大致反映y 与x 之间的函数关系的是( )A .B .C .D .【解答】解:在Rt ABC ∆中,90BAC ∠=︒,6AB =,10BC =,8AC ∴==.当06x 剟时,6AP x =-,AQ x =, 222221236y PQ AP AQ x x ∴==+=-+;当68x 剟时,6AP x =-,AQ x =, 22()36y PQ AQ AP ∴==-=;当814x 剟时,14CP x =-,8CQ x =-, 2222244260y PQ CP CQ x x ∴==+=-+. 故选:B .二、填空题(每题只有一个正确选项,本题共8小题,每题3分,共24分) 11.(3分)分解因式:328a a -= 2(2)(2)a a a +- . 【解答】解:原式22(4)2(2)(2)a a a a a =-=+-, 故答案为:2(2)(2)a a a +-12.(3分)据旅游业数据显示,2018年上半年我国出境旅游超过129 000 000人次,将数据129 000 000用科学记数法表示为 81.2910⨯ . 【解答】解:8129000000 1.2910=⨯, 故答案为:81.2910⨯.13.(3分)有四张看上去无差别的卡片,正面分别写有“兴城首山”、“龙回头”、“觉华岛”、“葫芦山庄”四个景区的名称,将它们背面朝上,从中随机一张卡片正面写有“葫芦山庄”的概率是14. 【解答】解:在这4张无差别的卡片上,只有1张写有“葫芦山庄”,∴从中随机一张卡片正面写有“葫芦山庄”的概率是14, 故答案为:14. 14.(3分)如图,在菱形OABC 中,点B 在x 轴上,点A 的标为(2,3),则点C 的坐标为 (2,3)- .【解答】解:四边形OABC 是菱形,A ∴、C 关于直线OB 对称,(2,3)A , (2,3)C ∴-,故答案为(2,3)-.15.(3分)如图,某景区的两个景点A 、B 处于同一水平地面上、一架无人机在空中沿MN 方向水平飞行进行航拍作业,MN 与AB 在同一铅直平面内,当无人机飞行至C 处时、测得景点A 的俯角为45︒,景点B 的俯角为30︒,此时C 到地面的距离CD 为100米,则两景点A 、B 间的距离为 100+.【解答】解:45MCA ∠=︒,30NCB ∠=︒, 45ACD ∴∠=︒,60DCB ∠=︒,30B ∠=︒, 100CD =米,100AD CD ∴==米,DB ==100AB AD DB ∴=+=+),故答案为:100+16.(3分)如图,OP 平分MON ∠,A 是边OM 上一点,以点A 为圆心、大于点A 到ON 的距离为半径作弧,交ON 于点B 、C ,再分别以点B 、C 为圆心,大于12BC 的长为半径作弧,两弧交于点D 、作直线AD 分别交OP 、ON 于点E 、F .若60MON ∠=︒,1EF =,则OA =【解答】解:由作法得AD ON ⊥于F , 90AOF ∴∠=︒, OP 平分MON ∠,11603022EOF MON ∴∠=∠=⨯︒=︒,在Rt OEF ∆中,OF 在Rt AOF ∆中,60AOF ∠=︒,2OA OF ∴==故答案为17.(3分)如图,在矩形ABCD 中,点E 是CD 的中点,将BCE ∆沿BE 折叠后得到BEF ∆、且点F 在矩形ABCD 的内部,将BF 延长交AD 于点G .若17DG GA =,则ADAB【解答】解:连接GE , 点E 是CD 的中点, EC DE ∴=,将BCE ∆沿BE 折叠后得到BEF ∆、且点F 在矩形ABCD 的内部,EF DE ∴=,90BFE ∠=︒,在Rt EDG ∆和Rt EFG ∆中 GE GEDE EF=⎧⎨=⎩, Rt EDG Rt EFG(HL)∴∆≅∆, FG DG ∴=,17DG GA =, ∴设DG FG a ==,则7AG a =,故8AD BC a ==, 则9BG BF FG a =+=,AB ∴=,故AD AB =.18.(3分)如图,30MON ∠=︒,点1B 在边OM 上,且12OB =,过点1B 作11B A OM ⊥交ON 于点1A ,以11A B 为边在11A B 右侧作等边三角形111A B C ;过点1C 作OM 的垂线分别交OM 、ON 于点2B 、2A ,以22A B 为边在22A B 的右侧作等边三角形222A B C ;过点2C 作OM 的垂线分别交OM 、ON 于点3B 、3A ,以33A B 为边在33A B 的右侧作等边三角形333A B C ,⋯;按此规律进行下去,则△1n n n A A C +的面积为 223()2n - .(用含正整数n 的代数式表示)【解答】解:由题意△121A A C△232A A C 是等边三角形,边长为32,△343A A C 是等边三角形,边长为2333()222⨯=,△454A A C 是等边三角形,边长为33333()2222⨯⨯=, ⋯,△1n n n A A C +的边长为13()2n -,∴△1n n n A A C +122233[()()22n n --= 三、解答题(每题只有一个正确选项,本题共2小题,共76分)19.(10分)先化简,再求值:222()1211a a a aa a a a --÷--++,其中132sin30a -=+︒.【解答】解:当132sin30a -=+︒时, 14133a ∴=+=原式22(1)1[]1(1)a a a a a a a -+=--- 21()11a a a a a a+=--- 11a a a a +=-11a a +=- 7=20.(12分)“机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A .非常了解,B .比较了解,C .基本了解,D .不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图.请结合图中所给信息解答下列问题:(1)本次共调查 60 名学生;扇形统计图中C 所对应扇形的圆心角度数是 ; (2)补全条形统计图;(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有多少名?(4)通过此次调查,数学课外实践小组的学生对交通法规有了更多的认识,学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求甲和乙两名学生同时被选中的概率.【解答】解:(1)本次调查的学生总人数为2440%60÷=人,扇形统计图中C 所对应扇形的圆心角度数是153609060︒⨯=︒, 故答案为:60、90︒;(2)D 类型人数为605%3⨯=, 则B 类型人数为60(24153)18-++=, 补全条形图如下:(3)估计全校学生中对这些交通法规“非常了解”的有80040%320⨯=名;(4)画树状图为:共有12种等可能的结果数,其中甲和乙两名学生同时被选中的结果数为2, 所以甲和乙两名学生同时被选中的概率为21126=. 四、解答题(第21题12分,第22题12分,共24分)21.(12分)某爱心企业在政府的支持下投入资金,准备修建一批室外简易的足球场和篮球场,供市民免费使用,修建1个足球场和1个篮球场共需8.5万元,修建2个足球场和4个篮球场共需27万元.(1)求修建一个足球场和一个篮球场各需多少万元?(2)该企业预计修建这样的足球场和篮球场共20个,投入资金不超过90万元,求至少可以修建多少个足球场?【解答】解:(1)设修建一个足球场x 万元,一个篮球场y 万元,根据题意可得: 8.52427x y x y +=⎧⎨+=⎩, 解得: 3.55x y =⎧⎨=⎩,答:修建一个足球场和一个篮球场各需3.5万元,5万元; (2)设足球场y 个,则篮球场(20)y -个,根据题意可得: 3.55(20)90y y +-…, 解得:263y …,答:至少可以修建7个足球场.22.(12分)如图,一次函数(0)y kx b k =+≠的图象与反比例函数(0)ay a x=≠的图象在第二象限交于点(,2)A m .与x 轴交于点(1,0)C -.过点A 作AB x ⊥轴于点B ,ABC ∆的面积是3.(1)求一次函数和反比例函数的解析式;(2)若直线AC 与y 轴交于点D ,求BCD ∆的面积.【解答】解:(1)AB x ⊥轴于点B ,点(,2)A m ,∴点(,0)B m ,2AB =.点(1,0)C -, 1BC m ∴=--,1132ABC S AB BC m ∆∴==--=, 4m ∴=-,∴点(4,2)A -.点A 在反比例函数(0)ay a x =≠的图象上,428a ∴=-⨯=-,∴反比例函数的解析式为8y x=-. 将(4,2)A -、(1,0)C -代入y kx b =+,得:420k b k b -+=⎧⎨-+=⎩,解得:2323k b ⎧=-⎪⎪⎨⎪=-⎪⎩, ∴一次函数的解析式为2233y x =--. (2)当0x =时,222333y x =--=-,∴点2(0,)3D -,23OD ∴=, 11231223BCD S BC OD ∆∴==⨯⨯=.五、解答题(满分12分)23.(12分)如图,AB 是O 的直径,AC BC =,E 是OB 的中点,连接CE 并延长到点F ,使EF CE =.连接AF 交O 于点D ,连接BD ,BF .(1)求证:直线BF 是O 的切线; (2)若2OB =,求BD 的长.【解答】(1)证明:连接OC ,AB 是O 的直径,AC BC =,90BOC ∴∠=︒,E 是OB 的中点,OE BE ∴=,在OCE ∆和BFE ∆中, OE BE OEC BEF CE EF =⎧⎪∠=∠⎨⎪=⎩, ()OCE BFE SAS ∴∆≅∆, 90OBF COE ∴∠=∠=︒,∴直线BF 是O 的切线;(2)解:2OB OC ==, 由(1)得:OCE BFE ∆≅∆, 2BF OC ∴==,AF ∴== 1122ABF S AB BFAF BD ∆∴==, 42BD ⨯=,BD ∴=.六、解答题(满分12分)24.(12分)某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y (袋)与销售单价x (元)之间满足一次函数关系,部分数据如表所示,其中3.5 5.5x 剟,另外每天还需支付其他各项费用80元.(1)请直接写出y 与x 之间的函数关系式;(2)如果每天获得160元的利润,销售单价为多少元?(3)设每天的利润为w 元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?【解答】解:(1)设y kx b =+,将 3.5x =,280y =; 5.5x =,120y =代入,得 3.52805.5120k b k b +=⎧⎨+=⎩,解得80560k b =-⎧⎨=⎩, 则y 与x 之间的函数关系式为80560y x =-+;(2)由题意,得(3)(80560)80160x x --+-=,整理,得210240x x -+=,解得14x =,26x =.3.5 5.5x 剟,4x ∴=.答:如果每天获得160元的利润,销售单价为4元;(3)由题意得:(3)(80560)80w x x =--+-2808001760x x =-+-280(5)240x =--+,3.5 5.5x 剟,∴当5x =时,w 有最大值为240.故当销售单价定为5元时,每天的利润最大,最大利润是240元.七、解答题(满分12分)25.(12分)在ABC ∆中,AB BC =,点O 是AC 的中点,点P 是AC 上的一个动点(点P 不与点A ,O ,C 重合).过点A ,点C 作直线BP 的垂线,垂足分别为点E 和点F ,连接OE ,OF .(1)如图1,请直接写出线段OE 与OF 的数量关系;(2)如图2,当90ABC ∠=︒时,请判断线段OE 与OF 之间的数量关系和位置关系,并说明理由(3)若||2CF AE -=,EF =,当POF ∆为等腰三角形时,请直接写出线段OP 的长.【解答】解:(1)如图1中,延长EO 交CF 于K .AE BE ⊥,CF BE ⊥,//AE CK ∴,EAO KCO ∴∠=∠,OA OC =,AOE COK ∠=∠,AOE COK ∴∆≅∆,OE OK ∴=,EFK ∆是直角三角形,12OF EK OE ∴==.(2)如图2中,延长EO 交CF 于K .∠=∠=∠=︒,ABC AEB CFB90∠+∠=︒,ABE CBF90ABE BAE∴∠+∠=︒,90∴∠=∠,BAE CBF=,AB BC∴∆≅∆,ABE BCF=,BE CF∴=,AE BF∆≅∆,AOE COK∴=,OE OK=,AE CK∴=,FK EF∴∆是等腰直角三角形,EFK=.OF EK∴⊥,OF OE(3)如图3中,延长EO交CF于K.作PH OF⊥于H.||2-=,EF=,AE CKCF AE=,∴=,FK2在Rt EFK∠=,∆中,tan FEK30FEK ∴∠=︒,60EKF ∠=︒,24EK FK ∴==,122OF EK ==, OPF ∆是等腰三角形,观察图形可知,只有2OF FP ==,在Rt PHF ∆中,112PH PF ==,HF =2OH =OP ∴=如图4中,当点P 在线段OC 上时,作PG OF ⊥于G .同法可得:2HE =,OH OF =,EF =,tan HFE ∴∠= 30HFE ∴∠=︒,24FH HE ∴==,OH OF =,2OH OF OE ∴===,OPF ∆的等腰三角形,PO PF ∴=,PG OF ⊥,1OG GF ∴==,cos30OG OP ∴=︒综上所述,OP 八、解答题(满分14分)26.(14分)如图, 抛物线24(0)y ax x c a =++≠经过点(1,0)A -,点(4,5)E ,与y 轴交于点B ,连接AB .(1) 求该抛物线的解析式;(2) 将ABO ∆绕点O 旋转, 点B 的对应点为点F . ①当点F 落在直线AE 上时, 求点F 的坐标和ABF ∆的面积;②当点F 到直线AE 时, 过点F 作直线AE 的平行线与抛物线相交,请直接写出交点的坐标 .【解答】解: (1) 将A ,E 点坐标代入函数解析式, 得 4016165a c a c -+=⎧⎨++=⎩, 解得15a c =-⎧⎨=⎩,抛物线的解析式是245y x x =-++,(2) 设AE 的解析式为y kx b =+,将A ,E 点坐标代入, 得 045k b k b -+=⎧⎨+=⎩, 解得11k b =⎧⎨=⎩, AE 的解析式为1y x =+,0x =时,1y =即(0,1)C ,设F 点坐标为(,1)n n +,由旋转的性质得,5OF OB ==,22(1)25n n ++=,解得14n =-,23n =,(4,3)F --,(3,4)F ,当(4,3)F --时如图 1, 111||||()222ABF BCF ABC F A A F S S S BC x BC x BC x x ∆∆∆=-=-=- 14(14)62ABF S ∆=⨯-+=; 当(3,4)F 时, 如图 2, 111||||()222ABF BCF ABC F A F A S S S BC x BC x BC x x ∆∆∆=+=+=- 14(31)82ABF S ∆=⨯+=; (3) 如图 3,HCG ACO ∠=∠,HGC COA ∠=∠,HGC COA ∴∆∆∽,1OA OC ==,CG HG ∴==由勾股定理, 得2HC =,直线AE 向上平移 2 个单位或向下平移 2 个单位, l 的解析是为3y x =+,1l 的解析是为1y x =-,联立2345y x y x x =+⎧⎨=-++⎩解得132x =,232x =,2145y x y x x =-⎧⎨=-++⎩,解得3x =,4x =,F 点的坐标为3(2,92+,3(2-92,3(2+,12+,3(2,12-.。
2018年辽宁省部分市中考数学试题汇编(含参考答案与试题解析)目录1.辽宁省沈阳市中考数学试题及参考答案与试题解析 (2)2.辽宁省大连市中考数学试题及参考答案与试题解析 (25)3.辽宁省葫芦岛市中考数学试题及参考答案与试题解析 (47)4.辽宁省锦州市中考数学试题及参考答案与试题解析 (71)5.辽宁省抚顺市中考数学试题及参考答案与试题解析 (97)6.辽宁省盘锦市中考数学试题及参考答案与试题解析 (121)7.辽宁省阜新市中考数学试题及参考答案与试题解析 (147)2018年辽宁省沈阳市中考数学试题及参考答案与解析一、选择题(本大题共10小题,每小题2分,共20分)1.下列各数中是有理数的是()A.πB.0 C D2.辽宁男蓝夺冠后,从4月21日至24日各类媒体体关于“辽篮CBA夺冠”的相关文章达到81000篇,将数据81000用科学记数法表示为()A.0.81×104B.0.81×106C.8.1×104D.8.1×1063.如图是由五个相同的小立方块搭成的几何体,这个几何体的左视图是()A.B.C.D.4.在平面直角坐标系中,点B的坐标是(4,﹣1),点A与点B关于x轴对称,则点A的坐标是()A.(4,1)B.(﹣1,4)C.(﹣4,﹣1)D.(﹣1,﹣4)5.下列运算错误的是()A.(m2)3=m6B.a10÷a9=a C.x3•x5=x8D.a4+a3=a76.如图,AB∥CD,EF∥GH,∠1=60°,则∠2补角的度数是()A.60°B.100°C.110°D.120°7.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨8.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<09.点A (﹣3,2)在反比例函数ky x=(k≠0)的图象上,则k 的值是( ) A .﹣6 B .32- C .﹣1 D .610.如图,正方形ABCD 内接于⊙O ,AB=AB 的长是( )A .πB .32πC .2πD .12π二、细心填一填(本大题共6小题,每小题3分,满分18分) 11.因式分解:3x 3﹣12x= .12.一组数3,4,7,4,3,4,5,6,5的众数是 . 13.化简:22142a a a -=-- . 14.不等式组20360x x -⎧⎨+⎩<≥的解集是 .15.如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为900m (篱笆的厚度忽略不计),当AB= m 时,矩形土地ABCD 的面积最大.16.如图,△ABC 是等边三角形,,点D 是边BC 上一点,点H 是线段AD 上一点,连接BH 、CH .当∠BHD=60°,∠AHC=90°时,DH= .三、解答题(本大题共3小题,共22分,17题6分,18-19题各8分)17.(6分)计算:()2012tan 45|3|42π-⎛⎫︒-+-- ⎪⎝⎭.18.(8分)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D 作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,ABCD的面积是.19.(8分)经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.四、解答题(本大题共2小题,每小题8分,共16分)20.(8分)九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生必只能选择一门课程).将获得的数据整理绘制如下两幅不完整的统计图.据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取了名学生,m的值是.(2)请根据据以上信息直在答题卡上补全条形统计图;(3)扇形统计图中,“数学”所对应的圆心角度数是度;(4)若该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.21.(8分)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.五、解答题(本题10)22.(10分)如图,BE是O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点.(1)若∠ADE=25°,求∠C的度数;(2)若AB=AC,CE=2,求⊙O半径的长.六、解答题(本题10分)23.(10分)如图,在平面直角坐标系中,点F的坐标为(0,10).点E的坐标为(20,0),直线l1经过点F和点E,直线l1与直线l2 、34y x相交于点P.(1)求直线l1的表达式和点P的坐标;(2)矩形ABCD的边AB在y轴的正半轴上,点A与点F重合,点B在线段OF上,边AD平行于x 轴,且AB=6,AD=9,将矩形ABCD沿射线FE的方向平移,边AD始终与x 轴平行.已知矩形ABCD(点A移动到点E时止移动),设移动时间为t秒(t>0).①矩形ABCD在移动过程中,B、C、D三点中有且只有一个顶点落在直线l1或l2上,请直接写出此时t的值;②若矩形ABCD在移动的过程中,直线CD交直线l1于点N,交直线l2于点M.当△PMN的面积等于18时,请直接写出此时t的值.七、解答题(本题12分)24.(12分)已知:△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°.点M在边AC上,点N在边BC上(点M、点N不与所在线段端点重合),BN=AM,连接AN,BM,射线AG∥BC,延长BM交射线AG于点D,点E在直线AN上,且AE=DE.(1)如图,当∠ACB=90°时①求证:△BCM≌△ACN;②求∠BDE的度数;(2)当∠ACB=α,其它多件不变时,∠BDE的度数是α或180°﹣α(用含α的代数式表示)(3)若△ABC是等边三角形,AB=,点N是BC边上的三等分点,直线ED与直线BC交于点F,请直接写出线段CF的长.八、解答题(本题12分)25.(12分)如图,在平面角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.(1)求抛物线C1的表达式;(2)直接用含t的代数式表示线段MN的长;(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;(4)在(3)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM 交y轴于点k,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.参考答案与解析一、选择题(本大题共10小题,每小题2分,共20分)1.下列各数中是有理数的是()A.πB.0 C D【知识考点】实数.【思路分析】根据有理数是有限小数或无限循环小,可得答案.【解答过程】解:A、π是无限不循环小数,属于无理数,故本选项错误;B、0是有理数,故本选项正确;CD故选:B.【总结归纳】本题考查了有理数,有限小数或无限循环小数是有理数.2.辽宁男蓝夺冠后,从4月21日至24日各类媒体体关于“辽篮CBA夺冠”的相关文章达到81000篇,将数据81000用科学记数法表示为()A.0.81×104B.0.81×106C.8.1×104D.8.1×106【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:将81000用科学记数法表示为:8.1×104.故选:C.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图是由五个相同的小立方块搭成的几何体,这个几何体的左视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.【解答过程】解:从左边看,从左往右小正方形的个数依次为:2,1.左视图如下:故选:D.【总结归纳】本题主要考查了几何体的三种视图和学生的空间想象能力,视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.4.在平面直角坐标系中,点B的坐标是(4,﹣1),点A与点B关于x轴对称,则点A的坐标是()A.(4,1)B.(﹣1,4)C.(﹣4,﹣1)D.(﹣1,﹣4)【知识考点】关于x轴、y轴对称的点的坐标.【思路分析】直接利用关于x轴对称点的性质,横坐标不变纵坐标改变符号进而得出答案.【解答过程】解:∵点B的坐标是(4,﹣1),点A与点B关于x轴对称,∴点A的坐标是:(4,1).故选:A.【总结归纳】此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.5.下列运算错误的是()A.(m2)3=m6B.a10÷a9=a C.x3•x5=x8D.a4+a3=a7【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【思路分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可.【解答过程】解:A、(m2)3=m6,正确;B、a10÷a9=a,正确;C、x3•x5=x8,正确;D、a4+a3=a4+a3,错误;故选:D.【总结归纳】此题主要考查了合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则等知识,正确掌握运算法则是解题关键.6.如图,AB∥CD,EF∥GH,∠1=60°,则∠2补角的度数是()A.60°B.100°C.110°D.120°【知识考点】余角和补角;平行线的性质.【思路分析】根据平行线的性质比较多定义求解即可;【解答过程】解:∵AB∥CD,∴∠1=∠EFH,∵EF∥GH,∴∠2=∠EFH,∴∠2=∠1=60°,∴∠2的补角为120°,故选:D.【总结归纳】本题考查平行线的性质、补角和余角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨【知识考点】随机事件.【思路分析】必然事件就是一定发生的事件,依据定义即可判断.【解答过程】解:A、“任意买一张电影票,座位号是2的倍数”是随机事件,故此选项错误;B、“13个人中至少有两个人生肖相同”是必然事件,故此选项正确;C、“车辆随机到达一个路口,遇到红灯”是随机事件,故此选项错误;D、“明天一定会下雨”是随机事件,故此选项错误;故选:B.【总结归纳】考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()。
2018年辽宁省葫芦岛市中考数学模拟试卷(一)一、选择题(共8小题,每小题3分,满分24分)1.(3分)8的相反数是()A.8B.C.﹣8D.2.(3分)如图所示的几何体是由5个大小相同的小立方块搭成,它的左视图是()A.B.C.D.3.(3分)下列计算正确的是()A.2a3+a2=3a5B.(3a)2=6a2C.(a+b)2=a2+b2D.2a2•a3=2a54.(3分)如图,AB∥CD,BE⊥AF于E,∠B=50°,则∠FCD等于()A.40°B.50°C.60°D.70°5.(3分)点A(﹣4,5)在反比例函数y=(k≠0)的图象上,则k的值是()A.20B.10C.﹣10D.﹣206.(3分)一元一次不等式组的解集是()A.x>﹣1B.﹣1<x≤2C.x≤2D.x>﹣1或x≤2 7.(3分)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4B.5C.6D.78.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正确的是()A.①④B.②④C.①②③D.①②③④二、填空题(共8小题,每小题3分,满分24分)9.(3分)某微生物的直径为0.000 005 035m,用科学计数法表示该数为.10.(3分)分解因式:m3﹣2m2+m=.11.(3分)一组数据7,6,8,7,8,8,5的众数是.12.(3分)已知△ABC∽△DEF,且相似比为1:2,则△DEF与△ABC的面积比为.13.(3分)对于实数p,q,我们用符号max{p,q}表示p,q两数中较大的数,如max{2,3}=3,若max{(x﹣1)2,x2}=1,则x=.14.(3分)如图,A,B是反比例函数y=图象上的两点,过点A作AC⊥y轴,垂足为C,AC交OB于点D.若D为OB的中点,△AOD的面积为3,则k的值为.15.(3分)如图,在扇形OAB中,C是OA的中点,CD⊥OA,CD与交于点D,以O为圆心,OC的长为半径作交OB于点E,若OA=4,∠AOB=120°,则图中阴影部分的面积为.(结果保留π)16.(3分)如图,在平面直角坐标系中,将△ABO绕点B顺时针旋转到△A1BO1的位置,使点A的对应点A1落在直线y=x上,再将△A1BO1绕点A1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y=x上,依次进行下去…,若点A的坐标是(0,1),点B的坐标是(,1),则点A8的横坐标是.三、解答题(共10小题,满分102分)17.(8分)先化简,再求值:(1﹣)÷,其中x=﹣2.18.(8分)如图,DB∥AC,且DB=AC,E是AC的中点,(1)求证:BC=DE;(2)连接AD、BE,若要使四边形DBEA是矩形,则需给△ABC添加什么条件,为什么?19.(10分)央视热播节目“朗读者”激发了学生的阅读兴趣.某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数.20.(10分)“端午节”是我国流传了上千年的传统节日,全国各地举行了丰富多彩的纪念活动.为了继承传统,减缓学生考前的心理压力,某班学生组织了一次拔河比赛,裁判员让两队队长用“石头、剪刀、布”的手势方式选择场地位置,规则是:石头胜剪刀,剪刀胜布,布胜石头,手势相同则再决胜负.(1)用列表或画树状图法,列出甲、乙两队手势可能出现的情况;(2)裁判员的这种做法对甲、乙双方公平吗?请说明理由.21.(10分)如图,观测点A和观测点C分别位于建筑物B的正西和正北方向,且与建筑物B的距离是6千米,建筑物D位于观测点A的北偏西15°方向,位于观测点C的北偏西60°方向,求建筑物D与观测点A之间的距离(结果精确到0.1千米,参考数据:≈1.41,≈2.45)22.(10分)如图,⊙O是Rt△ABC的外接圆,延长BC至点D,使CD=BC,连接AD,交⊙O于点F,延长AC至点E,使∠BAD=2∠CBE,连接BE.(1)求证:EB是⊙O的切线;(2)若⊙O的半径为,tan∠CBE=,求DF的长.23.(10分)今年,我市某中学响应习总书记“足球进校园”的号召,开设了“足球大课间”活动,现需要购进100个某品牌的足球供学生使用.经调查,该品牌足球2015年单价为200元,2017年单价为162元.(1)求2015年到2017年该品牌足球单价平均每年降低的百分率;(2)选购期间发现该品牌足球在两个文体用品商场有不同的促销方案:试问去哪个商场购买足球更优惠?24.(10分)有一家苗圃计划植桃树和柏树,根据市场调查与预测,种植桃树的利润y1(万元)与投资成本x(万元)满足如图①所示的二次函数y1=ax2;种植柏树的利润y2(万元)与投资成本x(万元)满足如图②所示的正比例函数y2=kx.(1)分别求出利润y1(万元)和利润y2(万元)关于投资成本x(万元)的函数关系式;(2)如果这家苗圃以10万元资金投入种植桃树和柏树,桃树的投资成本不低于2万元且不高于8万元,苗圃至少获得多少利润?最多能获得多少利润?25.(12分)数学课上,张老师出示了问题:如图1,AC、BD是四边形ABCD的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE 是等边三角形,故AC=CE,所以AC=BC+CD.小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为∠ACB =∠ACD=∠ABD=∠ADB=45°”,其他条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB =∠ACD=∠ABD=∠ADB=30°”,其他条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,并给出证明.26.(14分)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B 坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q的坐标.2018年辽宁省葫芦岛市中考数学模拟试卷(一)参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)8的相反数是()A.8B.C.﹣8D.【解答】解:8的相反数为:﹣8.故选:C.2.(3分)如图所示的几何体是由5个大小相同的小立方块搭成,它的左视图是()A.B.C.D.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:C.3.(3分)下列计算正确的是()A.2a3+a2=3a5B.(3a)2=6a2C.(a+b)2=a2+b2D.2a2•a3=2a5【解答】解:A、2a3与a2不是同类项不能合并,故A选项错误;B、(3a)2=9a2,故B选项错误;C、(a+b)2=a2+2ab+b2,故C选项错误;D、2a2•a3=2a5,故D选项正确,故选:D.4.(3分)如图,AB∥CD,BE⊥AF于E,∠B=50°,则∠FCD等于()A.40°B.50°C.60°D.70°【解答】解:∵BE⊥AF,∴∠AEB=90°,∵∠B=50°,∴∠A=90°﹣50°=40°,∵AB∥CD,∴∠FCD=∠A=40°,故选:A.5.(3分)点A(﹣4,5)在反比例函数y=(k≠0)的图象上,则k的值是()A.20B.10C.﹣10D.﹣20【解答】解:∵点A(﹣4,5)在反比例函数y=(k≠0)的图象上,∴k=xy=﹣4×5=﹣20.故选:D.6.(3分)一元一次不等式组的解集是()A.x>﹣1B.﹣1<x≤2C.x≤2D.x>﹣1或x≤2【解答】解:,解不等式①得:x>﹣1,解不等式②得:x≤2,则不等式组的解集为﹣1<x≤2,故选:B.7.(3分)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4B.5C.6D.7【解答】解:如图:故选:D.8.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正确的是()A.①④B.②④C.①②③D.①②③④【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a<0,∴ab<0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以②正确;∵x=1时,y<0,∴a+b+c<0,而c<0,∴a+b+2c<0,所以③正确;∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a,而x=﹣1时,y>0,即a﹣b+c>0,∴a+2a+c>0,所以④错误.故选:C.二、填空题(共8小题,每小题3分,满分24分)9.(3分)某微生物的直径为0.000 005 035m,用科学计数法表示该数为 5.035×10﹣6.【解答】解:0.000 005 035=5.035×10﹣6,故答案为:5.035×10﹣6.10.(3分)分解因式:m3﹣2m2+m=m(m﹣1)2.【解答】解:m3﹣2m2+m=m(m2﹣2m+1)=m(m﹣1)2.故答案为m(m﹣1)2.11.(3分)一组数据7,6,8,7,8,8,5的众数是8.【解答】解:∵这组数据中出现次数最多的是8,出现出现了3次,∴这组数据的众数为8,故答案为:8.12.(3分)已知△ABC∽△DEF,且相似比为1:2,则△DEF与△ABC的面积比为4:1.【解答】解:∵△ABC∽△DEF,且相似比为1:2,∴△DEF与△ABC的面积比为4:1,故答案为:4:1.13.(3分)对于实数p,q,我们用符号max{p,q}表示p,q两数中较大的数,如max{2,3}=3,若max{(x﹣1)2,x2}=1,则x=0或1.【解答】解:当(x﹣1)2<x2,即x>时,方程为(x﹣1)2=1,开方得:x﹣1=1或x﹣1=﹣1,解得:x=2(舍去)或x=0;当(x﹣1)2>x2,即x<时,方程为x2=1,开方得:x=1或x=﹣1(舍去),综上,x=0或1,故答案为:0或114.(3分)如图,A,B是反比例函数y=图象上的两点,过点A作AC⊥y轴,垂足为C,AC交OB于点D.若D为OB的中点,△AOD的面积为3,则k的值为8.【解答】解:设点D坐标为(a,b),∵点D为OB的中点,∴点B的坐标为(2a,2b),∴k=4ab,又∵AC⊥y轴,A在反比例函数图象上,∴A的坐标为(4a,b),∴AD=4a﹣a=3a,∵△AOD的面积为3,∴×3a×b=3,∴ab=2,∴k=4ab=4×2=8.故答案为:815.(3分)如图,在扇形OAB中,C是OA的中点,CD⊥OA,CD与交于点D,以O 为圆心,OC的长为半径作交OB于点E,若OA=4,∠AOB=120°,则图中阴影部分的面积为π+2.(结果保留π)【解答】解:如图,连接OD,AD,∵点C为OA的中点,∴OC=OA=OD,∵CD⊥OA,∴∠CDO=30°,∠DOC=60°,∴△ADO为等边三角形,∴CD=2,∴S扇形AOD==π,∴S阴影=S扇形AOB﹣S扇形COE﹣(S扇形AOD﹣S△COD)=﹣﹣(π﹣×2×2)=π﹣π﹣π+2=π+2.故答案为π+2.16.(3分)如图,在平面直角坐标系中,将△ABO绕点B顺时针旋转到△A1BO1的位置,使点A的对应点A1落在直线y=x上,再将△A1BO1绕点A1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y=x上,依次进行下去…,若点A的坐标是(0,1),点B的坐标是(,1),则点A8的横坐标是6+6.【解答】解:由题意点A2的横坐标(+1),点A4的横坐标3(+1),点A6的横坐标(+1),点A8的横坐标6(+1).故答案为6+6.三、解答题(共10小题,满分102分)17.(8分)先化简,再求值:(1﹣)÷,其中x=﹣2.【解答】解:原式=.当时,原式=.18.(8分)如图,DB∥AC,且DB=AC,E是AC的中点,(1)求证:BC=DE;(2)连接AD、BE,若要使四边形DBEA是矩形,则需给△ABC添加什么条件,为什么?【解答】(1)证明:∵E是AC中点,∴EC=AC.∵DB=AC,∴DB=EC.又∵DB∥EC,∴四边形DBCE是平行四边形.∴BC=DE.(2)添加AB=BC.理由:∵DB AE,∴四边形DBEA是平行四边形.∵BC=DE,AB=BC,∴AB=DE.∴▭ADBE是矩形.19.(10分)央视热播节目“朗读者”激发了学生的阅读兴趣.某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了200名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为126度;(4)若该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数.【解答】解:(1)∵喜欢文史类的人数为76人,占总人数的38%,∴此次调查的总人数为:76÷38%=200人,(2)∵喜欢生活类书籍的人数占总人数的15%,∴喜欢生活类书籍的人数为:200×15%=30人,∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,如图所示;(3)∵喜欢社科类书籍的人数为:24人,∴喜欢社科类书籍的人数占了总人数的百分比为:×100%=12%,∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°×35%=126°,(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数:2500×12%=300人故答案为:(1)200;(3)12620.(10分)“端午节”是我国流传了上千年的传统节日,全国各地举行了丰富多彩的纪念活动.为了继承传统,减缓学生考前的心理压力,某班学生组织了一次拔河比赛,裁判员让两队队长用“石头、剪刀、布”的手势方式选择场地位置,规则是:石头胜剪刀,剪刀胜布,布胜石头,手势相同则再决胜负.(1)用列表或画树状图法,列出甲、乙两队手势可能出现的情况;(2)裁判员的这种做法对甲、乙双方公平吗?请说明理由.【解答】解:(1)用列表法得出所有可能的结果如下:用树状图得出所有可能的结果如下:(2)裁判员的这种作法对甲、乙双方是公平的.理由:根据表格得,P(甲获胜)=,P(乙获胜)=.∵P(甲获胜)=P(乙获胜),∴裁判员这种作法对甲、乙双方是公平的.21.(10分)如图,观测点A和观测点C分别位于建筑物B的正西和正北方向,且与建筑物B的距离是6千米,建筑物D位于观测点A的北偏西15°方向,位于观测点C的北偏西60°方向,求建筑物D与观测点A之间的距离(结果精确到0.1千米,参考数据:≈1.41,≈2.45)【解答】解:作AT⊥CH于T交CD于E,作EM⊥AD于M,在AD上截取AN,使得AN =EN,连接EN.由题意:四边形ABCT是正方形,∴CT=AB=AT=BC=6,在Rt△ECT中,ET=CT•tan30°=2,∴AE=6+2,∵∠CEA=∠D+∠DAE,∴∠D=45°,∴DM=EM,设DM=EM=x,则EN=AN=2x,MN=x,在Rt△AEM中,AE2=EM2+AM2,∴x2+(2x+x)2=(6+2)2,解得x=,∴AD=DM+MN+AN=3x+x=3+3≈11.6(千米).22.(10分)如图,⊙O是Rt△ABC的外接圆,延长BC至点D,使CD=BC,连接AD,交⊙O于点F,延长AC至点E,使∠BAD=2∠CBE,连接BE.(1)求证:EB是⊙O的切线;(2)若⊙O的半径为,tan∠CBE=,求DF的长.【解答】(1)证明:∵∠ACB=90°,∴AB为⊙O的直径,∵BC=CD,AC⊥BD,∴AB=AD,∴AC平分∠BAD,∴∠BAD=2∠BAC,∵∠BAD=2∠CBE,∴∠BAC=∠CBE,∵∠BAC+∠ABC=90°,∴∠CBE+∠ABC=90°,即∠ABE=90°,∴AB⊥BE,∴EB是⊙O的切线;(2)解:连接CF,如图,∵AB为直径,∴∠AFB=90°,∵∠BAC=∠CBE,∴tan∠BAC=tan∠CBE=,在Rt△ACB中,tan∠BAC==,设BC=x,则AC=2x,∴AB==x,∴x=5,解得x=,∴BC=,AC=2,∴BD=2BC=2∵∠DBF=∠DAC=∠BAC,∴△BDF∽△ABC,∴=,即=,∴DF=2.23.(10分)今年,我市某中学响应习总书记“足球进校园”的号召,开设了“足球大课间”活动,现需要购进100个某品牌的足球供学生使用.经调查,该品牌足球2015年单价为200元,2017年单价为162元.(1)求2015年到2017年该品牌足球单价平均每年降低的百分率;(2)选购期间发现该品牌足球在两个文体用品商场有不同的促销方案:试问去哪个商场购买足球更优惠?【解答】解:(1)设2015年到2017年该品牌足球单价平均每年降低的百分率为x,根据题意得:200×(1﹣x)2=162,解得:x=0.1=10%或x=1.9(舍去).答:2015年到2017年该品牌足球单价平均每年降低的百分率为10%.(2)100×=≈90.91(个),在A商城需要的费用为162×91=14742(元),在B商城需要的费用为162×100×=14580(元).14742>14580.答:去B商场购买足球更优惠.24.(10分)有一家苗圃计划植桃树和柏树,根据市场调查与预测,种植桃树的利润y1(万元)与投资成本x(万元)满足如图①所示的二次函数y1=ax2;种植柏树的利润y2(万元)与投资成本x(万元)满足如图②所示的正比例函数y2=kx.(1)分别求出利润y1(万元)和利润y2(万元)关于投资成本x(万元)的函数关系式;(2)如果这家苗圃以10万元资金投入种植桃树和柏树,桃树的投资成本不低于2万元且不高于8万元,苗圃至少获得多少利润?最多能获得多少利润?【解答】解:(1)把(4,1)代入y1=ax2中得:16a=1,a=,∴y1=x2,把(2,1)代入y2=kx中得:2k=1,k=,∴y2=x;(2)设种植桃树的投资成本x万元,总利润为W万元,则种植柏树的投资成本(10﹣x)万元,则W=y1+y2=x2+(10﹣x)=(x﹣4)2+4,由图象得:当2≤x≤8时,当x=4时,W有最小值,W小=4,当x=8时,W有最大值,W大=(8﹣4)2+4=5,答:苗圃至少获得4万元利润,最多能获得5万元利润.25.(12分)数学课上,张老师出示了问题:如图1,AC、BD是四边形ABCD的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE 是等边三角形,故AC=CE,所以AC=BC+CD.小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为∠ACB =∠ACD=∠ABD=∠ADB=45°”,其他条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=30°”,其他条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,并给出证明.【解答】解:(1)BC+CD=AC;理由:如图1,延长CD至E,使DE=BC,连接AE,∵∠ABD=∠ADB=45°,∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=90°,∵∠ACB=∠ACD=45°,∴∠ACB+∠ACD=90°,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=45°,AC=AE,∴△ACE是等腰直角三角形,∴CE=AC,∵CE=CD+DE=CD+BC,∴BC+CD=AC;(2)BC+CD=AC.理由:如图2,延长CD至E,使DE=BC,∵∠ABD=∠ADB=30°,∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=180°﹣2×30°,∵∠ACB=∠ACD=30°,∴∠ACB+∠ACD=60°,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=30°,AC=AE,∴∠AEC=30°,过点A作AF⊥CE于F,∴CE=2CF,在Rt△ACF中,∠ACD=30°,CF=AC•cos∠ACD=AC•cos30°,∴CE=2CF=2AC•cos30°=AC,∵CE=CD+DE=CD+BC,∴BC+CD=2AC•cos30°=AC.26.(14分)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B 坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q的坐标.【解答】解:(1)把B、C两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=﹣x2+2x+6,∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴D(2,8);(2)如图1,过F作FG⊥x轴于点G,设F(x,﹣x2+2x+6),则FG=|﹣x2+2x+6|,∵∠FBA=∠BDE,∠FGB=∠BED=90°,∴△FBG∽△BDE,∴=,∵B(6,0),D(2,8),∴E(2,0),BE=4,DE=8,OB=6,∴BG=6﹣x,∴=,当点F在x轴上方时,有=,解得x=﹣1或x=6(舍去),此时F点的坐标为(﹣1,);当点F在x轴下方时,有=﹣,解得x=﹣3或x=6(舍去),此时F点的坐标为(﹣3,﹣);综上可知F点的坐标为(﹣1,)或(﹣3,﹣);(3)如图2,设对角线MN、PQ交于点O′,∵点M、N关于抛物线对称轴对称,且四边形MPNQ为正方形,∴点P为抛物线对称轴与x轴的交点,点Q在抛物线的对称轴上,设Q(2,2n),则M坐标为(2﹣n,n),∵点M在抛物线y=﹣x2+2x+6的图象上,∴n=﹣(2﹣n)2+2(2﹣n)+6,解得n=﹣1+或n=﹣1﹣,∴满足条件的点Q有两个,其坐标分别为(2,﹣2+2)或(2,﹣2﹣2).。
2018年初中毕业生升学文化课考试(葫芦岛)数学试题一.选择题(本大题共10小题,每小题2分,共20分)每小题都给出的四个选项,其中只有一个是符合题目要求的,请把符合要求的答案的序号填入下面表格中.1.(2018辽宁葫芦岛,1,2分)下列各数中,比-1小的是( )A . -2B .0C .2D .3【答案】A2.(2018辽宁葫芦岛,2,2分)如图,C 是线段AB 上一点,M 是线段AC 的中点,若AB=8 cm,BC=2m,则MC 的长是( )A. 2 cmB.3 cmC. 4 cmD.6 cm【答案】B3.(2018辽宁葫芦岛,3,2分)下列运算中,正确的是( )A.a 3÷a 2=aB. a 2+a 2=a 4C. (ab )3=a 4D.2ab -b=2a【答案】A4.(2018辽宁葫芦岛,4,2分)如图,在平行四边形ABCD 中,对角线AC,BD 相交于点O ,若AC=8,BD=10,AB=6,则△OAB 的周长为( )A .12B .13C .15D .16【答案】C5.(2018辽宁葫芦岛,5,2分)某校关注学生的用眼健康,从九年级500名学生中随机抽取了30名学生进行视力检查,发现有12名学生近视眼,据此估计这500名学生中,近视的学生人数约是( )A .150B .200C .350D .400【答案】B6.(2018辽宁葫芦岛,6,2分)化简11132-÷-x x 的结果是( ) A .13-x B .()213-x C .13+x D .3(x+1) 【答案】C7.(2018辽宁葫芦岛,7,2分)有四张标号分别为①②③④的正方形纸片,按图3所示的方式叠放在桌面上,从最上层开始,它们由上到下的标号为( )A.①②③④B.①③②④C.②③①④D.②①③④【答案】D8.(2018辽宁葫芦岛,8,2分)下列各数中,是不等式2x-3>0的解的是()A.-1 B.0 C.-2 D.2【答案】D9.(2018辽宁葫芦岛,9,2分)正方形ABCD与正五边形EFGHM的边长相等,初始如图4所示,将正方形绕点F顺时针旋转使得BC与FG重合,再将正方形绕点G顺时针旋转使得CD与GH重合……按这样的方式将正方形依次绕点H、M、E旋转后,正方形中与EF重合的是()A.AB B.BC C.CD D.DA【答案】B10.(2018辽宁葫芦岛,10,2分)已知二次函数y=a(x+2)2+3(a<0)的图象如图5所示,则以下结论:①当x>-2时,y随x的增大而增大;②不论a为任何负数,该二次函数的最大值总是3;③当a=-1时,抛物线必过原点;④该抛物线和x轴总有两个公共点.其中正确结论是()A.①②B.②③C.②④D.①④【答案】C二.填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上)11.(2018辽宁葫芦岛,11,3分)计算23的结果是___________.【答案】812.(2018辽宁葫芦岛,12,3分)如图6,CD ,BE 相交于点O ,若∠B=70°,∠DAE=60°,则∠C=______°.【答案】5013.(2018辽宁葫芦岛,13,3分)已知a -b=3,则a (a -2b )+b 2的值为___________.【答案】914.(2018辽宁葫芦岛,14,3分)在每个小正方形的边长均为1的7×7网格图中,格点上有A ,B ,C ,D ,E 五个定点,如图7所示,一个动点P 从点E 出发,绕点A 逆时针旋转90°,之后该动点继续绕点B ,C ,D 逆时针90°后回到初始位置,点P 运转路线的总长是___________.(结果保留π)【答案】5π15.(2018辽宁葫芦岛,15,3分)如图8,正三角形和正方形的面积分别为10,6,两阴影部分的面积分别为a,b (a>b ),则(a -b )等于___________.【答案】416.(2018辽宁葫芦岛,16,3分)某数学小组的10位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序的倒数的2倍加1,第1位同学报⎪⎭⎫ ⎝⎛+112,第2位同学报⎪⎭⎫ ⎝⎛+122,第3位同学报⎪⎭⎫ ⎝⎛+132,……这样得到10个数的积为___________.【答案】66三.解答题(本大题共9个小题,共82分,解答应写出文字说明、证明过程或演算步骤)17.(2018辽宁葫芦岛,17,8分)计算()431216330+⎪⎭⎫ ⎝⎛-⨯+---π 【答案】解:原式=1-3÷3-2+2…………………………………………5分=1…………………………………………8分18.(2018辽宁葫芦岛,18,8分)如图9,在Rt △ABC 中,∠C=90°,BC=8,tanB=21,点D 在BC 上,且BD=AD ,求AC 的长和cos ∠ADC 的值.【答案】解:∵Rt △ABC 中, BC=8,tanB=21, ∴AC=4…………………………………………2分设AD=X,则BD=x,CD=8-x,由勾股定理得,(8-x )2+42=x 2解得x=5. …………………………………………5分∴cos ∠ADC=53=AD DC .…………………………………………8分19.(2018辽宁葫芦岛,19,8分)某单位计划用3天时间进行设备检修,安排小王,小李,小赵三位工程师各带班一天,带班顺序是随机确定的.(1)请你写出三天带班顺序的所有可能的结果表明;(2)求小李和小赵恰好相邻的概率.【答案】解:(1)小王,小李,小赵;小王,小赵,小李;小李,小王,小赵;小李,小赵,小王;小赵,小王,小李;小赵,小李,小王;……… 6分(2)带班顺序一共有6种等可能的结果,其中小李和小赵相邻的情况有4种,P (小李和小赵相邻)=32.………………………8分20.(2018辽宁葫芦岛,20,8分)某班级从甲乙两位同学中选派一人参加“秀美山河”知识竞赛,老师对他们的五次模拟成绩(单位:分)进行了整理,美工计算出甲成绩的平均数是80,甲乙成绩的方差分别是320,40,但绘制的统计图尚不完整.(1)a=_________;(2)请完成图10中表示甲成绩变化情况的折线;(3)求乙成绩的平均数;(4)从平均数和方差的角度分析,谁将被选中.【答案】(1)70………………………2分(2)如图1………………………4分(3)()80809080708051=++++=乙x ………………………6分 (4)甲乙成绩的平均数相同,乙的方差小于甲的方差,乙比甲稳定,所以乙将被选中.………………………8分21.(2018辽宁葫芦岛,21,9分)如图11,折张AC —BC 是一条公路的示意图,AC=8km,甲骑摩托车从A 地沿这条公路到B 地,速度为40km/h,乙骑自行车从C 地到B 地,速度为10m/h,两人同时出发,结果甲比乙早到6分钟.(1)求这条公路的长;(2)设甲乙出发的时间为t 小时,求甲没有超过乙时t 的取值范围.【答案】解:(1)设这条公路的长为xkm,由题意得,60610840=--x x 解这个方程得,x=12km.(2)由题意得,40t≤10t -8, 解这个不等式得,154≤t 答:当154≤t 时,甲没有超过乙.22.(2018辽宁葫芦岛,22,9分)如图12,四边形ABCD 是正方形,其中A (1,1),B (3,1),D (1,3).反比例函数()0 x xm y =的图象经过对角线BD 的中点M ,与BC ,CD 的边分别交于点P ,Q.(1) 直接写出点M ,C 的坐标;(2) 求直线BD 的解析式;(3) 线段PQ 与BD 是否平行?并说明理由.【答案】解:(1)点M 的坐标为(2,2),点C 的坐标为(3,3), (2)分(2)设直线CD 的解析式为y=kx+b,由已知B (3,1),D (1,3),得⎩⎨⎧-=-=b k b k 331,解得 ⎝⎛=-=41b k 所以直线BD 的解析式为y=-x+4. ………………………4分(3)PQ ∥BD………………………5分 理由如下:∵反比例函数()0 x x m y =的图象经过M (2,2), ∴,22m =∴m=4.所以反比例函数的解析式为x y 4=.………………………6分 ∵反比例函数xy 4=的图象与BC 交于点P ,∴点P 的横坐标为3,当x=3时,344==x y . ∴点P 的坐标为(3,34),同理点Q 的坐标为(34,3).∴CP=CQ=35,∴∠CPQ=45°,∠CPQ=∠CBD ,∴PQ ∥BD.………………………9分23.(2018辽宁葫芦岛,23,10分)如图13.1和13.2,四边形ABCD 是菱形,点P 是对角线AC 上一点,以点P 为圆心,PB 为半径的弧,交BC 的延长线于点F ,连接PF ,PD ,PB.(1)如图13-1,点P 是AC 的中点,请写出PF 和PD 的数量关系:__________;(2)如图13-2,点P 不是AC 的中点,① 求证:PF=PD.② 若∠ABC=40°,直接写出∠DPF 的度数.【答案】解:(1)PF=PD ……………………………………2分(2)①证明:∵四边形ABCD 是菱形,∴AB=AD ,∠BAC=∠DAC.又∵AP=AP ,∴△ABP ≌△ADP ……………………………………………5分∴PB=PD.又∵PB=PF ,∴PF=PD. ……………………………………………………8分②∠DPF=40°.………………………………………………10分24.(2018辽宁葫芦岛,24,10分)某经销商销售一种圆盘,圆盘的半径x (cm )与x 2成正比例,售出一个圆盘的利润是P (元).当x=10时,y=80.p=30.(利润=售价-进价).(1)求y 与x 满足的函数关系式;(2)求P 与x 满足的函数关系式;(3)当售出一个圆盘所获得的利润是32元时,求这个圆盘的半径.【答案】解:(1)由题意得,y=kx,∵x=10时,y=80’∴10k=80, k=8∴y=8x………………………3分(2)由题意,设w=mx 2,则P=y - mx 2=- mx 2+8x………………………5分∴当x=10时,P=30,∴30=- m102+8x30=-m×102+8×10∴m=21-∴ P=21-x 2+8x. ………………………7分 (3)由题意得,21-x 2+8x=32, 化简得,x 2-16x -64=0,解得x 1=x 2=8.∴这个圆盘的半径是8cm. ………………………10分25.(2018辽宁葫芦岛,25,12分)△ABC 中,BC=AC=5,AB=8,CD 为AB 边上的高,如图14-1,A 在原点处,点B 在y 轴正半轴上,点C 在第一象限,若A 从原点出发,沿x 轴向右以每秒1个单位长的速度运动,则点B 随之沿y 轴下滑,并带动△ABC 在平面上滑动.如图14-2,设运动时间表为t 秒,当B 到达原点时停止运动.(1)当t=0时,求点C 的坐标;(2)当t=4时,求OD 的长及∠BAO 的大小;(3)求从t=0到t=4这一时段点D 运动路线的长;(4)当以点C 为圆心,CA 为半径的圆与坐标轴相切时,求t 的值.【答案】解:(1)∵BC=AC ,CD ⊥AB ,∴D 为AB 的中点,∴AD=21AB=4. 在Rt △CAD 中,CD=2245-=3.∴点C 的坐标为(3,4).………………………2分(2)如图2,当t=4时,AO=4,在Rt △ABO 中,D 为AB 的中点, OD=21AB=4. ………………………3分 ∴△AOD 为等边三角形.∴∠BAO=60°. ………………………4分(3)如图3,从t=0到t=4这一时段点D 运动路线是弧D D ',………………………5分 其中,OD= OD′=4,又∠D′OD=90°-60°=30°. ∴D D '的长为ππ32180430=⨯⨯.………………………8分 (4)由题意得,AO=t ,当⊙C 与x 轴相切时,A 为切点,如图4,∴CA ⊥OA ,∴CA ∥y 轴.∴∠CAD=∠ABO∴Rt △CAD ∽Rt △ABO. ∴CD AO CA AB =,即358t = t=524.………………………10分 当⊙C 与y 轴相切时,B 为切点,如图5, 同理可得,t=532∴t 的值为524或532.………………………12分。
2018年辽宁省葫芦岛市中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个玄子昂中,只有一项是符合题目要求的)1.(3分)在1、﹣1、3、﹣2这四个数中,最大的数是()A.1B.﹣1C.3D.﹣22.(3分)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.3.(3分)下列运算正确的是()A.4x+5y=9xy B.(﹣m)3•m7=m10C.(x3y)5=x8y5D.a12÷a8=a44.(3分)如图所示的几何体,上下部分均为圆柱体,其主视图是()A.B.C.D.5.(3分)下面调查方式中,合适的是()A.调查你所在班级同学的体重,采用抽样调查方式B.调查乌金塘水库的水质情况,采用抽样调査的方式C.调查《CBA联赛》栏目在我市的收视率,采用普查的方式D.要了解全市初中学生的业余爱好,采用普查的方式6.(3分)在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有5个红球,4个蓝球.若随机摸出一个蓝球的概率为,则随机摸出一个黄球的概率为()A.B.C.D.7.(3分)如图,在平面直角坐标系中,△ABC位于第二象限,点B的坐标是(﹣5,2),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于于x轴对称的△A2B2C2,则点B的对应点B2的坐标是()A.(﹣3,2)B.(2,﹣3)C.(1,2)D.(﹣1,﹣2)8.(3分)一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限9.(3分)如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC 至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°10.(3分)如图,等边△ABC的边长为4,点D,E分别是BC,AC的中点,动点M从点A向点B匀速运动,同时动点N沿B﹣D﹣E匀速运动,点M,N同时出发且运动速度相同,点M到点B时两点同时停止运动,设点M走过的路程为x,△AMN的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)据媒体报道,我国研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,将204000这个数用科学记数法表示为.12.(3分)分解因式:a2b﹣8ab+16b=.13.(3分)使式子有意义的x的取值范围是.14.(3分)如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是.15.(3分)为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为分.16.(3分)如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知DE⊥EA,斜坡CD的长度为30m,DE的长为15m,则树AB的高度是m.17.(3分)矩形ABCD中,AB=8,AD=6,E为BC边上一点,将△ABE沿着AE翻折,点B落在点F处,当△EFC为直角三角形时BE=.18.(3分)一组正方形按如图所示的方式放置,其中顶点B1在y轴上,顶点C1,E1,E2,C2,E3,E4,C3……在x轴上,已知正方形A1B1C1D1的顶点C1的坐标是(﹣,0),∠B1C1O=60°,B1C1∥B2C2∥B3C3……则正方形A2018B2018C2018D2018的顶点D2018纵坐标是.三、解答题(第19题10分,第20题12分,共22分)19.(10分)先化简,再求值:(﹣1)÷,其中x=2.20.(12分)“校园安全”受到全社会的广泛关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调査的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为°;(2)请补全条形统计图;(3)若该中学共有学生1600人,请根据上述调查结果,估计该学校学生中对校园安全知识达到“了解”和“基本了解”程度的总人数;(4)若从对校园安全知识达到“了解”程度的3个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.四、解答题(第21题12分,第22题12分,共24分)21.(12分)某公司销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示该公司计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润12万元.(1)该公司计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该公司决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过68万元,问A种设备购进数量至多减少多少套?22.(12分)如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于A(2,﹣1),B(,n)两点,直线y=2与y轴交于点C.(1)求一次函数与反比例函数的解析式;(2)连接AC,BC,求△ABC的面积.五、解答题(满分12分)23.(12分)一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg.且不高于180元/kg,经销一段时间后得到如下数据:设y与x的关系是我们所学过的某一种函数关系.(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)当销售单价为多少时,销售利润最大?最大利润是多少?六、解答题(满分12分)24.(12分)如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.(1)求证:CF是⊙O的切线;(2)若∠F=30°,EB=8,求图中阴影部分的面积.(结果保留根号和π)七、解答题(满分12分)25.(12分)如图,在等腰直角△ABC中,∠C是直角,点A在直线MN上,过点C作CE⊥MN于点E,过点B作BF⊥MN于点F.(1)如图1,当C,B两点均在直线MN的上方时,①直接写出线段AE,BF与CE的数量关系.②猜测线段AF,BF与CE的数量关系,不必写出证明过程.(2)将等腰直角△ABC绕着点A顺时针旋转至图2位置时,线段AF,BF与CE又有怎样的数量关系,请写出你的猜想,并写出证明过程.(3)将等腰直角△ABC绕着点A继续旋转至图3位置时,BF与AC交于点G,若AF=3,BF=7,直接写出FG的长度.八、解答题(满分14分)26.(14分)如图抛物线y=ax2+bx,过点A(4,0)和点B(6,2),四边形OCBA是平行四边形,点M(t,0)为x轴正半轴上的点,点N为射线AB上的点,且AN=OM,点D为抛物线的顶点.(1)求抛物线的解析式,并直接写出点D的坐标;(2)当△AMN的周长最小时,求t的值;(3)如图②,过点M作ME⊥x轴,交抛物线y=ax2+bx于点E,连接EM,AE,当△AME与△DOC相似时.请直接写出所有符合条件的点M坐标.2018年辽宁省葫芦岛市中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个玄子昂中,只有一项是符合题目要求的)1.(3分)在1、﹣1、3、﹣2这四个数中,最大的数是()A.1B.﹣1C.3D.﹣2【解答】解:根据有理数比较大小的方法,可得﹣2<﹣1<1<3,∴在1、﹣1、3、﹣2这四个数中,最大的数是3.故选:C.2.(3分)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项正确;C、是轴对称图形,也是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.3.(3分)下列运算正确的是()A.4x+5y=9xy B.(﹣m)3•m7=m10C.(x3y)5=x8y5D.a12÷a8=a4【解答】解:A、4x+5y=4x+5y,错误;B、(﹣m)3•m7=﹣m10,错误;C、(x3y)5=x15y5,错误;D、a12÷a8=a4,正确;故选:D.4.(3分)如图所示的几何体,上下部分均为圆柱体,其主视图是()A.B.C.D.【解答】解:∵该几何体上下部分均为圆柱体,∴其主视图为矩形,故选:C.5.(3分)下面调查方式中,合适的是()A.调查你所在班级同学的体重,采用抽样调查方式B.调查乌金塘水库的水质情况,采用抽样调査的方式C.调查《CBA联赛》栏目在我市的收视率,采用普查的方式D.要了解全市初中学生的业余爱好,采用普查的方式【解答】解:A、调查你所在班级同学的体重,采用普查,故A不符合题意;B、调查乌金塘水库的水质情况,无法普查,采用抽样调査的方式,故B符合题意;C、调查《CBA联赛》栏目在我市的收视率,调查范围广适合抽样调查,故C不符合题意;D、要了解全市初中学生的业余爱好,调查范围广适合抽样调查,故D不符合题意;故选:B.6.(3分)在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有5个红球,4个蓝球.若随机摸出一个蓝球的概率为,则随机摸出一个黄球的概率为()A.B.C.D.【解答】解:设袋子中黄球有x个,根据题意,得:=,解得:x=3,即袋中黄球有3个,所以随机摸出一个黄球的概率为=,故选:A.7.(3分)如图,在平面直角坐标系中,△ABC位于第二象限,点B的坐标是(﹣5,2),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于于x轴对称的△A2B2C2,则点B的对应点B2的坐标是()A.(﹣3,2)B.(2,﹣3)C.(1,2)D.(﹣1,﹣2)【解答】解:把△ABC向右平移4个单位长度得到△A1B1C1,此时点B(﹣5,2)的对应点B1坐标为(﹣1,2),则与△A1B1C1关于于x轴对称的△A2B2C2中B2的坐标为(﹣1,﹣2),故选:D.8.(3分)一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:根据y随x的增大而减小得:k<0,又kb>0,则b<0,故此函数的图象经过第二、三、四象限,即不经过第一象限.故选:A.9.(3分)如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC 至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°【解答】解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选:B.10.(3分)如图,等边△ABC的边长为4,点D,E分别是BC,AC的中点,动点M从点A向点B匀速运动,同时动点N沿B﹣D﹣E匀速运动,点M,N 同时出发且运动速度相同,点M到点B时两点同时停止运动,设点M走过的路程为x,△AMN的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.【解答】解:∵BD=2,∠B=60°∴点D到AB距离为当0≤x≤2时,y=当2≤x≤4时,y=根据函数解析式,A符合条件故选:A.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)据媒体报道,我国研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,将204000这个数用科学记数法表示为 2.04×105.【解答】解:204000=2.04×105,故答案为:2.04×105.12.(3分)分解因式:a2b﹣8ab+16b=b(a﹣4)2..【解答】解:a2b﹣8ab+16b=b(a2﹣8a+16)=b(a﹣4)2.13.(3分)使式子有意义的x的取值范围是x.【解答】解:由题意得:1﹣2x>0,解得:x<,故答案为:x,14.(3分)如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是35°.【解答】解:如图,∵AB∥CD,∴∠AEF=∠1=25°,∵∠MEF=60°,∴∠2=∠MEF﹣∠AEF=60°﹣25°=35°,故答案为35°.15.(3分)为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为135分.【解答】解:∵13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分,∴第7个数是135分,∴中位数为135分;故答案为135.16.(3分)如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知DE⊥EA,斜坡CD的长度为30m,DE的长为15m,则树AB的高度是45m.【解答】解:作DF⊥AB于F,交BC于G.则四边形DEAF是矩形,∴DE=AF=15m,∵DF∥AE,∴∠BGF=∠BCA=60°,∵∠BGF=∠GDB+∠GBD=60°,∠GDB=30°,∴∠GDB=∠GBD=30°,∴GD=GB,在Rt△DCE中,∵CD=2DE,∴∠DCE=30°,∴∠DCB=90°,∵∠DGC=∠BGF,∠DCG=∠BFG=90°∴△DGC≌△BGF,∴BF=DC=30m,∴AB=30+15=45(m),故答案为45.17.(3分)矩形ABCD中,AB=8,AD=6,E为BC边上一点,将△ABE沿着AE翻折,点B落在点F处,当△EFC为直角三角形时BE=或8.【解答】解:当△CEF为直角三角形时,有两种情况:①当点F落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=8,BC=6,∴AC==10,∵∠B沿AE折叠,使点B落在点F处,∴∠AFE=∠B=90°,当△CEF为直角三角形时,只能得到∠EFC=90°,∴点A、F、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点F处,如图,∴EB=EF,AB=AF=8,∴CF=10﹣8=2,设BE=x,则EF=x,CE=6﹣x,在Rt△CEF中,∵EF2+CF2=CE2,∴x2+22=(6﹣x)2,解得x=,∴BE=;②当点F落在AD边上时,如答图2所示.此时ABEF为正方形,∴BE=AB=8.综上所述,BE的长为或8.故答案为:或8.18.(3分)一组正方形按如图所示的方式放置,其中顶点B1在y轴上,顶点C1,E1,E2,C2,E3,E4,C3……在x轴上,已知正方形A1B1C1D1的顶点C1的坐标是(﹣,0),∠B1C1O=60°,B1C1∥B2C2∥B3C3……则正方形A2018B2018C2018D2018的顶点D2018纵坐标是×()2017.【解答】解:∵∠B1C1O=60°,C1O=∴B1C1=1,∠D1C1E1=30°∵sin∠D1C1E1==∴D1E1=∵B1C1∥B2C2∥B3C3∥…∴60°=∠B1C1O=∠B2C2O=∠B3C3O=…∴B2C2===B3C3===()2 .故正方形AnBnCnDn的边长=()n﹣1.∴B2018C2018=()2017.∴D2018E2018=×()2017∴D的纵坐标为×()2017故答案为×()2017三、解答题(第19题10分,第20题12分,共22分)19.(10分)先化简,再求值:(﹣1)÷,其中x=2.【解答】解:原式=[]÷=(﹣)•=•=﹣,当x=2时,原式=﹣=﹣2.20.(12分)“校园安全”受到全社会的广泛关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调査的学生共有80人,扇形统计图中“基本了解”部分所对应扇形的圆心角为90°;(2)请补全条形统计图;(3)若该中学共有学生1600人,请根据上述调查结果,估计该学校学生中对校园安全知识达到“了解”和“基本了解”程度的总人数;(4)若从对校园安全知识达到“了解”程度的3个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.【解答】解:(1)接受问卷调査的学生共有40÷50%=80人,扇形统计图中“基本了解”部分所对应扇形的圆心角为360°×=90°,故答案为:80、90;(2)“了解”的人数为80﹣(20+40+15)=5,补全图形如下:(3)估计该学校学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为1600×=500人;(4)画树状图得:∵共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况,∴恰好抽到1个男生和1个女生的概率为=.四、解答题(第21题12分,第22题12分,共24分)21.(12分)某公司销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示该公司计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润12万元.(1)该公司计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该公司决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过68万元,问A种设备购进数量至多减少多少套?【解答】解:(1)设该公司计划购进A种品牌的教学设备x套,购进B种品牌的教学设备y套,根据题意得:,解得:.答:该公司计划购进A种品牌的教学设备20套,购进B种品牌的教学设备30套.(2)设A种品牌的教学设备购进数量减少m套,则B种品牌的教学设备购进数量增加1.5m套,根据题意得:1.5(20﹣m)+1.2(30+1.5m)≤68,解得:m≤,∵m为整数,∴m≤6.答:A种品牌的教学设备购进数量至多减少6套.22.(12分)如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于A(2,﹣1),B(,n)两点,直线y=2与y轴交于点C.(1)求一次函数与反比例函数的解析式;(2)连接AC,BC,求△ABC的面积.【解答】解:(1)∵一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于A(2,﹣1),B(,n)两点∴m=2×(﹣1)=×n∴m=﹣2,n=﹣4∵解得:∴一次函数解析式y=2x﹣5,反比例函数的解析式y=(2)设一次函数解析式y=2x﹣5图象交y轴为点D∴D(0,﹣5)∵直线y=2与y轴交于点C ∴C(0,2)∵S△ABC =S△ACD﹣S△BCD∴S△ABC==五、解答题(满分12分)23.(12分)一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg.且不高于180元/kg,经销一段时间后得到如下数据:设y与x的关系是我们所学过的某一种函数关系.(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)当销售单价为多少时,销售利润最大?最大利润是多少?【解答】解:(1)∵由表格可知:销售单价每涨10元,就少销售5kg,∴y与x是一次函数关系,∴y与x的函数关系式为:y=100﹣0.5(x﹣120)=﹣0.5x+160,∵销售单价不低于120元/kg.且不高于180元/kg,∴自变量x的取值范围为:120≤x≤180;(2)设销售利润为w元,则w=(x﹣80)(﹣0.5x+160)=﹣x2+200x﹣12800=﹣(x﹣200)2+7200,∵a=﹣<0,∴当x<200时,w随x的增大而增大,∴当x=180时,销售利润最大,最大利润是:w=﹣(180﹣200)2+7200=7000(元),答:当销售单价为180元时,销售利润最大,最大利润是7000元.六、解答题(满分12分)24.(12分)如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.(1)求证:CF是⊙O的切线;(2)若∠F=30°,EB=8,求图中阴影部分的面积.(结果保留根号和π)【解答】(1)证明:连接OD,如图,∵四边形EBOC是平行四边形,∴OC∥BE,∴∠1=∠3,∠2=∠4,∵OB=OD,∴∠3=∠4,∴∠1=∠2,在△ODC和△OAC中,∴△ODC≌△OAC,∴∠ODC=∠OAC=90°,∴OD⊥CD,∴CF是⊙O的切线;(2)解:∵∠F=30°,∴∠FOD=60°,∴∠1=∠2=60°,∵四边形EBOC是平行四边形,∴OC=BE=8,在Rt△AOC中,OA=OC=4,AC=OA=4∴图中阴影部分的面积=S四边形AODC ﹣S扇形AOD=2××4×4﹣=16﹣π.七、解答题(满分12分)25.(12分)如图,在等腰直角△ABC中,∠C是直角,点A在直线MN上,过点C作CE⊥MN于点E,过点B作BF⊥MN于点F.(1)如图1,当C,B两点均在直线MN的上方时,①直接写出线段AE,BF与CE的数量关系.②猜测线段AF,BF与CE的数量关系,不必写出证明过程.(2)将等腰直角△ABC绕着点A顺时针旋转至图2位置时,线段AF,BF与CE又有怎样的数量关系,请写出你的猜想,并写出证明过程.(3)将等腰直角△ABC绕着点A继续旋转至图3位置时,BF与AC交于点G,若AF=3,BF=7,直接写出FG的长度.【解答】(1)证明:①如图1,过点C做CD⊥BF,交FB的延长线于点D,∵CE⊥MN,CD⊥BF,∴∠CEA=∠D=90°,∵CE⊥MN,CD⊥BF,BF⊥MN,∴四边形CEFD为矩形,∴∠ECD=90°,又∵∠ACB=90°,∴∠ACB﹣∠ECB=∠ECD﹣∠ECB,即∠ACE=∠BCD,又∵△ABC为等腰直角三角形,∴AC=BC,在△ACE和△BCD中,,∴△ACE≌△BCD(AAS),∴AE=BD,CE=CD,又∵四边形CEFD为矩形,∴四边形CEFD为正方形,∴CE=EF=DF=CD,∴AE+BF=DB+BF=DF=EC.②由①可知:AF+BF=AE+EF+BF=BD+EF+BF=DF+EF=2CE,(2)AF﹣BF=2CE图2中,过点C作CG⊥BF,交BF延长线于点G,∵AC=BC可得∠AEC=∠CGB,∠ACE=∠BCG,在△CBG和△CAE中,,∴△CBG≌△CAE(AAS),∴AE=BG,∵AF=AE+EF,∴AF=BG+CE=BF+FG+CE=2CE+BF,∴AF﹣BF=2CE;(3)如图3,过点C做CD⊥BF,交FB的于点D,∵AC=BC可得∠AEC=∠CDB,∠ACE=∠BCD,在△CBD和△CAE中,,∴△CBD≌△CAE(AAS),∴AE=BD,∵AF=AE﹣EF,∴AF=BD﹣CE=BF﹣FD﹣CE=BF﹣2CE,∴BF﹣AF=2CE.∵AF=3,BF=7,∴CE=EF=2,AE=AF+EF=5,∵FG∥EC,∴=,∴=,∴FG=.八、解答题(满分14分)26.(14分)如图抛物线y=ax2+bx,过点A(4,0)和点B(6,2),四边形OCBA是平行四边形,点M(t,0)为x轴正半轴上的点,点N为射线AB上的点,且AN=OM,点D为抛物线的顶点.(1)求抛物线的解析式,并直接写出点D的坐标;(2)当△AMN的周长最小时,求t的值;(3)如图②,过点M作ME⊥x轴,交抛物线y=ax2+bx于点E,连接EM,AE,当△AME与△DOC相似时.请直接写出所有符合条件的点M坐标.【解答】解:(1)把A(4,0)和B(6,2)代入y=ax2+bx得,解得,∴抛物线解析式为y=x2﹣x;∵y=x2﹣x=(x﹣2)2﹣;∴点D的坐标为(2,﹣);(2)连接AC,如图①,AB==4,而OA=4,∴平行四边形OCBA为菱形,∴OC=BC=4,∴C(2,2),∴AC==4,∴OC=OA=AC=AB=BC,∴△AOC和△ACB都是等边三角形,∴∠AOC=∠COB=∠OCA=60°,而OC=AC,OM=AN,∴△OCM≌△ACN,∴CM=CN,∠OCM=∠ACN,∵∠OCM+∠ACM=60°,∴∠ACN+∠ACM=60°,∴△CMN为等边三角形,∴MN=CM,∴△AMN的周长=AM+AN+MN=OM+AM+MN=OA+CM=4+CM,当CM⊥OA时,CM的值最小,△AMN的周长最小,此时OM=2,∴t=2;(3)∵C(2,2),D(2,﹣),∴CD=,∵OD==,OC=4,∴OD2+OC2=CD2,∴△OCD为直角三角形,∠COD=90°,设M(t,0),则E(t,t2﹣t),∵∠AME=∠COD,∴当=时,△AME∽△COD,即|t﹣4|:4=|t2﹣t|:,整理得|t2﹣t|=|t﹣4|,解方程t2﹣t=(t﹣4)得t1=4(舍去),t2=2,此时M点坐标为(2,0);解方程t2﹣t=﹣(t﹣4)得t1=4(舍去),t2=﹣2(舍去);当=时,△AME∽△DOC,即|t﹣4|:=|t2﹣t|:4,整理得|t2﹣t|=|t﹣4|,解方程t2﹣t=t﹣4得t1=4(舍去),t2=6,此时M点坐标为(6,0);解方程t2﹣t=﹣(t﹣4)得t1=4(舍去),t2=﹣6(舍去);综上所述,M点的坐标为(2,0)或(6,0).。
一、单选题1.如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是()A.平行B.相交C.垂直D.平行、相交或垂直【来源】广西壮族自治区玉林市2018年中考数学试卷【答案】A【解析】【分析】先判断出OA=OB,∠OAB=∠ABO,分两种情况判断出△AOC≌△ABD,进而判断出∠ABD=∠AOB=60°,即可得出结论.【详解】∵∠AOB=60°,OA=OB,∴△OAB是等边三角形,∴OA=AB,∠OAB=∠ABO=60°②当点C在OB的延长线上时,如图2,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠ABE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,故选A.【点睛】本题考查了等边三角形的判定和性质,全等三角形的判定和性质,求出∠ABD=60°是解本题的关键.学科&网2.如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为()A.44°B.40°C.39°D.38°【来源】吉林省长春市2018年中考数学试卷【答案】C【解析】【分析】根据三角形内角和得出∠ACB,利用角平分线得出∠DCB,再利用平行线的性质解答即可.【详解】∵∠A=54°,∠B=48°,∴∠ACB=180°﹣54°﹣48°=78°,∵CD平分∠ACB交AB于点D,∴∠DCB=×78°=39°,∵DE∥BC,∴∠CDE=∠DCB=39°,【点睛】本题考查了三角形内角和定理、角平分线的定义、平行线的性质等,解题的关键是熟练掌握和灵活运用根据三角形内角和定理、角平分线的定义和平行线的性质.3.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cm C.5cm,5cm,10cm D.6cm,7cm,14cm【来源】湖南省长沙市2018年中考数学试题【答案】B【解析】分析:结合“三角形中较短的两边之和大于第三边”,分别套入四个选项中得三边长,即可得出结论.详解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16,16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选:B.点睛:本题考查了三角形的三边关系,解题的关键是:用较短的两边长相交与第三边作比较.本题属于基础题,难度不大,解决该题型题目时,结合三角形三边关系,代入数据来验证即可.4.如图,∠AOB=60°,以点O为圆心,以任意长为半径作弧交OA,OB于C,D两点;分别以C,D为圆心,以大于CD的长为半径作弧,两弧相交于点P;以O为端点作射线OP,在射线OP上截取线段OM=6,则M点到OB的距离为()A.6 B.2 C.3 D.【来源】湖南省郴州市2018年中考数学试卷【点睛】本题考查了基本作图——作角平分线、含30度角的直角三角形的性质,正确得出OP是∠AOB的角平分线是解题关键.5.如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①②③④B.②④C.①②③D.①③④【来源】山东省东营市2018年中考数学试题【答案】A【解析】分析:只要证明△DAB≌△EAC,利用全等三角形的性质即可一一判断;详解:∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正确,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正确,∴BE2=BC2-EC2=2AB2-(CD2-DE2)=2AB2-CD2+2AD2=2(AD2+AB2)-CD2.故④正确,故选:A.点睛:本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.6.如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()A.B.C.D.【来源】山东省东营市2018年中考数学试题【答案】C【解析】分析:要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.详解:把圆柱侧面展开,展开图如图所示,点A、C的最短距离为线段AC的长.在Rt△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=1.5π,所以AC=,故选:C.点睛:本题考查了平面展开-最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.7.如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP 交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为()A.B.C.1 D.2【来源】湖北省荆门市2018年中考数学试卷【答案】C【解析】【分析】连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,利用等腰直角三角形的性质得AC=BC=,∠A=∠B=45°,OC⊥AB,OC=OA=OB=1,∠OCB=45°,再证明Rt△AOP≌△COQ得到AP=CQ,接着利用△APE和△BFQ都为等腰直角三角形得到PE=AP=CQ,QF=BQ,所以PE+QF=BC=1,然后证明MH为梯形PEFQ的中位线得到MH=,即可判定点M到AB的距离为,从而得到点M的运动路线为△ABC的中位线,最后利用三角形中位线性质得到点M所经过的路线长.易得△APE和△BFQ都为等腰直角三角形,∴PE=AP=CQ,QF=BQ,∴PE+QF=(CQ+BQ)=BC==1,∵M点为PQ的中点,∴MH为梯形PEFQ的中位线,∴MH=(PE+QF)=,即点M到AB的距离为,而CO=1,∴点M的运动路线为△ABC的中位线,∴当点P从点A运动到点C时,点M所经过的路线长=AB=1,故选C.【点睛】本题考查了等腰直角三角形的判定与性质、梯形的中位线、点运动的轨迹,通过计算确定动点在运动过程中不变的量,从而得到运动的轨迹是解题的关键.学科&网8.在△AOC中,OB交AC于点D,量角器的摆放如图所示,则∠CDO的度数为()A.90°B.95°C.100°D.120°【来源】云南省昆明市2018年中考数学试题【答案】B点睛:本题主要考查了三角形内角和定理以及三角形外角性质的运用,解题时注意:三角形内角和等于180°.9.如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB,BC 于点D,E.将△BDE沿直线DE折叠,得到△B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是()A.△ADF≌△CGEB.△B′FG的周长是一个定值C.四边形FOEC的面积是一个定值D.四边形OGB'F的面积是一个定值【来源】浙江省台州市2018年中考数学试题【答案】DD、方法同C,将S四边形OGB'F=S△OAC-S△OFG,根据S△OFG=•FG•OH,FG变化,故△OFG的面积变化,从而四边形OGB'F的面积也变化,可作判断.详解:A、连接OA、OC,∵点O是等边三角形ABC的外心,∴AO平分∠BAC,∴点O到AB、AC的距离相等,由折叠得:DO平分∠BDB',∴点O到AB、DB'的距离相等,∴点O到DB'、AC的距离相等,∴FO平分∠DFG,∠DFO=∠OFG=(∠FAD+∠ADF),由折叠得:∠BDE=∠ODF=(∠DAF+∠AFD),∴∠OFD+∠ODF=(∠FAD+∠ADF+∠DAF+∠AFD)=120°,∴∠DOF=60°,B、∵△DOF≌△GOF≌△GOE,∴DF=GF=GE,∴△ADF≌△B'GF≌△CGE,∴B'G=AD,∴△B'FG的周长=FG+B'F+B'G=FG+AF+CG=AC(定值),故选项B正确;C、S四边形FOEC=S△OCF+S△OCE=S△OCF+S△OAF=S△AOC=S△ABC(定值),故选项C正确;D、S四边形OGB'F=S△OFG+S△B'GF=S△OFD+△ADF=S四边形OFAD=S△OAD+S△OAF=S△OCG+S△OAF=S△OAC-S△OFG,过O作OH⊥AC于H,∴S△OFG=•FG•OH,由于OH是定值,FG变化,故△OFG的面积变化,从而四边形OGB'F的面积也变化,故选项D不一定正确;故选:D.点睛:本题考查了等边三角形的性质、三角形全等的性质和判定、角平分线的性质和判定、三角形和四边形面积及周长的确定以及折叠的性质,有难度,本题全等的三角形比较多,要注意利用数形结合,并熟练掌握三角形全等的判定,还要熟练掌握角平分线的逆定理的运用,证明FO平分∠DFG 是本题的关键,10.如图,在▱ABCD中,AB=2,BC=3.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是()A.B.1 C.D.【来源】浙江省台州市2018年中考数学试题【答案】B【解析】分析:只要证明BE=BC即可解决问题;详解:∵由题意可知CF是∠BCD的平分线,∴∠BCE=∠DCE.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠DCE=∠E,∠BCE=∠AEC,∴BE=BC=3,∵AB=2,∴AE=BE-AB=1,故选:B.点睛:本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键.11.已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C【来源】河北省2018年中考数学试卷【答案】B【解析】【分析】利用判断三角形全等的方法判断即可得出结论.【详解】A、利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;D、利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,故选B.【点睛】本题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.学科&网12.如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°【来源】广东省2018年中考数学试题【答案】B【解析】【分析】依据三角形内角和定理,可得∠D=40°,再根据平行线的性质,即可得到∠B=∠D=40°.【详解】∵∠DEC=100°,∠C=40°,∴∠D=180°-∠DEC-∠C=40°,又∵AB∥CD,∴∠B=∠D=40°,故选B.【点睛】本题考查了三角形内角和定理,平行线性质的应用,运用两直线平行,内错角相等是解题的关键.13.如图,在△ABC中有四条线段DE,BE,EF,FG,其中有一条线段是△ABC的中线,则该线段是()A.线段DE B.线段BE C.线段EF D.线段FG【来源】贵州省贵阳市2018年中考数学试卷【答案】B【解析】【分析】根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.【详解】根据三角形中线的定义知线段BE是△ABC的中线,其余线段DE、EF、FG都不符合题意,故选B.【点睛】本题主要考查三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线.14.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD 于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:①∠CAD=30°②BD=③S平行四边形ABCD=AB•AC④OE=AD⑤S△APO=,正确的个数是()A.2 B.3 C.4 D.5【来源】黑龙江省龙东地区2018年中考数学试卷【答案】D②先根据三角形中位线定理得:OE=AB=,OE∥AB,根据勾股定理计算OC=和OD的长,可得BD的长;③因为∠BAC=90°,根据平行四边形的面积公式可作判断;④根据三角形中位线定理可作判断;⑤根据同高三角形面积的比等于对应底边的比可得:S△AOE=S△EOC=OE•OC=,,代入可得结论.【详解】①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等边三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正确;②∵BE=EC,OA=OC,∴OE=AB=,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC=,∵四边形ABCD是平行四边形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD=,∴BD=2OD=,故②正确;③由②知:∠BAC=90°,∴S▱ABCD=AB•AC,故③正确;④由②知:OE是△ABC的中位线,又AB=BC,BC=AD,∴OE=AB=AD,故④正确;⑤∵四边形ABCD是平行四边形,∴OA=OC=,∴S△AOE=S△EOC=OE•OC=××,∵OE∥AB,∴,∴,∴S△AOP=S△AOE==,故⑤正确;本题正确的有:①②③④⑤,5个,故选D.【点睛】本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.15.如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为()A.15 B.12.5 C.14.5 D.17【来源】黑龙江省龙东地区2018年中考数学试卷【答案】B【解析】【分析】过A作AE⊥AC,交CB的延长线于E,判定△ACD≌△AEB,即可得到△ACE是等腰直角三角形,四边形ABCD的面积与△ACE的面积相等,根据S△ACE=×5×5=12.5,即可得出结论.【详解】如图,过A作AE⊥AC,交CB的延长线于E,∵∠DAB=∠DCB=90°,∴∠D+∠ABC=180°=∠ABE+∠ABC,∴∠D=∠ABE,又∵∠DAB=∠CAE=90°,∴∠CAD=∠EAB,又∵AD=AB,∴△ACD≌△AEB,∴AC=AE,即△ACE是等腰直角三角形,∴四边形ABCD的面积与△ACE的面积相等,∵S△ACE=×5×5=12.5,∴四边形ABCD的面积为12.5,故选B.【点睛】本题主要考查了全等三角形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.二、填空题16.如图,矩形ABCD中,AB=2,BC=3,点E为AD上一点,且∠ABE=30°,将△ABE沿BE 翻折,得到△A′BE,连接CA′并延长,与AD相交于点F,则DF的长为______.【来源】辽宁省大连市2018年中考数学试卷【答案】6﹣2【解析】分析:如图作A′H⊥BC于H.由△CDF∽△A′HC,可得,延长构建方程即可解决问题.详解:如图作A′H⊥BC于H.点睛:本题考查翻折变换、矩形的性质、勾股定理、直角三角形30度角性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.17.如图,∠MON=30°,点B1在边OM上,且OB1=2,过点B1作B1A1⊥OM交ON于点A1,以A1B1为边在A1B1右侧作等边三角形A1B1C1;过点C1作OM的垂线分别交OM、ON于点B2、A2,以A2B2为边在A2B2的右侧作等边三角形A2B2C2;过点C2作OM的垂线分别交OM、ON于点B3、A3,以A3B3为边在A3B3的右侧作等边三角形A3B3C3,…;按此规律进行下去,则△A n B n+1C n 的面积为__.(用含正整数n的代数式表示)【来源】辽宁省葫芦岛市2018年中考数学试卷【答案】()2n﹣2×【解析】【分析】由题意△A1A2C1是等边三角形,边长为,△A2A3C2是等边三角形,边长为×,△A3A4C3是等边三角形,边长为××=()2×,继而得到△A n B n+1C n的边长为()n ﹣1×,然后根据等边三角形面积公式进行求解即可得.【详解】由题意△A1A2C1是等边三角形,边长为,△A2A3C2是等边三角形,边长为×,△A3A4C3是等边三角形,边长为××=()2×,△A4A5C4是等边三角形,边长为×××=()3×,…,△A n B n+1C n的边长为()n﹣1×,∴△A n B n+1C n的面积为×[()n﹣1×]2=()2n﹣2×,故答案为:()2n﹣2×.【点睛】本题考查了含30度角的直角三角形的性质、等边三角形的面积公式、解直角三角形等知识,熟练掌握相关性质得出等边三角形的边长的规律是解题的关键.18.如图,OP平分∠MON,A是边OM上一点,以点A为圆心、大于点A到ON的距离为半径作弧,交ON于点B、C,再分别以点B、C为圆心,大于BC的长为半径作弧,两弧交于点D、作直线AD分别交OP、ON于点E、F.若∠MON=60°,EF=1,则OA=__.【来源】辽宁省葫芦岛市2018年中考数学试卷【答案】2【解析】【分析】由作法得AD⊥ON于F,再由OP平分∠MON,可得∠EOF=∠MON=30°,在Rt△OEF中,求出OF=EF=,继而在Rt△AOF中,即可求出OA长.【详解】由作法得AD⊥ON于F,∴∠AOF=90°,∵OP平分∠MON,∴∠EOF=∠MON=×60°=30°,在Rt△OEF中,OF=EF=,在Rt△AOF中,∠AOF=60°,∴OA=2OF=2,故答案为:2.【点睛】本题考查了尺规作图——垂线,解直角三角形的应用等,熟练掌握相关知识是解题的关键. 19.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于C,若EC=1,则OF=_____.【来源】四川省广安市2018年中考数学试题【答案】2【解析】分析:作EH⊥OA于H,根据角平分线的性质求出EH,根据直角三角形的性质求出EF,根据等腰三角形的性质解答.详解:作EH⊥OA于H,点睛:本题考查的是角平分线的性质、平行线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.学科&网20.如图,在△ABC中,按以下步骤作图:①分别以点A和点C为圆心,以大于AC的长为半径作弧,两弧相交于M、N两点;②作直线MN交BC于点D,连接AD.若AB=BD,AB=6,∠C=30°,则△ACD的面积为_____.【来源】内蒙古通辽市2018年中考数学试卷【答案】9【解析】【分析】设AC与MN的交点为E,只要证明△ABD是等边三角形,推出BD=AD=DC=AB=6,从而求得DE、CE长,继而求得AC长,再根据三角形面积公式即可求得S△ADC.【详解】如图,由作图可知,MN垂直平分线段AC,设AC与MN的交点为E,∴DA=DC,∴∠DAC=∠C=30°,∴∠ADB=∠C+∠DAC=60°,∵AB=BD,∴△ABD是等边三角形,∴BD=AD=DC=AB=6,∴DE=3,CE=,∴AC=2CE=6,∴S△ADC=AC•DE=9,故答案为:9.【点睛】本题考查了线段垂直平分线的性质、等边三角形的判定、含30度角的直角三角形的性质、勾股定理等,熟练掌握和应用相关的性质与定理是解题的关键.21.如图,∠AOB的一边OA为平面镜,∠AOB=37°45′,在OB边上有一点E,从点E射出一束光线经平面镜反射后,反射光线DC恰好与OB平行,则∠DEB的度数是_____.【来源】内蒙古通辽市2018年中考数学试卷【答案】75°30′(或75.5°)【解析】【分析】首先证明∠EDO=∠AOB=37°45′,根据∠EDB=∠AOB+∠EDO计算即可解决问题. 【详解】∵CD∥OB,∴∠ADC=∠AOB,∵∠EDO=∠CDA,∴∠EDO=∠AOB=37°45′,∴∠DEB=∠AOB+∠EDO=2×37°45′=75°30′(或75.5°),故答案为:75°30′(或75.5°).【点睛】本题考查了平行线的性质、三角形外角的性质等,熟练掌握平行线的性质、三角形外角的性质是解题的关键.22.在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为_____.【来源】云南省2018年中考数学试卷【答案】9或1【解析】【分析】△ABC中,∠ACB分锐角和钝角两种:①如图1,∠ACB是锐角时,根据勾股定理计算BD和CD的长可得BC的值;②如图2,∠ACB是钝角时,同理得:CD=4,BD=5,根据BC=BD﹣CD代入可得结论.【详解】有两种情况:①如图1,∵AD是△ABC的高,∴∠ADB=∠ADC=90°,由勾股定理得:BD==5,CD==4,∴BC=BD+CD=5+4=9;②如图2,同理得:CD=4,BD=5,∴BC=BD﹣CD=5﹣4=1,综上所述,BC的长为9或1;故答案为:9或1.【点睛】本题考查了勾股定理的运用,熟练掌握勾股定理是关键,并注意运用了分类讨论的思想解决问题.23.如图,已知∠MON=120°,点A,B分别在OM,ON上,且OA=OB=a,将射线OM绕点O逆时针旋转得到OM′,旋转角为α(0°<α<120°且α≠60°),作点A关于直线OM′的对称点C,画直线BC交OM′于点D,连接AC,AD,有下列结论:①AD=CD;②∠ACD的大小随着α的变化而变化;③当α=30°时,四边形OADC为菱形;④△ACD面积的最大值为a2;其中正确的是_____.(把你认为正确结论的序号都填上).【来源】湖北省咸宁市2018年中考数学试卷【答案】①③④【详解】①∵A、C关于直线OM'对称,∴OM'是AC的垂直平分线,∴CD=AD,故①正确;②连接OC,由①知:OM'是AC的垂直平分线,∴OC=OA,∴OA=OB=OC,以O为圆心,以OA为半径作⊙O,交AO的延长线于E,连接BE,则A、B、C都在⊙O上,∵∠MON=120°,∴∠BOE=60°,∵OB=OE,∴△OBE是等边三角形,∴∠E=60°,∵A、C、B、E四点共圆,∴∠ACD=∠E=60°,故②不正确;③当α=30°时,即∠AOD=∠COD=30°,∴∠AOC=60°,∴△AOC是等边三角形,∴∠OAC=60°,OC=OA=AC,由①得:CD=AD,∴∠CAD=∠ACD=∠CDA=60°,∴△ACD是等边三角形,∴AC=AD=CD,∴OC=OA=AD=CD,∴四边形OADC为菱形,故③正确;④∵CD=AD,∠ACD=60°,∴△ACD是等边三角形,当AC最大时,△ACD的面积最大,∵AC是⊙O的弦,即当AC为直径时最大,此时AC=2OA=2a,α=90°,∴△ACD面积的最大值是:AC2=,故④正确,所以本题结论正确的有:①③④,故答案为:①③④.【点睛】本题考查了轴对称的性质、圆内接四边形的性质、等边三角形的判定与性质、菱形的判定等,综合性较强,有一定的难度,正确添加辅助线构建图形并能灵活应用相关知识是解题的关键. 24.如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2018的坐标是_____.【来源】四川省资阳市2018年中考数学试卷【答案】(0,21009)【解析】【分析】本题点A坐标变化规律要分别从旋转次数与点A所在象限或坐标轴、点A到原点的距离与旋转次数的对应关系.【详解】∵∠OAA1=90°,OA=AA1=1,以OA1为直角边作等腰Rt△OA1A2,再以OA2为直角边作等腰Rt△OA2A3,…,∴OA1=,OA2=()2,…,OA2018=()2018,∵A1、A2、…,每8个一循环,∵2018=252×8+2∴点A2018的在y轴正半轴上,OA2018==21009,故答案为:(0,21009).【点睛】本题是平面直角坐标系下的规律探究题,除了研究动点变化的相关数据规律,还应该注意象限符号.25.如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3,如此下去,则S n=_____.【来源】黑龙江省龙东地区2018年中考数学试卷【答案】【详解】∵等边三角形ABC的边长为2,AB1⊥BC,∴∠C=60°,CB1=BB1=1,又∵∠B1B2C=90°,∴∠CB1B2=30°,∴CB2=,B1B2=,∴S1=,同理,Rt△B2C1B3中,B2C1=B1B2=,∴C1B3=×=,B2B3=,∴S2=,同理,S3=…,∴S n=,故答案为:.【点睛】本题考查了规律题,涉及等边三角形的性质,含30度角的直角三角形的性质、勾股定理等,有一定难度,熟练掌握并灵活运用等边三角形的性质、勾股定理等解本题的关键.学科&网26.Rt △ABC 中,∠ABC=90°,AB=3,BC=4,过点B 的直线把△ABC 分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____.【来源】黑龙江省龙东地区2018年中考数学试卷【答案】3.6或4.32或4.8【解析】【分析】在Rt △ABC 中,通过解直角三角形可得出AC=5、S △ABC =6,找出所有可能的分割方法,并求出剪出的等腰三角形的面积即可.【详解】在Rt △ABC 中,∠ACB=90°,AB=3,BC=4,∴AB==5,S △ABC =AB•BC=6.沿过点B 的直线把△ABC 分割成两个三角形,使其中只有一个是等腰三角形,有三种情况: ①当AB=AP=3时,如图1所示,S 等腰△ABP =•S △ABC =×6=3.6;②当AB=BP=3,且P 在AC 上时,如图2所示,作△ABC 的高BD ,则BD=,∴AD=DP==1.8, ∴AP=2AD=3.6,∴S 等腰△ABP =•S △ABC =×6=4.32; ③当CB=CP=4时,如图3所示,S 等腰△BCP =•S △ABC =×6=4.8;综上所述:等腰三角形的面积可能为3.6或4.32或4.8,故答案为:3.6或4.32或4.8.【点睛】本题考查了勾股定理、等腰三角形的性质以及三角形的面积,找出所有可能的分割方法,并求出剪出的等腰三角形的面积是解题的关键.27.如图,在四边形ABCD 中,∠B=∠D=90°,∠A=60°,AB=4,则AD 的取值范围是_____.【来源】广西壮族自治区玉林市2018年中考数学试卷【答案】2<AD<8【解析】【分析】如图,延长BC交AD的延长线于E,作BF⊥AD于F.解直角三角形求出AE、AF 即可判断;【详解】如图,延长BC交AD的延长线于E,作BF⊥AD于F,在Rt△ABE中,∵∠E=30°,AB=4,∴AE=2AB=8,在Rt△ABF中,AF=AB=2,∴AD的取值范围为2<AD<8,故答案为:2<AD<8.【点睛】本题考查勾股定理、含30度角的直角三角形的性质等知识,正确添加辅助线,构造直角三角形是解决问题的关键.28.(题文)如图,m∥n,∠1=110°,∠2=100°,则∠3=_______°.【来源】贵州省铜仁市2018年中考数学试题【答案】150【解析】分析:两直线平行,同旁内角互补,然后根据三角形内角和为180°即可解答.详解:如图,∵m∥n,∠1=110°,∴∠4=70°,∵∠2=100°,∴∠5=80°,∴∠6=180°-∠4-∠5=30°,∴∠3=180°-∠6=150°,故答案为:150.点睛:本题主要考查平行线的性质,两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.29.如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为_____度.【来源】吉林省长春市2018年中考数学试卷【答案】37【详解】∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=∠ACB=37°,故答案为:37.【点睛】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.30.如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线CP交AB 于点D.若BD=3,AC=10,则△ACD的面积是_____.【来源】山东省东营市2018年中考数学试题【答案】15【解析】分析:作DQ⊥AC,由角平分线的性质知DB=DQ=3,再根据三角形的面积公式计算可得.详解:如图,过点D作DQ⊥AC于点Q,由作图知CP是∠ACB的平分线,∵∠B=90°,BD=3,∴DB=DQ=3,∵AC=10,∴S△ACD=•AC•DQ=×10×3=15,故答案为:15.点睛:本题主要考查作图-基本作图,解题的关键是掌握角平分线的尺规作图及角平分线的性质.三、解答题31.(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB= °,AB= .(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.【来源】山东省东营市2018年中考数学试题【答案】(1)75;4;(2)CD=4.【解析】分析:(1)根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出∠ABD=75°=∠ADB,由等角对等边可得出AB=AD=4,此题得解;(2)过点B作BE∥AD交AC于点E,同(1)可得出AE=4,在Rt△AEB中,利用勾股定理可求出BE的长度,再在Rt△CAD中,利用勾股定理可求出DC的长,此题得解.详解:(1)∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴.又∵AO=3,∴OD=AO=,∴AD=AO+OD=4.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°-∠BAD-∠ADB=75°=∠ADB,∴AB=AD=4.(2)过点B作BE∥AD交AC于点E,如图所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴.∵BO:OD=1:3,∴.点睛:本题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD的值;(2)利用勾股定理求出BE、CD的长度.32.如图,已知∠1=∠2,∠3=∠4,求证:BC=BD.【来源】四川省乐山市2018年中考数学试题【答案】证明见解析.【解析】【分析】由∠3=∠4可以得出∠ABD=∠ABC,再利用ASA就可以得出△ADB≌△ACB,就可以得出结论.【详解】证明:∵∠ABC+∠3=180°∠ABD+∠4=180°,且∠3=∠4,∴∠ABD=∠ABC在△ADB和△ACB中,,∴△ADB≌△ACB(ASA),∴BD=CD.【点睛】本题考查了等角的补角相等的性质的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是关键.学科&网33.下面有4张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,请在方格纸中分别画出符合要求的图形,所画图形各顶点必须与方格纸中小正方形的顶点重合,具体要求如下:(1)画一个直角边长为4,面积为6的直角三角形.(2)画一个底边长为4,面积为8的等腰三角形.(3)画一个面积为5的等腰直角三角形.(4)画一个边长为2,面积为6的等腰三角形.【来源】四川省广安市2018年中考数学试题【答案】(1)画图见解析;(2)画图见解析;(3)画图见解析;(4)画图见解析.【解析】分析:(1)利用三角形面积求法以及直角三角形的性质画即可;(2)利用三角形面积求法以及等腰三角形的性质画出即可.(3)利用三角形面积求法以及等腰直角三角形的性质画出即可;。
2018年辽宁省葫芦岛市中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.如果温度上升10℃记作+10℃,那么温度下降5℃记作()A.+10℃B.﹣10℃C.+5℃D.﹣5℃【解答】解:如果温度上升10℃记作+10℃,那么下降5℃记作﹣5℃;故选D.2.下列几何体中,俯视图为矩形的是()A.B.C.D.【解答】解:A.圆锥的俯视图是圆,故A不符合题意;B.圆柱的俯视图是圆,故B错误;C.长方体的主视图是矩形,故C符合题意;D.三棱柱的俯视图是三角形,故D不符合题意;故选C.3.下列运算正确的是()A.﹣2x2+3x2=5x2B.x2•x3=x5C.2(x2)3=8x6D.(x+1)2=x2+1 【解答】解:A.﹣2x2+3x2=x2,错误;B.x2•x3=x5,正确;C.2(x2)3=2x6,错误;D.(x+1)2=x2+2x+1,错误;故选B.4.下列调查中,调查方式选择最合理的是()A.调查“乌金塘水库”的水质情况,采用抽样调查B.调查一批飞机零件的合格情况,采用抽样调查C.检验一批进口罐装饮料的防腐剂含量,采用全面调查D.企业招聘人员,对应聘人员进行面试,采用抽样调查【解答】解:A.了解“乌金塘水库”的水质情况,采用抽样调查,故A正确;B.了解一批飞机零件的合格情况,适合全面调查,故B错误;C.了解检验一批进口罐装饮料的防腐剂含量,调查范围广,适合抽样调查,故C错误;D.企业招聘人员,对应聘人员进行面试,适合全面调查,故D错误;故选A.5.若分式的值为0,则x的值为()A.0B.1C.﹣1D.±1【解答】解:∵分式的值为零,∴,解得x=1.故选B.6.在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是15【解答】解:A.众数是90分,人数最多,正确;B.中位数是90分,错误;C.平均数是分,错误;D.方差是=19,错误;故选A.7.如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,则∠B的度数为()A.15°B.55°C.65°D.75°【解答】解:∵∠CDE=165°,∴∠ADE=15°.∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°.故选D.8.如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4的解集为()A.x>﹣2B.x<﹣2C.x>4D.x<4【解答】解:观察图象知:当x>﹣2时,kx+b>4.故选A.9.如图,AB是⊙O的直径,C,D是⊙O上AB两侧的点,若∠D=30°,则tan∠ABC的值为()A.B.C.D.【解答】解:∵∠D=30°,∴∠BAC=30°.∵AB是⊙O的直径,∴∠ABC+∠BAC=90°,∴∠ABC=60°,∴tan∠ABC=.故选C.10.如图,在▱ABCD中,AB=6,BC=10,AB⊥AC,点P从点B出发沿着B→A→C的路径运动,同时点Q从点A出发沿着A→C→D的路径以相同的速度运动,当点P到达点C时,点Q随之停止运动,设点P 运动的路程为x,y=PQ2,下列图象中大致反映y与x之间的函数关系的是()A.B.C.D.【解答】解:在Rt△ABC中,∠BAC=90°,AB=6,BC=10,∴AC==8.当0≤x≤6时,AP=6﹣x,AQ=x,∴y=PQ2=AP2+AQ2=2x2﹣12x+36;当6≤x≤8时,AP=x﹣6,AQ=x,∴y=PQ2=(AQ﹣AP)2=36;当8≤x≤14时,CP=14﹣x,CQ=x﹣8,∴y=PQ2=CP2+CQ2=2x2﹣44x+260.故选B.二、填空题(每题只有一个正确选项,本题共8小题,每题3分,共24分)11.分解因式:2a3﹣8a=2a(a+2)(a﹣2).【解答】解:原式=2a(a2﹣4)=2a(a+2)(a﹣2).故答案为:2a(a+2)(a﹣2).12.据旅游业数据显示,2018年上半年我国出境旅游超过129 000 000人次,将数据129 000 000用科学记数法表示为 1.29×108.【解答】解:129000000=1.29×108.故答案为:1.29×108.13.有四张看上去无差别的卡片,正面分别写有“兴城首山”、“龙回头”、“觉华岛”、“葫芦山庄”四个景区的名称,将它们背面朝上,从中随机一张卡片正面写有“葫芦山庄”的概率是.【解答】解:∵在这4张无差别的卡片上,只有1张写有“葫芦山庄”,∴从中随机一张卡片正面写有“葫芦山庄”的概率是.故答案为:.14.如图,在菱形OABC中,点B在x轴上,点A的标为(2,3),则点C的坐标为(2,﹣3).【解答】解:∵四边形OABC是菱形,∴A、C关于直线OB对称.∵A(2,3),∴C(2,﹣3).故答案为:(2,﹣3).15.如图,某景区的两个景点A、B处于同一水平地面上、一架无人机在空中沿MN方向水平飞行进行航拍作业,MN与AB在同一铅直平面内,当无人机飞行至C处时、测得景点A的俯角为45°,景点B的俯角为知30°,此时C到地面的距离CD为100米,则两景点A、B间的距离为100+100米(结果保留根号).【解答】解:∵∠MCA=45°,∠NCB=30°,∴∠ACD=45°,∠DCB=60°,∠B=30°.∵CD=100米,∴AD=CD=100米,DB=米,∴AB=AD+DB=100+100(米).故答案为:100+100.16.如图,OP平分∠MON,A是边OM上一点,以点A为圆心、大于点A到ON的距离为半径作弧,交ON于点B、C,再分别以点B、C为圆心,大于BC的长为半径作弧,两弧交于点D、作直线AD分别交OP、ON于点E、F.若∠MON=60°,EF=1,则OA=2.【解答】解:由作法得AD⊥ON于F,∴∠AOF=90°.∵OP平分∠MON,∴∠EOF=∠MON=×60°=30°.在Rt△OEF中,OF=EF=.在Rt△AOF中,∠AOF=60°,∴OA=2OF=2.故答案为:2.17.如图,在矩形ABCD中,点E是CD的中点,将△BCE沿BE折叠后得到△BEF、且点F在矩形ABCD的内部,将BF延长交AD于点G.若=,则=.【解答】解:连接GE.∵点E是CD的中点,∴EC=DE.∵将△BCE沿BE折叠后得到△BEF、且点F在矩形ABCD的内部,∴EF=DE,∠BFE=90°.在Rt△EDG 和Rt△EFG中,∴Rt△EDG≌Rt△EFG(HL),∴FG=DG.∵=,∴设DG=FG=a,则AG=7a,故AD=BC=8a,则BG=BF+FG=9a,∴AB==4a,故==.故答案为:.18.如图,∠MON=30°,点B1在边OM上,且OB1=2,过点B1作B1A1⊥OM交ON于点A1,以A1B1为边在A1B1右侧作等边三角形A1B1C1;过点C1作OM的垂线分别交OM、ON于点B2、A2,以A2B2为边在A2B2的右侧作等边三角形A2B2C2;过点C2作OM的垂线分别交OM、ON于点B3、A3,以A3B3为边在A3B3的右侧作等边三角形A3B3C3,…;按此规律进行下去,则△A n B n+1C n的面积为()2n﹣2×.(用含正整数n的代数式表示)【解答】解:由题意△A1A2C1是等边三角形,边长为,△A2A3C2是等边三角形,边长为×,△A3A4C3是等边三角形,边长为××=()2×,△A4A5C4是等边三角形,边长为×××=()3×,…,△A n B n+1C n的边长为()n﹣1×,∴△A n B n+1C n的面积为×[()n﹣1×]2=()2n﹣2×.三、解答题(每题只有一个正确选项,本题共2小题,共76分)19.先化简,再求值:(﹣)÷,其中a=3﹣1+2sin30°.【解答】解:当a=3﹣1+2sin30°时,∴a=+1=原式=[]•=()•=•==720.“机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A.非常了解,B.比较了解,C.基本了解,D.不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图.请结合图中所给信息解答下列问题:(1)本次共调查40名学生;扇形统计图中C所对应扇形的圆心角度数是135°;(2)补全条形统计图;(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有多少名?(4)通过此次调查,数学课外实践小组的学生对交通法规有了更多的认识,学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求甲和乙两名学生同时被选中的概率.【解答】解:(1)本次调查的学生总人数为24÷40%=60人,扇形统计图中C所对应扇形的圆心角度数是360°×=90°.故答案为:60、90°;(2)D类型人数为60×5%=3,则B类型人数为60﹣(24+15+3)=18,补全条形图如下:(3)估计全校学生中对这些交通法规“非常了解”的有800×40%=320名;(4)画树状图为:共有12种等可能的结果数,其中甲和乙两名学生同时被选中的结果数为2,所以甲和乙两名学生同时被选中的概率为=.四、解答题(第21题12分,第22题12分,共24分)21.某爱心企业在政府的支持下投入资金,准备修建一批室外简易的足球场和篮球场,供市民免费使用,修建1个足球场和1个篮球场共需8.5万元,修建2个足球场和4个篮球场共需27万元.(1)求修建一个足球场和一个篮球场各需多少万元?(2)该企业预计修建这样的足球场和篮球场共20个,投入资金不超过90万元,求至少可以修建多少个足球场?【解答】解:(1)设修建一个足球场x万元,一个篮球场y万元,根据题意可得:,解得:,答:修建一个足球场和一个篮球场各需3.5万元,5万元;(2)设足球场y个,则篮球场(20﹣y)个,根据题意可得:3.5y+5(20﹣y)≤90,解得:y,答:至少可以修建6个足球场.22.如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=(a≠0)的图象在第二象限交于点A(m,2).与x轴交于点C(﹣1,0).过点A作AB⊥x轴于点B,△ABC的面积是3.(1)求一次函数和反比例函数的解析式;(2)若直线AC与y轴交于点D,求△BCD的面积.【解答】解:(1)∵AB⊥x轴于点B,点A(m,2),∴点B(m,0),AB=2.∵点C(﹣1,0),∴BC=﹣1﹣m,∴S△ABC=AB•BC=﹣1﹣m=3,∴m=﹣4,∴点A(﹣4,2).∵点A在反比例函数y=(a≠0)的图象上,∴a=﹣4×2=﹣8,∴反比例函数的解析式为y=﹣.将A(﹣4,2)、C(﹣1,0)代入y=kx+b,得:,解得:,∴一次函数的解析式为y=﹣x﹣.(2)当x=0时,y=﹣x﹣=﹣,∴点D(0,﹣),∴OD=,∴S△BCD=BC•OD=×3×=1.五、解答题(满分12分)23.如图,AB是⊙O的直径,=,E是OB的中点,连接CE并延长到点F,使EF=CE.连接AF 交⊙O于点D,连接BD,BF.(1)求证:直线BF是⊙O的切线;(2)若OB=2,求BD的长.【解答】(1)证明:连接O C.∵AB是⊙O的直径,=,∴∠BOC=90°.∵E是OB的中点,∴OE=BE.在△OCE和△BFE中.∵,∴△OCE≌△BFE(SAS),∴∠OBF=∠COE=90°,∴直线BF是⊙O的切线;(2)解:∵OB=OC=2,由(1)得:△OCE≌△BFE,∴BF=OC=2,∴AF===2,∴S△ABF=,4×2=2•BD,∴BD=.六、解答题(满分12分)24.某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他费用80元.(1)请直接写出y与x之间的函数关系式;(2)如果每天获得160元的利润,销售单价为多少元?(3)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?【解答】解:(1)设y=kx+b,将x=3.5,y=280;x=5.5,y=120代入,得,解得,则y与x之间的函数关系式为y=﹣80x+560;(2)由题意,得(x﹣3)(﹣80x+560)﹣80=160,整理,得x2﹣10x+24=0,解得x1=4,x2=6.∵3.5≤x≤5.5,∴x=4.答:如果每天获得160元的利润,销售单价为4元;(3)由题意得:w=(x﹣3)(﹣80x+560)﹣80=﹣80x2+800x﹣1760=﹣80(x﹣5)2+240.∵3.5≤x≤5.5,∴当x=5时,w有最大值为240.故当销售单价定为5元时,每天的利润最大,最大利润是240元.七、解答题(满分12分)25.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系;(2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由(3)若|CF﹣AE|=2,EF=2,当△POF为等腰三角形时,请直接写出线段OP的长.【解答】解:(1)如图1中,延长EO交CF于K.∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO.∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK.∵△EFK是直角三角形,∴OF=EK=OE.(2)如图2中,延长EO交CF于K.∵∠ABC=∠AEB=∠CFB=90°,∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF.∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF.∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF,∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE.(3)如图3中,延长EO交CF于K.作PH⊥OF于H.∵|CF﹣AE|=2,EF=2,AE=CK,∴FK=2.在Rt△EFK中,tan∠FEK=,∴∠FEK=30°,∠EKF=60°,∴EK=2FK=4,OF=EK=2.∵△OPF是等腰三角形,观察图形可知,只有OF=FP=2.在Rt△PHF中,PH=PF=1,HF=,OH=2﹣,∴OP==﹣如图4中,当点P在线段OC上时,同法可得OP=﹣,综上所述:OP的长为﹣.八、解答题(满分14分)26.如图,抛物线y=ax2+4x+c(a≠0)经过点A(﹣1,0),点E(4,5),与y轴交于点B,连接A B.(1)求该抛物线的解析式;(2)将△ABO绕点O旋转,点B的对应点为点F.①当点F落在直线AE上时,求点F的坐标和△ABF的面积;②当点F到直线AE的距离为时,过点F作直线AE的平行线与抛物线相交,请直接写出交点的坐标.【解答】解:(1)将A,E点坐标代入函数解析式,得,解得,抛物线的解析式是y=﹣x2+4x+5,(2)设AE的解析式为y=kx+b,将A,E 点坐标代入,得,解得,AE的解析式为y=x+1,x=0时,y=1即C(0,1),设F点坐标为(n,n+1),由旋转的性质得:OF=OB=5,n2+(n+1)2=25,解得n1=﹣4,n2=3,F(﹣4,﹣3),F(3,4),当F(﹣4,﹣3)时如图1,S△ABF=S△BCF﹣S△ABC=BC•|x F|﹣BC•|x A|=BC•(x A﹣x F)S△ABF=×4(﹣1+4)=6;当F(3,4)时,如图2,S△ABF=S△BCF+S△ABC=BC•|x F|+BC•|x A|=BC•(x F﹣x A)S△ABF=×4(3+1)=8;(3)如图3.∵∠HCG=∠ACO,∠HGC=∠COA,∴△HGC∽△CO A.∵OA=OC=1,∴CG=HG=,由勾股定理,得HC==2,直线AE向上平移2个单位或向下平移2个单位,l的解析是为y=x+3,l1的解析是为y=x﹣1,联立解得x1=,x2=,,解得x3=,x4=,F点的坐标为(,),(,),(,),(,).。