高三数学专题二 函数对称性
- 格式:doc
- 大小:281.00 KB
- 文档页数:4
高三数学周期性和对称性试题答案及解析1.设是定义在R上且周期为2的函数,在区间上,其中.若,则的值为.【答案】【解析】∵是定义在R上且周期为2的函数,即,∴,即①.又∵,,∴②.联立①②,解得,.∴.2.已知函数,记,,,,则()A.lg109B.2C.1D.10【答案】D【解析】∵,∴,∴,,,,故选D.【考点】1分段函数;2函数的周期性。
3.函数的定义域为实数集,对于任意的都有.若在区间上函数恰有四个不同的零点,则实数的取值范围是().A.B.C.D.【答案】D【解析】因为对任意的都有,所以函数的周期为2. 由在区间上函数恰有四个不同的零点,即函数在上有四个不同的零点.即函数与函数在有四个不同的交点.所以.解得.故选D.【考点】1.分段函数的性质.2.函数的周期性.3.函数的等价变换.4.定义在上的函数满足,则 .【答案】.【解析】当时,,则当时,,故函数在上是周期为的周期函数,所以.【考点】1.分段函数;2.函数的周期性5.定义在上的函数满足则的值为()A.B.C.D.【答案】D【解析】由题意知,故选D.【考点】1.函数的周期性;2.分段函数;3.对数的运算6.设是周期为2的奇函数,当时,=,=______.【答案】.【解析】由题意.【考点】函数的性质及解析式.7.定义在上的函数满足,当时,,当时,.则=()A.338B.337C.1678D.2013【答案】B【解析】因为,定义在上的函数满足,所以,,是周期为6的周期函数.又当时,,当时,.所以,,故=,选B.【考点】函数的周期性,函数的概念.8.若定义在R上的偶函数满足且时,则方程的零点个数是( )A.2个B.3个C.4个D.多于4个【答案】C【解析】由知,函数是周期为2的周期函数,且是偶函数,在同一坐标系中画出和的图像,有图可知零点个数为4个.【考点】1、周期函数;2、函数的图像;3、函数的零点.9.已知函数满足,且是偶函数,当时,,若在区间[-1,3]内,函数有4个零点,则实数k的取值范围是()A.B.C.D.【答案】 C【解析】因为,可得,所以是周期为2的函数,又因为是偶函数,且时,,所以当时,.综上时,. 由于函数有4个零点,故与直线有四个交点.如下图:恒过点,要使它们有四个交点,则直线必过,把代入,得,数形结合可得实数的取值范围是.【考点】1.函数的周期性;2.函数的零点.10.已知f(x)=3sin(2x-),若存在α∈(0,π),使f(α+x)= f(α-x)对一切实数x恒成立,则α=.【答案】【解析】由知,为函数的对称轴,所以,因为α∈(0,π),所以,得或.【考点】函数对称性、正弦函数性质.11.给出下列五个命题:①函数在区间上存在零点;②若,则函数在处取得极值;③“”是“函数在定义域上是奇函数”的充分不必要条件;④函数的图像与函数的图像关于轴对称;⑤满足条件AC=,AB =1的三角形△ABC有两个.其中正确命题的是 .【答案】①③④【解析】①,,则在处取得极值.故正确;②如函数,,而在R上无极值.故错误;③当时,即为奇函数;由在定义域上是奇函数有,则 . 故正确.④设函数的图像上一点,则关于轴的对称点为,此点在图像上,故正确;⑤,而,故 .则这样的三角形只有1个,故错误.【考点】1.函数的零点;2.函数的极值;3.奇函数的判定;4.解三角形解的个数;5.命题的真假.12.若函数f(x)=(1-x2)(x2+ax+b)的图像关于直线x=-2对称,则f(x)的最大值是______.【答案】16;【解析】依题意,为偶函数,展开式中的系数为,故,的系数为,故,令,得,由对称轴为-2可知,将该式分解为,可知其在和处取到最大值,带入,可知最大值为16.【考点】本题考查函数的性质,考查学生的化归与转化能力以及基本运算能力.13.若对任意的,函数满足,且,则()A.0B.1C.-2013D.2013【答案】D【解析】由,且,令,可知令,可知依次类推,可得【考点】本小题主要考查抽象函数及其应用.点评:解决抽象函数问题的主要方法是“赋值法”,而且此类问题一般和函数的周期性结合考查.14.设是定义在上且周期为2的函数,在区间上,其中.若,则的值为.【答案】-10.【解析】是定义在R上且周期为2的函数,,,又,...(1)又f(-1)=f(1), (2)由(1)(2)解得a=2,b=-4..15.设偶函数对任意,都有,且当时,,则= A.10B.C.D.【解析】解:因为f(x+3)="-1" /f(x) ,故有f(x+6)="-1" /f(x+3) ="-1/(" -1 /f(x)) =f(x).函数f(x)是以6为周期的函数.f(107.5)=f(6×17+5.5)=f(5.5)="-1" /f(2.5) ="-1" /f(-2.5) ="-1/" 4×(-2.5) ="1" /10 .故选B16.若是定义在上的函数,对任意的实数,都有和且,则的值是A.2009B.2010C.2011D.2012【答案】D【解析】因为,所以又,所以则;故有;所以故选D17.函数与的图象关于(▲ )A.x轴对称B.y轴对称C.原点对称D.直线y=x对称【答案】C【解析】本题考查函数图像的对称性.函数的图像关于y轴对称;函数的图像关于x轴对称;函数的图像关于原点轴对称;设是函数图像上任意一点,即则点关于原点的对称点为于是,即的坐标满足函数的解析式,所以点是函数的图像上的点;因此函数与的图象关于原点对称.故选C18.已知是以2为周期的偶函数,当时,,那么在区间内,关于的方程(其中走为不等于l的实数)有四个不同的实根,则的取值范围是( ) A.B.C.D.【答案】C【解析】略19.将一张坐标纸折叠一次,使点(10,0)与(-6,8)重合,则与点(-4,2)重合的点是()A.(4,-2)B.(4,-3)C.(3,)D.(3,-1)【答案】A【解析】略20.设是定义在上的以为周期的奇函数,若,则实数的取值范围是()A.B.C.D.【解析】根据周期为3,得到f(-2)=f(1),根据函数为奇函数,得到f(-2)=-f(2),从而求出a的取值范围.解:f(x)是定义在R上的以3为周期的奇函数,∴f(-2)=f(-2+3)=f(1)>1而f(-2)=-f(2)=>1解得-1<a<故选C.21.函数f(x)=x2+mx+1的图像关于直线x=1对称的充要条件是(A)(B)(C)(D)【答案】A【解析】解析:函数f(x)=x2+mx+1的对称轴为x=- w_w_w.k*s 5*u.c o*m于是-=1 Þ m=-2答案:A22.若函数的图像关于直线对称,则为A.B.C.D.任意实数【答案】B【解析】考查反函数,因为图像本身关于直线对称故可知原函数与反函数是同一函数,所以先求反函数再与原函数比较系数可得答案。
专题05 函数的周期性和对称性形影不离【高考地位】函数的周期性和对称性是函数的两个基本性质。
在高中数学中,研究一个函数,首看定义域、值域,然后就要研究对称性(中心对称、轴对称),并且在高考中也经常考查函数的对称性和周期性,以及它们之间的联系。
因此,我们应该掌握一些简单常见的几类函数的周期性与对称性的基本方法。
类型一 函数的周期性的判定及应用万能模板 内 容使用场景 几类特殊函数类型解题模板第一步 合理利用已知函数关系并进行适当地变形; 第二步 熟记常见结论,准确求出函数的周期性;(1)若函数)(x f 满足)()(a x f a x f -=+,则函数)(x f 的周期为a 2; (2)若函数)(x f 满足)()(x f a x f -=+或)(1)(x f a x f =+或)(1)(x f a x f -=+,则函数)(x f 的周期为a 2; 第三步 运用函数的周期性求解实际问题.例 1 函数定义域为,且对任意,都有,若在区间上则( )A.B. C.D.【变式演练1】(2022·江苏南京·高三阶段练习)已知函数()f x ,任意x y R ∈,,满足()()()()22f x y f x y f x f y +-=-,且()()1220f f ==,,则()()()1290f f f +++的值为( )A .2-B .0C .2D .4【变式演练2】(2022·陕西·武功县普集高级中学高三阶段练习(理))定义在R 上的函数()f x 满足1(1)()3f x f x +=,且当[0,1)x ∈时,()1|21|f x x =--.若对[,)x m ∀∈+∞,都有2()81f x ≤,则m 的取值范围是( )A .10,3⎡⎫+∞⎪⎢⎣⎭B .11,3⎡⎫+∞⎪⎢⎣⎭C .13,3⎡⎫+∞⎪⎢⎣⎭D .143⎡⎫+∞⎪⎢⎣⎭【变式演练3】(多选)(2022·云南·高三阶段练习)已知函数()f x 的定义域为1221R,,R,2x x x x ∀∈-=,都有()()120f x f x +=,且()11f =,则下列结论正确的是( )A .()231f =B .()231f -=C .()()()()()123451f f f f f ++++=D .()()()()1230f x f x f x f x ++++++=类型二 函数的对称性问题万能模板 内 容使用场景 几类特殊函数类型 解题模板记住常见的几种对称结论:第一类 函数)(x f 满足()()f x a f b x +=-时,函数()y f x =的图像关于直线2a bx +=对称; 第二类 函数)(x f 满足()()c f x a f b x ++-=时,函数()y f x =的图像关于点(,)22a b c+对称; 第三类 函数()y f x a =+的图像与函数()y f b x =-的图像关于直线2b ax -=对称. 例2 .(多选)(2022·福建省福州第一中学高三开学考试)已知函数()()sin sin 1f x x x =+-,则下列结论正确的是( )A .()y f x =图象是轴对称图形B .()()0f x f x π++=C .()f x 在区间1,12⎡⎤⎢⎥⎣⎦上单调递增D .()[]1,0,1f x x <∀∈例3 (2022·宁夏·青铜峡市宁朔中学高三开学考试(理))定义在R 上的奇函数()f x 满足()()2f x f x -+=,且()f x 在[]10-,上是增函数,给出下列几个命题:①()f x 是周期函数;②()f x 的图象关于直线1x =对称; ③()f x 在[]1,2上是减函数; ④(2)(0)f f =.其中正确命题的序号是_____.(写出所有正确命题的序号)例4 (2022·辽宁·大连二十四中高三阶段练习)已知直线3y x =-+分别与函数e x y =和ln y x =的图象交于点()11,A x y ,()22,B x y ,则12x x +=_________.【变式演练4】(2022·湖南湘潭·高三开学考试)(多选)已知函数()()sin cos f x x x x ππ=+∈R ,则下列说法正确的是( ) A .函数()f x 是周期函数 B .函数()f x 的最大值是2C .函数()f x 的图象关于点1,04⎛⎫- ⎪⎝⎭对称D .函数()f x 的图象关于直线12x =对称 【变式演练5】(2022·四川省德阳市第三中学高三开学考试)设()()ln ,024,24x x f x f x x ⎧<≤⎪=⎨-<<⎪⎩,若方程()f x m =有四个不相等的实根()1,2,3,4i x i =,则()2221234x x x x +++的取值范围为___________.【高考再现】1.(2022·全国乙(理)T12) 已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则221()k f k ==∑( )A. 21-B. 22-C. 23-D. 24-2.(2022·新高考Ⅰ卷T12) 已知函数()f x 及其导函数()'f x 的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则( )A. (0)0f =B. 102g ⎛⎫-= ⎪⎝⎭C. (1)(4)f f -=D. (1)(2)g g -=3.(2022·新高考Ⅱ卷T8) 若函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑( )A. 3-B. 2-C. 0D. 14.(2021·全国高考真题(理))设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫= ⎪⎝⎭( )A .94-B .32-C .74D .525.(2021·全国高考真题(理))设函数1()1xf x x-=+,则下列函数中为奇函数的是( )A .()11f x --B .()11f x -+C .()11f x +-D .()11f x ++6. 【2016高考新课标2理数】已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()miii x y =+=∑( )(A )0 (B )m (C )2m (D )4m7. 【2018年全国普通高等学校招生统一考试理数(全国卷II )】已知f(x)是定义域为(−∞,+∞)的奇函数,满足f(1−x)=f(1+x).若f(1)=2,则f(1)+f(2)+f(3)+⋯+f(50)=( ) A . −50 B . 0 C . 2 D . 508. 【2018年全国文科数学】已知函数f(x)=lnx +ln(2−x),则 A . f(x)在(0,2)单调递增B . f(x)在(0,2)单调递减C . y =f(x)的图像关于直线x=1对称D . y =f(x)的图像关于点(1,0)对称9.【2016年高考四川理数】已知函数()f x 是定义在R 上的周期为2的奇函数,当0<x <1时,()4xf x =,则5()(1)2f f -+=.10. 【2018年全国普通高等学校招生统一考试数学】函数f(x)满足f(x +4)=f(x)(x ∈R),且在区间(−2,2]上,f(x)={cosπx2,0<x ≤2,|x +12|,−2<x ≤0,则f(f(15))的值为____,11. 【2016高考江苏卷】设()f x 是定义在R 上且周期为2的函数,在区间[1,1)-上,,10,()2,01,5x a x f x x x +-≤<⎧⎪=⎨-≤<⎪⎩ 其中.a ∈R 若59()()22f f -= ,则(5)f a 的值是. 【反馈练习】1.(2022·河南·南阳市第六完全学校高级中学高三阶段练习(文))已知函数()f x 是R 上的偶函数,且()f x 的图象关于点()1,0对称,当[]0,1x ∈时,()22xf x =-,则()()()()0122022f f f f +++⋅⋅⋅+的值为( )A .2-B .1-C .0D .12.(2022·福建省龙岩第一中学高三阶段练习)已知定义在R 上的函数()f x 满足:()()0f x f x -+=,()2()f x f x -=,当01x ≤≤时,()21x f x =-,则()2log 2023f =( )A .252048-B .9991024-C .10242023-D .512999-3.(2022·河南·南阳中学高三阶段练习(理))已知函数()f x ,()g x 的定义域均为R ,且()()25f x g x +-=,()()49g x f x --=,若y g x 的图象关于直线2x =对称,()24g =,则()221k f k ==∑( )A .47-B .48-C .23-D .24-4.(2022·甘肃·武威十八中高三阶段练习(理))已知奇函数()f x 满足()(2)f x f x -=+,当[0,1]x ∈时,2()2f x x =,则(7)f =( )A .2-B .1-C .1D .25.(2022·河北深州市中学高三阶段练习)已知定义域为R 的函数()f x 满足:对任意的x ∈R ,有()()22f x f x +=-,且当[]0,1x ∈时,()()21log 1f x x =++,则()2023f =( )A .0B .1C .2D .36.(2022·北京四中高三开学考试)已知函数()sin cos sin cos x xf x x x+=,在下列结论中:①π是()f x 的一个周期; ②()f x 在π,02⎛⎫- ⎪⎝⎭上单调递减;③()f x 的图象关于直线π4x =对称; ④()f x 的图象关于点π,04⎛⎫- ⎪⎝⎭对称.正确结论的个数为( ) A .1B .2C .3D .47.(2022·云南·高三阶段练习)已知函数()2()ln11f x x x =++,定义域为R 的函数满足()()20g x g x +--=,若函数()y f x =与()y g x =图象的交点为()11,x y ,()22,x y ,……,()66,x y ,则()61i i i x y =-=∑( )A .6B .12C .6-D .12-8.(2022·福建省龙岩第一中学高三阶段练习)(多选)已知函数()f x 为R 上的奇函数,()()1g x f x =+为偶函数,下列说法正确的有( ) A .()f x 图象关于(10)-,对称 B .()20230g =C .()g x 的最小正周期为4D .对任意R x ∈都有()()11f x f x -=+9.(2022·黑龙江·嫩江市高级中学高三开学考试)(多选)已知偶函数()f x 满足()(2)0f x f x +-=,则下列说法正确的是( )A .函数()f x 是以2为周期的周期函数B .函数()f x 是以4为周期的周期函数C .函数(3)f x -为偶函数D .函数(1)f x -为奇函数10.(2022·浙江·慈溪中学高三开学考试)(多选)已知函数()[]f x x x =-,其中[]x 表示不大于x 的最大整数,如:[]0.20=,[]1.22-=-,则( ) A .()f x 是增函数 B .()f x 是周期函数 C .()2f x 的值域为[)0,1D .()2f x 是偶函数11.(2022·河北深州市中学高三阶段练习)(多选)已知函数()f x 对x ∀∈R ,都有()()()(),2f x f x f x f x -=--=,且()11f =,则( )A .()f x 的图像关于直线1x =对称B .()f x 的图像关于点()2,0-中心对称C .()60f =D .()51f =-12.(2022·广西·桂电中学高三阶段练习)已知函数()f x 满足对R x ∀∈,有()()11f x f x -=+,()()2f x f x +=-,当()0,1x ∈时,()2f x x mx =+,若35122f ⎛⎫= ⎪⎝⎭,则m =________13.(2022·宁夏·银川一中高三阶段练习(理))奇函数()f x 的定义域为R ,若()1f x +为偶函数,且()11f -=-,则()()20222023f f +=______.14.(2021·辽宁·沈阳二中高三开学考试)已知定义域为R 的函数()f x 对任意的实数x ,y 满足()()()πcos 222f x f y x y x y f +-+⎛⎫=⋅ ⎪⎝⎭,且()()010f f ==,112f ⎛⎫= ⎪⎝⎭,并且当10,2x ⎛⎫∈ ⎪⎝⎭时,()0f x >, ①函数()f x 是奇函数;②函数()f x 在11,22⎛⎫- ⎪⎝⎭上单调递增③函数()f x 是以2为周期的周期函数;④502f ⎛⎫-= ⎪⎝⎭其中的真命题有______.(写出所有真命题的序号)15.(2022·河北衡水·高三阶段练习)已知函数()g x 的图象与函数()[)()20,f x x x =∈+∞的图象关于直线y x =对称,将函数()g x 图象右移2个单位,下移2个单位得到函数()h x 的图象,若P ,Q 分别为函数()f x ,()h x 图象上的两个动点,则这两点间距离的最小值为______.16.定义在R 上的奇函数()f x 满足(1)()f x f x +=-,且当10,2x ⎡⎤∈⎢⎥⎣⎦时,()4f x x =,则函数1()()1g x f x x =+-在[]-24,上的零点之和为____________. 【来源】山东省济南市济南市莱芜第一中学2020-2021学年高三下学期2月月考数学试题 17.定义在R 上的函数()f x 满足(2)(2)f x f x +=-,当[2,2)x ∈-时,3()sin 2f x x x π=-,则函数()f x 在区间[0,669)上的零点个数是______.【来源】云南师范大学附属中学2021届高三高考适应性月考卷(六)数学(理)试题18.已知定义在R 上的函数满足(3)(3)f x f x -=-+,且()f x 图像关于1x =对称,当(1,2]x ∈时,2()log (21)f x x =+,则8252f ⎛⎫= ⎪⎝⎭________.19.定义在R 上的函数()f x 满足(6)()f x f x +=.当[)3,3x ∈-时,()()22,3113x x f x x x ⎧-+-≤<-⎪=⎨-≤<⎪⎩,,则(4)f =___________;(1)(2)(3)(2016)(2017)f f f f f +++++=__________.20.(2022·安徽·合肥市第十中学模拟预测)已知函数()f x 是定义在R 上的奇函数,且它的图象关于直线1x =对称.(1)求证:()f x 是周期为4的周期函数;(2)若())01f x x x =≤≤,求[]5,4x ∈--时,函数()f x 的解析式.。
高三函数对称性知识点总结在高三数学中,函数是一个重要的概念和知识点。
在函数的学习中,函数的对称性是一个关键的概念。
了解和掌握函数的对称性是解题的基础,本文将对高三函数的对称性知识点进行总结。
函数的对称性可以分为平面对称和轴对称两种情况。
平面对称是指函数图像关于某个平面对称,而轴对称则是指函数图像关于某个轴对称。
接下来将分别从平面对称和轴对称两个方面来介绍高三函数的对称性知识点。
平面对称性是函数图像相对于某个平面的对称性。
当函数的图像关于$x$轴或$y$轴对称时,即可说函数具有平面对称性。
平面对称的函数具有以下特点:1. 关于$x$轴对称:当函数图像关于$x$轴对称时,即函数的对于$x$的取值为$x$,对应的函数值为$y$,那么对于函数的对称点$x$,其对应的函数值$y$相等。
这种情况下,若$P$为函数图像上的任意一点,则$P$关于$x$轴对称的点也在函数图像上。
2. 关于$y$轴对称:当函数图像关于$y$轴对称时,即函数的对于$x$的取值为$x$,对应的函数值为$y$,那么对于函数的对称点$x$,其对应的函数值$y$相等。
这种情况下,若$P$为函数图像上的任意一点,则$P$关于$y$轴对称的点也在函数图像上。
轴对称性是函数图像相对于某个轴的对称性。
当函数的图像关于$x$轴、$y$轴或者直线$x=a$对称时,即可说函数具有轴对称性。
轴对称的函数具有以下特点:1. 关于$x$轴对称:当函数图像关于$x$轴对称时,即函数的对于$x$的取值为$x$,对应的函数值为$y$,那么对于函数的对称点$x$,其对应的函数值$y$相等。
这种情况下,若$(x,y)$为函数图像上的任意一点,则$(x,-y)$也在函数图像上。
2. 关于$y$轴对称:当函数图像关于$y$轴对称时,即函数的对于$x$的取值为$x$,对应的函数值为$y$,那么对于函数的对称点$x$,其对应的函数值$y$相等。
这种情况下,若$(x,y)$为函数图像上的任意一点,则$(-x,y)$也在函数图像上。
高三函数对称性知识点汇总函数是数学中的重要概念,在高三数学学习中,函数的对称性是一个重要的知识点。
本文将对高三函数对称性的相关知识进行汇总,并介绍不同函数的对称性及其特点。
函数的对称性是指函数图像在某种变换下保持不变的性质。
在高三函数学习中,常见的函数对称性有以下几种:关于x轴对称、关于y轴对称、关于原点对称、关于直线对称、关于点对称。
一、关于x轴对称若函数图像在x轴两侧关于x轴对称,即对于函数中的每一个点(x, y),都存在另一个点(x, -y)也在函数图像上,则称函数关于x轴对称。
对于一个函数关于x轴对称的特点有:1. 函数的解析式中只含有偶次项,或不包含奇次项。
2. 函数图像关于y轴对称。
若函数图像在y轴两侧关于y轴对称,即对于函数中的每一个点(x, y),都存在另一个点(-x, y)也在函数图像上,则称函数关于y 轴对称。
对于一个函数关于y轴对称的特点有:1. 函数的解析式中只含有偶次幂的x,或不包含x。
2. 函数图像关于x轴对称。
三、关于原点对称若函数图像关于原点对称,即对于函数中的每一个点(x, y),都存在另一个点(-x, -y)也在函数图像上,则称函数关于原点对称。
对于一个函数关于原点对称的特点有:1. 函数的解析式中只含有偶次幂的x,或不包含x。
2. 函数图像关于原点对称。
当函数图像在直线L两侧对称时,我们称函数关于直线L对称。
对于关于直线对称的函数,其特点有:1. 函数的解析式中含有x与常数的乘积,并且在函数中不含有形如|x|的项。
2. 函数图像上关于直线L对称。
五、关于点对称若函数图像在点P两侧对称时,我们称函数关于点P对称。
对于关于点对称的函数,其特点有:1. 函数的解析式中含有x与常数的乘积,并且在函数中不含有形如|x|的项。
2. 函数图像关于点P对称。
综上所述,高三数学中的函数对称性知识点主要包括关于x轴对称、关于y轴对称、关于原点对称、关于直线对称、关于点对称等几种形式。
高三函数对称性知识点总结在高中数学的学习过程中,函数是一个非常重要的概念。
而函数的对称性是函数图像在坐标轴上的对称特性,它是一种具有很高抽象性的数学思维,对于理解和解决数学问题具有重要意义。
在高三数学学习中,函数的对称性是一个非常重要的知识点,也是数学建模和解题中常用的技巧之一。
下面将对高三函数对称性的知识点进行总结。
一、函数的对称性1. 关于x轴的对称性当函数图像与x轴对称时,称函数具有关于x轴的对称性。
即对于函数图像上任意一点(x, y),都有对应的点(x, -y)也在函数图像上。
2. 关于y轴的对称性当函数图像与y轴对称时,称函数具有关于y轴的对称性。
即对于函数图像上任意一点(x, y),都有对应的点(-x, y)也在函数图像上。
3. 关于原点的对称性当函数图像与原点对称时,称函数具有关于原点的对称性。
即对于函数图像上任意一点(x, y),都有对应的点(-x, -y)也在函数图像上。
4. 奇函数如果函数f(-x) = -f(x),那么称函数f(x)为奇函数。
奇函数的图像关于原点对称,且通过原点。
5. 偶函数如果函数f(-x) = f(x),那么称函数f(x)为偶函数。
偶函数的图像关于y轴对称,且通过y 轴。
6. 周期函数如果函数f(x + T) = f(x),其中T为正实数,那么称函数f(x)为周期函数。
周期函数的图像在一个周期内具有对称性。
二、对称性在数学建模中的应用1. 对称性可以简化问题在数学建模中,对称性可以帮助我们简化问题,减少计算量和分析难度。
通过对称性的特点,我们可以找到函数图像上的对称点,从而减少求解方程的步骤。
2. 对称性可以加快求解过程利用函数的对称性,在求解函数的零点、极值点和拐点时,可以通过对称点的关系,快速地确定函数的特征点,从而加快求解过程。
3. 对称性可以提高模型的精度在数学建模中,对称性可以帮助我们合理地选择函数模型,提高模型的精度和可靠性。
三、对称性在解题中的应用举例1. 求函数图像与坐标轴的交点在函数图像与坐标轴相交的点的求解中,利用函数的对称性可以帮助我们简化求解过程。
高三函数对称性知识点总结一、函数对称性的概念与重要性函数作为数学中描述变化规律的重要工具,其图像的对称性是解析几何中一个非常有趣且具有实际意义的课题。
在高中数学的学习中,掌握函数图像的对称性对于理解和运用函数知识至关重要。
对称性不仅能够帮助我们快速识别函数的性质,还能在解决实际问题时提供直观的解题思路。
本文将对高三数学中函数对称性的相关知识点进行总结和梳理。
二、函数图像的对称轴1. 轴对称性轴对称性是函数对称性中最基本也是最常见的一种形式。
对于一个函数图像来说,如果存在一条直线,使得图像上任意一点关于这条直线对称,那么这个函数就具有轴对称性。
对于二次函数,其对称轴通常为 x = -b/2a,这里的 a 和 b 分别是二次项和一次项的系数。
2. 中心对称性除了轴对称性,函数图像还可能具有中心对称性。
如果图像上任意一点 P(x, y) 关于某一点 (a, b) 对称,即存在点 P'(2a-x, 2b-y) 也在图像上,那么这个函数就具有中心对称性。
例如,反比例函数 y =k/x (k 为常数) 的图像就具有中心对称性,其对称中心为原点。
三、常见函数的对称性质1. 二次函数的对称性二次函数 y = ax^2 + bx + c 的图像是一个抛物线。
根据 a 的正负,抛物线的开口方向不同,但其对称轴始终为直线 x = -b/2a。
当 a >0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。
此外,二次函数的图像可以通过平移、伸缩等变换保持其对称性质。
2. 一次函数的对称性一次函数 y = kx + b 的图像是一条直线。
直线的对称性较为简单,它关于垂直于其斜率 k 的直线具有轴对称性。
当 k 为正时,直线向右上方倾斜;当 k 为负时,直线向右下方倾斜。
一次函数的图像是对称的,但不是中心对称的。
3. 反比例函数的对称性反比例函数y = k/x (k ≠ 0) 的图像是一对双曲线。
高三数学函数的周期性和对称性典型例题解析11.函数定义域为,且对任意,都有,若在区间上则( )A.B. C. D.【答案】C【解析】第一步,准确求出函数的周期性:由()()2f x f x +=,可知()f x 是周期为2的函数, 第二步,运用函数的周期性求解实际问题:令1-=x 故()()11f f -=,代入解析式,得()22a a e -+=-,解得2a =, 从而()()22,10{22,01x x x f x x e x +-≤≤=-<≤,故()()()()2017201810022f f f f +=+=+=,故选C.2.已知定义域为R 的函数()f x 满足()2()f x f x +=,且当01x ≤≤时,()2(12)f x g x =+,则()2021f -=()A .lg3-B .lg 9C .lg 3D .0【答案】C 【分析】由()()2f x f x +=得出函数的周期2T =,所以()()20211f f -=代入解析式可得答案. 【详解】由()f x 满足()()2f x f x +=,所以函数的周期2T =,且当01x ≤≤时,()2(12)f x g x =+,所以()()20211lg3f f -==. 故选:C.3.已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则( )A .102f ⎛⎫-= ⎪⎝⎭B .()10f -=C .()20f =D .()40f =【答案】B【分析】因为函数()2f x +为偶函数,则()()22f x f x +=-,可得()()31f x f x +=-, 因为函数()21f x +为奇函数,则()()1221f x f x -=-+,所以,()()11f x f x -=-+, 所以,()()()311f x f x f x +=-+=-,即()()4f x f x =+, 故函数()f x 是以4为周期的周期函数,因为函数()()21F x f x =+为奇函数,则()()010F f ==, 故()()110f f -=-=,其它三个选项未知. 故选:B.4.函数y =f(x)在[0,2]上单调递增,且函数f(x +2)是偶函数,则下列结论成立的是( ) A . f(1)<f(52)<f(72) B . f(72)<f(52)<f(1) C . f(72)<f(1)<f(52) D . f(52)<f(1)<f(72) 【答案】C5.函数f(x +2)是偶函数,则其图象关于y 轴对称,所以函数y =f(x)的图像关于x =2对称,则f(52)=f(32),f(72)=f(12),函数y =f(x)在[0,2]上单调递增,则有 f(12)<f(1)<f(32),所以f(72)<f(1)<f(52).选C . 考点:抽象函数的周期性.6.(多选)已知函数()1y f x =-的图象关于直线1x =-对称,且对x ∀∈R 有()()4f x f x +-=.当(]0,2x ∈时,()2f x x =+.则下列说法正确的是( ) A .()f x 的周期8T = B .()f x 的最大值为4 C .()20212f = D .()2f x +为偶函数【答案】ABD 【分析】由函数()1y f x =-的图象关于直线1x =-对称,得()()22f x f x -+=--,又()()4f x f x +-=,所以()()()44f x f x f x =--=--,()()444f x f x --++=,从而可得()()8f x f x +=,进而根据周期性、对称性、(]0,2x ∈时()f x 的解析式即可求解. 【详解】解:函数()1y f x =-的图象关于直线1x =-对称,∴函数()y f x =的图象关于直线2x =-对称, ∴()()22f x f x -+=--对x R ∀∈有()()4f x f x +-=,∴函数()y f x =的图象关于()0,2中心对称,∴()()2222f x f x -++=--+⎡⎤⎣⎦,即()()()44f x f x f x =--=--,又()()444f x f x --++=,即()()444f x f x --=-+,∴()()4f x f x +=-,∴()()()444f x f x f x ++=-+=⎡⎤⎡⎤⎣⎦⎣⎦,即()()8f x f x +=,()()22f x f x +=-+, ∴()f x 的周期8T =,选项A 正确;()2f x +为偶函数,选项D 正确;当(]0,2x ∈时,()2f x x =+,()()4f x f x +-=,∴当[)2,0x ∈-时,(]0,2x -∈,()24f x x +-+=,即()2f x x =+, ∴当[]2,2x ∈-时,()2f x x =+,又函数()y f x =的图象关于直线2x =-对称,∴在一个周期[]6,2-上,()()max24f x f ==, ()f x ∴在R 上的最大值为4,选项B 正确;()()()()()2021252855141121f f f f f =⨯+==+=-=-+=∴,选项C 错误. 故选:ABD.7. 已知定义在R 上的函数()f x 的图象关于点3,04⎛⎫-⎪⎝⎭对称, 且满足()32f x f x ⎛⎫=-+ ⎪⎝⎭ ,又()()11,02f f -==-,则()()()()123...2008f f f f ++++=( )A .669B .670C .2008D .1 【答案】D 【解析】试题分析:由()32f x f x ⎛⎫=-+⎪⎝⎭得()()3f x f x =+,又()()11,02f f -==-, (1)(13)(2)f f f ∴-=-+=,(0)(3)f f =,()f x 的图象关于点3,04⎛⎫- ⎪⎝⎭对称,所以()1131()()(1),(1)(2)(3)0222f f f f f f f -=--=-+=∴++=,由()()3f x f x =+可得()()()()()()()123...2008669(123)(1)(1)(1)1f f f f f f f f f f ++++=⨯+++==-=,故选D.考点:函数的周期性;函数的对称性.8.已知()21y f x =-为奇函数, ()y f x =与()y g x =图像关于y x =对称,若120x x +=,则()()12g x g x +=( )A. 2B. -2C. 1D. -1 【答案】B 【解析】()21y f x =-为奇函数,故()21y f x =-的图象关于原点()0,0对称,而函数()y f x =的图象可由()21y f x =-图象向左平移12个单位,再保持纵坐标不变,横坐标伸长到原来的2倍得到,故()y f x =的图象关于点()1,0-对称,又()y f x =与()y g x =图象关于y x =对称,故函数()y g x =的图象关于点()0,1-对称,120x x +=,即12x x =-,故点()()()()1122,,,x g x x g x ,关于点()0,1-对称,故()()122g x g x +=-,故选B.9.已知函数()tan sin cos f x x x x =-,现有下列四个命题: ①f (x )的最小正周期为π; ②f (x )的图象关于原点对称;③f (x )的图象关于(2π,0)对称; ④f (x )的图象关于(π,0)对称. 其中所有真命题的序号是( ) A .①②③ B .②③④ C .①②③④ D .①②④【答案】C 【分析】利用函数的对称性和周期的判断方法直接对选项进行逐一判断即可得出答案. 【详解】因为tan y x =与1sin cos sin 22y x x x ==的最小正周期均为π,所以f (x )的最小正周期是π.因为()()f x f x -=-,所以f (x )是奇函数,其图象关于原点对称. 因为()()tan sin cos f x x x x f x π-=-+=-,所以f (x )的图象关于(2π,0)对称. 因为()()2tan sin cos f x x x x f x π-=-+=-,所以f (x )的图象关于(π,0)对称. 所以①②③④均正确 故选:C10.设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫= ⎪⎝⎭( )A .94-B .32-C .74D .52【答案】D 【分析】通过()1f x +是奇函数和()2f x +是偶函数条件,可以确定出函数解析式()222f x x =-+,进而利用定义或周期性结论,即可得到答案. 【解析】因为()1f x +是奇函数,所以()()11f x f x -+=-+①;因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+, 因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路一:从定义入手.9551222222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1335112222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 511322=2222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以935222f f ⎛⎫⎛⎫=-=⎪ ⎪⎝⎭⎝⎭. 思路二:从周期性入手由两个对称性可知,函数()f x 的周期4T =.所以91352222f f f ⎛⎫⎛⎫⎛⎫==-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:D .【点睛】在解决函数性质类问题的时候,我们通常可以借助一些二级结论,求出其周期性进而达到简便计算的效果. 11.设函数1()1xf x x-=+,则下列函数中为奇函数的是( ) A .()11f x -- B .()11f x -+C .()11f x +-D .()11f x ++【答案】B【分析】分别求出选项的函数解析式,再利用奇函数的定义即可. 【解析】由题意可得12()111x f x x x-==-+++, 对于A ,()2112f x x --=-不是奇函数; 对于B ,()211f x x -=+是奇函数;对于C ,()21122f x x +-=-+,定义域不关于原点对称,不是奇函数; 对于D ,()2112f x x ++=+,定义域不关于原点对称,不是奇函数.12.已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑( )(A )0 (B )m (C )2m (D )4m 【答案】C 【解析】试题分析:由于()()2f x f x -+=,不妨设()1f x x =+,与函数111x y x x+==+的交点为()()1,2,1,0-,故12122x x y y +++=,故选C. 考点: 函数图象的性质13.已知f(x)是定义域为(−∞,+∞)的奇函数,满足f(1−x)=f(1+x) .若f(1)=2 则f(1)+f(2)+f(3)+⋯+f(50)=( )A . −50B . 0C . 2D . 50 【答案】C【解析】因为f(x)是定义域为(−∞, + ∞)的奇函数,且f(1−x)=f(1+x), 所以f(1+x)=−f(x −1)∴f(3+x)=−f(x +1)=f(x −1)∴T =4,因此f(1)+f(2)+f(3)+⋯+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(1)+f(2), 因为f(3)=−f(1),f(4)=−f(2),所以f(1)+f(2)+f(3)+f(4)=0,∵f(2)=f(−2)=−f(2)∴f(2)=0,从而f(1)+f(2)+f(3)+⋯+f(50)=f(1)=2,选C. 14.已知函数f(x)=lnx +ln(2−x),则A . f(x)在(0,2)单调递增B . f(x)在(0,2)单调递减C . y =f(x)的图像关于直线x=1对称D . y =f(x)的图像关于点(1,0)对称 【答案】C【解析】由题意知,f(2−x)=ln(2−x)+lnx =f(x),所以f(x)的图象关于直线x =1对称,故C 正确,D 错误;又f(x)=ln[x(2−x)](0<x <2),由复合函数的单调性可知f(x)在(0,1)上单调递增,在(1,2)上单调递减,所以A ,B 错误,故选C . 【考点】函数的对称性、单调性。
专题二 函数对称性
(1)对称性规律
1.已知函数定义域为R ,且满足)2()2(x f x f +=-,则函数f (x )的图像关于 对称.
2.已知函数定义域为R ,且满足)()4(x f x f =-,则函数f (x )的图像关于 对称.
3.已知函数定义域为R ,且满足)4()(x f x f +=-,则函数f (x )的图像关于 对称.
4.已知函数定义域为R ,且满足)3()1(x f x f +=-,则函数f (x )的图像关于 对称.
5已知函数定义域为R ,且满足)2()2(x f x f +-=-,则函数f (x )的图像关于 对称.
6.已知函数定义域为R ,且满足0)6()(=++-x f x f ,则函数f (x )的图像关于 对称.
7)(x f y =与)(x f y -=关于 对称。
)(x f y =与)(x f y -=关于 对称。
)(x f y =与y=-f(x)图象关于 对称。
)(x f y =与)2(x a f y -=关于 对称。
)(x f y =与)(2x f a y -=关于 对称。
8函数y=)2()2(x f y x f +=-与图象关于 对称
9函数y=)2(-)2(x f y x f +=-与图象关于 对称
10函数y=)2-()2(x f y x f +=-与图象关于 对称
(2)对称性应用于比较大小
1.设f (x )满足f (x )=f (4-x ),且当x >2 时f (x )是增函数,则a =f (1),b = f (0),c =)5.2(f 的大小关系是 ( )
A .a >b >c
B .b >a >c
C .a >c >b
D .c >b >a 2已知)(x f y =是定义在R 上的奇函数,当0>x 时,2)(-=x x f ,那么不等式2
1)(<x f 的解集是
(3)对称性用于求解析式
1. 已知)(x f 是偶函数,当0≤x 时,1)(3+=x x f ,则)(x f 的解析式.
2. 已知函数的)(x g 图象与函数29)(2+-=x x x f 的图象关于原点成中心对称, 则)(x g
3. 设函数y =f (x )的图象关于直线x =1对称,若当x ≤1时,y =x 2+1,则x >1时, ,f (x )= .
4. 设 1)(+=x x f , 则 )1(+x f 关于直线2=x 对称的曲线的解析式.为
5. 已知函数)1(-=x f y 是偶函数,且x ∈(0,+∞)时有f (x )=
x
1, 求当x ∈(-∞,-2)时, 求)(x f y = 的解析式.
(4)奇偶性,周期性和对称性
1已知定义在R 上的函数()f x 的图象关于点3(,0)4
-对称,且(1)1f -=,(0)2f =-,3()()2
f x f x =-+,则(1)(2)(3)(2005)f f f f +++⋅⋅⋅+的值为( ) A .2- B .1- C .0 D .1
2已知函数(1)f x +为奇函数,函数(1)f x -为偶函数,且(0)2f =,则(4)f =( )
A. 1-
B. 2-
C. 1
D. 2 3定义在R 上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上单调递增,设a=f(3),b=f(2),c=f(2),则a ,b ,c 大小关系是( )
A 、a>b>c
B 、a>c>b
C 、b>c>a
D 、c>b>a
4已知函数)(x f 是偶函数,当)1,0[∈x 时,,1)(x x f -=又)(x f 的图象关于直线1=x 对称,求)(x f 在)6,5[的解析式.
5)(x f 为定义在R 上的偶函数,且(2)(2)f x f x -=+对R x ∈恒成立
(1)求证)(x f y =为周期函数(2)若当[0,2]x ∈时2()f x x x =-,求)(x f 在[2,6]上的解析式(3)写出函数的单调区间及值域(不用证明)
(5).三次函数图像的对称性
任意三次函数32()(0)f x ax bx cx d a =+++≠,它的图像有唯一的对称中心(,())33b b f a a
--.且对称中心的横坐标与其导函数顶点的横坐标相同.,因为三次函数在两个相互对称的点处的切线是平行的 1已知函数3213
y x x x =++的图象C 上存在定点P ,使得过定点P 的直线l 与曲线C 有两个不同于P 的交点11(,)M x y ,22(,)N x y ,就恒有12y y +为定值0y ,则0y 的值为() A.13- B. 23- C. 43- D.2-
2设32()f x ax bx cx =++的极小值为2-,其导函数()y f x '=的图像是经过点(1,0),(1,0)-开口向上的抛物线.(1)求f(x)的解析式(2)若过点(1,)m 可作曲线()y f x =的三条切线,求实数m 的取值范围.
(6) 练习题
1.设f(x)是定义在R 上的奇函数,且f(x+2)= -f(x),当0≤x ≤1时,f (x) = x ,则f (7.5 ) = ( )
(A) 0.5 (B) -0.5 (C) 1.5 (D) -1.5
2已知函数()f x 是(,)-∞+∞上的偶函数,若对于0x ≥,都有(2()f x f x +=),且当[0,2)x ∈时,
2()log (1f x x =+)
,则(2008)(2009)f f -+的值为 ( )
A .2-
B .1-
C .1
D .2
3.函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,2)1(=f 则=)2009
(f ( ) A 、2009 B 、-2009 C 、-2 D.、2
4.函数f (x)为奇函数且f (3x+1)的周期为3,f (1)=-1,则f (2006)等于
A .0
B .1
C .一1
D .2
5设()f x 是定义在R 上的偶函数,且满足1(2)()
f x f x +=,当0≤x ≤1,()f x =2x ,则(7.5)f =______________
6.设f(x)是定义在R 上的奇函数,且y=f(x)的图象关于直线21=x 对称,则f(1)+f(2)+f(3)+f(4)+f(5)=
____。
7定义在R 上的偶函数()f x 满足(2)()f x f x +=,且在[3,2]--上是减函数,若,αβ是锐角三角形的两个内角,则(sin ),(cos )f f αβ的大小关系为_________
8已知定义在R 上的函数()f x 是以2为周期的奇函数,则方程()0f x =在[2,2]-上至少有__________个实数根
9已知函数2()|2|()f x x ax b x R =-+∈,给出下列命题,
⑴ )(x f 不可能为偶函数; ⑵ 当)2()0(f f =时,)(x f 的图象必关于直线1x =对称; ⑶ 若≤-b a 20,则)(x f 在区间),[+∞a 上是增函数; ⑷ )(x f 有最小值2a b -,其中正确命题的序号是______(将你认为正确的命题的序号都填上).
10设函数)x (f 在),(∞+∞-上满足)x 2(f )x 2(f +=-, )x 7(f )x 7(f +=-,且在闭区间]7,0[上只有.0)3(f )1(f == ⑴ 试判断函数)x (f y =的奇偶性; ⑵ 试求方程0)x (f =在闭区间
]2005,2005[-上的根的个数,并证明你的结论。