椭圆中焦点三角形的性质及应用
- 格式:doc
- 大小:11.00 KB
- 文档页数:1
椭圆中焦点三角形的性质及应用定义:椭圆上任意一点与两焦点所构成的三角形称为焦点三角形。
与焦点三角形的有 关问题有意地考查了定义、三角形中的的正 (余)弦定理、内角和定理、面积公式等一•焦点三角形的形状判定及周长、面积计算2 2例1椭圆 ・ 1 1上一点P 到焦点F 「F 2的距离之差为2,试判断:PF 1F 2的形状. 16 12 性质一: 2 2已知椭圆方程为 笃•爲=1(a b 0),两焦点分别为F“ F 2,设焦点三角形 a bPF 1F 2 中. F 1PF 2 ",则 S -F 1PF 2 形PF 1F 2,若一 F 1 PF 2最大,则点P 为椭圆短轴的端点。
性质三:h 厶 过椭圆焦点的所有弦中通径 (垂直于焦点的弦)最短,通径为2 b a 性质四: 2 2已知椭圆方程为 务•每=1(a b 0),两焦点分别为F“ F 2,设焦点三角形a b2PF 1F 2 中 FfF 2- V,则 COST 一1 — 2e . 2 2一x y 例2 (2000年高考题)已知椭圆 — 2 =1(a b 0)的两焦点分别为F-F 2,若椭圆上a b存在一点P,使得三F 1PF 2二12。
0,求椭圆的离心率e 的取值范围。
二 b 2 tan —。
2 性质二:已知椭圆方程为 2 2+着 x 2 = 1(a b ■ 0),左右两焦点分别为F 1, F 2,设焦点三角例3已知椭圆的焦点是F i( —1, 0)、F2(1 , 0) , P为椭圆上一点,且| IF1F2 I 是 | PF I 和PR丨的等差中项.(1)求椭圆的方程;(2)若点P在第三象限,且/ PFF2= 120°,求tan F1PF2.欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。
2. 椭圆中焦点三角形的性质及应用定义:椭圆上任意一点与两焦点所构成的三角形称为焦点三角形。
性质一:已知椭圆方程为),0(12222>>=+b a by a x 两焦点分别为,,21F F 设焦点三角形21F PF 中,21θ=∠PF F 则2tan221θb S PF F =∆。
θcos 2)2(2122212212PF PF PF PF F F c -+== )cos 1(2)(21221θ+-+=PF PF PF PFθθθcos 12)cos 1(244)cos 1(24)(222222121+=+-=+-+=∴b c a c PF PF PF PF 1222121sin sin tan 21cos 2F PF b S PF PF b θθθθ∆∴===+ 性质二:已知椭圆方程为),0(12222>>=+b a by a x 左右两焦点分别为,,21F F 设焦点三角形21F PF ,若21PF F ∠最大,则点P 为椭圆短轴的端点。
证明:设),(o o y x P ,由焦半径公式可知:o ex a PF +=1,o ex a PF -=1 在21PF F ∆中,2122121212cos PF PF F F PF PF -+=θ21221221242)(PF PF c PF PF PF PF --+=1))((24124422122--+=--=o o ex a ex a b PF PF c a =122222--ox e a b a x a ≤≤-0 22a x o ≤∴性质三:已知椭圆方程为),0(12222>>=+b a by a x 两焦点分别为,,21F F 设焦点三角形21F PF 中,21θ=∠PF F 则.21cos 2e -≥θ证明:设,,2211r PF r PF ==则在21PF F ∆中,由余弦定理得:1222242)(2cos 212221221221212212221--=--+=-+=r r c a r r c r r r r r r F F r r θ.2112221)2(222222222122e a c a r r c a -=--=-+-≥ 命题得证。
椭圆中的“焦点三角形”性质及应用
章显军
【期刊名称】《中学教学参考》
【年(卷),期】2013(000)014
【摘要】“焦点三角形”问题是考试中比较常见的考题.椭圆“焦点三角形”的定义为:椭圆上的任意一点(除长轴端点外)与两个焦点构成的三角形.通常“焦点三角形”的问题都有意地考查了椭圆的定义、三角形中的正弦、余弦定理、三角形的面积、内角大小等知识,现笔者就椭圆“焦点三角形”的性质及应用举例分析如下.
【总页数】1页(P39)
【作者】章显军
【作者单位】浙江苍南县钱库高级中学 325804
【正文语种】中文
【相关文献】
1.椭圆中焦点三角形的性质及应用探究
2.椭圆焦点三角形的性质探究与应用——椭圆的“第三定义”
3.一个椭圆焦点三角形内心的定值性质、拓展与应用
4.一个椭圆焦点三角形内心的定值性质、拓展与应用
5.椭圆或双曲线中焦点三角形的一个性质及应用
因版权原因,仅展示原文概要,查看原文内容请购买。
椭圆焦点三角形性质的探究及应用
李生兵
【期刊名称】《数学教育研究》
【年(卷),期】2014(000)002
【摘要】在椭圆中,以椭圆x2/a2+y2/b2=1(a〉b〉0)的两个焦点F1,F2,及椭圆上任意一点P(除长轴上两个端点外)为顶点的△F1PF2叫椭圆的焦点三角形.在△F1PF2中,由椭圆的定义知|PF1|+|PF2|=2a(2a〉2c)和焦距|F1F2+=2c都是常数.与焦点三角形有关的问题是高考的热点,题型灵活多样,主要考查椭圆定义、三角形中的的正(余)弦定理、内角和定理、面积公式等,以下探究几个一般性的性质.
【总页数】2页(P63-64)
【作者】李生兵
【作者单位】甘肃省高台县第一中学,734300
【正文语种】中文
【中图分类】G633.6
【相关文献】
1.椭圆中焦点三角形的性质及应用探究 [J], 任双宝
2.椭圆焦点三角形性质的探究及应用 [J], 李生兵
3.从一道预赛试题探究椭圆焦点三角形外接圆的性质 [J], 陈良骥
4.椭圆焦点三角形的性质探究与应用——椭圆的“第三定义” [J], 洪汪宝
5.中职数学问题探究"学与教"实践研究——以椭圆焦点三角形性质为例 [J], 王统增
因版权原因,仅展示原文概要,查看原文内容请购买。
椭圆中焦点三角形的性质及应用
又,故满足:故为直角三角形、说明:考查定义、利用已知、发挥联想,从而解题成功、性质一:已知椭圆方程为两焦点分别为设焦点三角形中则。
性质二:已知椭圆方程为左右两焦点分别为设焦点三角形,若最大,则点P为椭圆短轴的端点。
证明:设,由焦半径公式可知:,在中, = 性质三:过椭圆焦点的所有弦中通径(垂直于焦点的弦)最短,通径为性质四:已知椭圆方程为两焦点分别为设焦点三角形中则证明:设则在中,由余弦定理得:
命题得证。
(2000年高考题)已知椭圆的两焦点分别为若椭圆上存在一点使得求椭圆的离心率的取值范围。
简解:由椭圆焦点三角形性质可知即 ,于是得到的取值范围是性质五:已知椭圆方程为两焦点分别为设焦点三角形,则椭圆的离心率。
由正弦定理得:由等比定理得:而,∴。
已知椭圆的焦点是F1(-1,0)、F2(1,0),P为椭圆上一点,且|F1F2|是|PF1|和|PF2|的等差中项.(1)求椭圆的方程;(2)若点P在第三象限,且∠PF1F2=120,求tanF1PF2.解:(1)由题设2|F1F2|=|PF1|+|PF2|∴2a=4,又2c=2,∴b=∴椭圆的方程为=1.(2)设∠F1PF2=θ,则∠PF2F1=60-θ椭圆的离心率则,整理得:5sinθ=(1+cosθ)∴故,tanF1PF2=tanθ=.
第 1 页共 1 页。