(完整版)第3章风能、风力发电与控制技术(1)
- 格式:ppt
- 大小:2.91 MB
- 文档页数:76
关于风力发电机及风力发电控制技术分析风电技术涉及专业较广,包括计算机学、空气动力学、材料学等。
国内风能资源较为丰富,带动了风电行业的发展,风能利用对国家环境结构的调整具有极大影响,可有效调整能源结构,降低进口能源的依赖,对国家经济效益具有重大作用。
风力发电技术经过不断的完善和创新,逐渐成为新型清洁能源中重要组成部分,增速处于第一位,有助于推动社会进步和发展,带来更大的经济效益和社会效益。
基于此,本文分析了风力发电机及风力发电控制技术。
标签:风力发电机;风力发电;控制技术一、风力发电概述风力发电机一般包括两部分:风机部分、发电机部分。
根据风力发电机浆叶的功率调节方式,可分为定桨距机组、变桨距机组。
前者浆叶、轮毂相连接,外界环境风风速变化时,迎风角不发生改变;后者根据定桨距风机进行了改进,风机叶片可围绕中心轴转动,保证叶片迎风角可调。
两种机组相比,后者可在额定功率之外仍维持较高的平稳度,性能更突出,在大型机组中应用较多。
根据风力发电机组不同,发电机可分为:异步发电机、同步发电机。
确保变流机组的合理性便可保证设备维持稳定的变速运行状态。
二、风力发电控制技术(一)发展现状风力发电技术起源于19世纪,近年来相关技术逐渐趋于成熟。
国外西方发达国家的风力发电技术已经较为成熟。
在技术研发方面投入了大量资金,重点考虑了新材料、新工艺、通信技术等在风力发电系统中的应用,提高了风力发电技术的可行性。
尤其是大规模风能的利用方面更具优势,如海上风力发电,成为了传统能源发电模式的补充方法。
国内风力发电技术一般是集中在小型风力发电厂。
上世纪50年代主要工艺、材料应用方面尚未全面实现自主生产,发电机制造、电力并网等关键技术仍依赖进口。
导致国内大型风力发电设备一般成本高,研发受限。
90年代后,风电发展进入新阶段,电厂规模、机组容量大幅增加。
自从国家大力发展风能、太阳能等新能源后,风电技术相关研发成果逐渐增多,且技术水平提升较快。
第一章绪论能源是人类社会存在与发展的物质基础。
过去200多年,建立在煤炭、石油、天然气等化石燃料基础上的能源体系,极大地推动了人类社会的发展。
然而,人们在物质生活和精神生活不断提高的同时,也越来越感悟到大规模使用化石燃料所带来的严重后果;资源日益枯竭,环境不断恶化,还诱发了不少国与国之间、地区之间的政治经济纠纷,甚至冲突和战争。
因此,人类必须寻求一种新的、清洁、安全、可靠的可持续能源系统。
风能是太阳能的一种转化形式,是一种不产生任何污染物排放的可再生的自然资源。
风能的开发利用已有数千年历史。
在蒸气机发明以前,风能就曾作为重要的动力,由于船舶航行、提水饮用和灌溉、排水造田、磨面和锯木等。
在几千年前,埃及的风帆船就在尼罗河上航行。
中国是最早使用帆船和风车的国家之一,至少在三千年前的商代就出现了帆船。
受化石能源资源日趋枯竭、能源供应安全和保护环境等的驱动,自20世纪70年代中期以来,世界主要发达国家和一些发展中国家都重视风能的开发利用。
特别是自20世纪90年代初以来,风力发电的发展十分迅速,世界风电机装机容量的年平均增长率超过了30%,从1993年的216万kW上升到2003年的4030万kW。
我国对现代风力机的研制可以追溯到20世纪50年代,但系统的研究始于20世纪70年代。
20世纪80年代中期开始,我国从国外引进了一些大、中型风力发电机组并入电网。
1986年山东荣成市建成中国第一个风电场,年均发电量为33万kwh,以后相继在福建平潭、广东南澳岛、新疆达坂城及内蒙古朱日和等地建立了风电场。
进入20世纪90年代以来,我国风电发展势头强劲,成为我国发展速度最快的能源工业,但是,我国安装的大型风力发电机组中90%是从国外进口。
我国对现代并网型风力发电机的研究工作始于20世纪80年代,我国自行研制出的有20kw,30kw,75kw,120kw,200kw,600kw和1MW风力发电机组。
目前世界上有几十种型号的大型风力发电机组在商业化运行,大体可分为四种类型。
风力发电及其控制技术摘要: 风力发电是将风能转换成电能,风能推动叶轮旋转,叶轮带动转动轴和增速机,增速机带动发电机,发电机通过输电电缆将电能输送地面控制系统和负荷。
风力发电技术是一项多学科的,可持续发展的,绿色环保的综合技术。
风力发电系统中的控制技术和伺服传动技术是其中的关键技术,这是因为自然风速的大小和方向是随机变化的,风力发电机组的切入(电网)和切出(电网)、输入功率的限制、风轮的主动对风以及对运行过程中故障的检测和保护必须能够自动控制。
同时,风力资源丰富的地区通常都是海岛或边远地区甚至海上,分散布置的风力发电机组通常要求能够无人值班运行和远程监控,这就对风力发电机组的控制系统的可靠性提出了很高的要求一、风电控制系统简述风电控制系统包括现场风力发电机组控制单元、高速环型冗余光纤以太网、远程上位机操作员站等部分。
现场风力发电机组控制单元是每台风机控制的核心,实现机组的参数监视、自动发电控制和设备保护等功能;每台风力发电机组配有就地HMI人机接口以实现就地操作、调试和维护机组;高速环型冗余光纤以太网是系统的数据高速公路,将机组的实时数据送至上位机界面;上位机操作员站是风电厂的运行监视核心,并具备完善的机组状态监视、参数报警,实时/历史数据的记录显示等功能,操作员在控制室内实现对风场所有机组的运行监视及操作。
风力发电机组控制单元(WPCU)是每台风机的控制核心,分散布置在机组的塔筒和机舱内。
由于风电机组现场运行环境恶劣,对控制系统的可靠性要求非常高,而风电控制系统是专门针对大型风电场的运行需求而设计,应具有极高的环境适应性和抗电磁干扰等能力。
风电控制系统的现场控制站包括:塔座主控制器机柜、机舱控制站机柜、变桨距系统、变流器系统、现场触摸屏站、以太网交换机、现场总线通讯网络、UPS电源、紧急停机后备系统等。
风力发电的基本原理风能具有一定的动能,通过风轮机将风能转化为机械能,拖动发电机发电。
风力发电的原理是利用风带动风车叶片旋转,再通过增速器将旋转的速度提高来促使发电机发电的。
风力发电机组的控制技术摘要:随着时代的发展科技的进步,我国在不断地向前发展,电力的使用量是衡量一个国家发展的主要依据之一,我国每年的电耗量位居世界前列,发电过程中需要消耗大量的能源,对环境造成一定的影响,所以我国一直致力于利用清洁能源进行发电,其中风力发电就是清洁能源发电的主要手段之一,本文将对风力发电机组的控制技术进行讨论。
关键词:风力发电;风力发电机组;发电机组控制技术风力发电是一种清洁的发电手段,减少了发电对于环境的破坏。
我国国土辽阔,适合风力发电的区域广泛,所以我国在风力发电这一发电技术上取得了长足进步,风力发电机组的控制技术是维持风力发电的最核心技术之一,风力发电机组的控制技术能够为我国风力发电事业提供强大助力。
一、风力发电在进行风力发电机组的控制技术讨论时,首先简述一下风力发电的概念及其适用范围。
风力发电是指将风的动能转化为机械动能,之后将机械动能转化为电能的一种发电手段,并且风力发电在发电过程中不会产生辐射及空气污染情况的发生,是一项清洁的发电技术。
风力发电在我国西部地区使用广泛,风力发电技术在近些年也得到了充分的发展,风力发电又分为水平轴风力发电、垂直轴风力发电、双馈型发电机发电等多种发电模式。
二、风力发电机组想要利用风力进行发电工作,就离不开发电机组的运转,风力发电机组由风轮、发电机组成。
其中发电机又由风轮中所含的叶片、轮毂等部件组成,当叶片受到风力吹动时,会进行旋转,从而将机械能转化为电能。
风力发电机组按照风轮桨叶分类分为定桨型与变桨型两种,按照风轮的转速又可分为定速型、变速型两种[1]。
我国现在已经拥有了风力发电关键零部件的开发制造能力,但是我国的风力发电机组控制技术还有待完善,再简单描述风力发电机组的构成与类型之后,下面将针对风力发电机组的控制技术进行讨论。
三、风力发电机组的控制技术风力发电机组的控制技术,是风力发电的核心,通过控制技术能够提高风力发电的安全性,提高风力发电的发电效率,下面根据风力发电机组的控制技术进行研究讨论。
风力发电及其控制技术分析1. 引言1.1 风力发电及其控制技术分析风力发电是一种利用风能转换成电能的可再生能源技术,在当今世界各国的能源转型中发挥着越来越重要的作用。
随着技术的不断发展和成熟,风力发电系统已经成为一种成熟可靠的能源解决方案,受到广泛关注和应用。
控制技术作为风力发电系统的重要组成部分,扮演着至关重要的作用。
风力发电系统的控制技术包括风机转速控制、叶片角度调节、电网接入控制等内容,其中风机转速控制是最为核心的一环。
通过智能控制系统的应用,风力发电系统可以实现最佳性能和效率,提高电能利用率。
随着能源需求的增长和环境问题的日益严重,风力发电技术的发展趋势也愈发明显。
未来,风力发电系统将会更加智能化、高效化和可靠化,风力发电技术将在能源结构调整中扮演重要角色,为促进低碳经济的发展做出积极贡献。
风力发电及其控制技术的发展前景广阔,将为人类提供更加清洁和可持续的能源解决方案,为实现可持续发展目标贡献力量。
风力发电技术的应用前景值得期待,将为全球能源格局带来积极影响。
2. 正文2.1 风力发电系统的构成风力发电系统的构成主要包括风力发电机组、风力发电塔、叶片、传动系统和控制系统五个部分。
1. 风力发电机组是风力发电系统的核心部分,主要由发电机、叶轮和塔架组成。
发电机是将风能转化为电能的关键设备,一般采用稀土永磁同步发电机或感应发电机;叶轮是捕捉风能的装置,通常由三片叶片构成,通过风的力量驱动旋转;塔架是支撑整个风力发电机组的结构,高度不同会对发电效率有影响。
2. 风力发电塔是支撑叶片的结构,通常采用钢筋混凝土或钢管焊接而成,塔身高度根据风机的功率和所在地的风速等因素而定。
3. 叶片是风力发电系统捕捉风能的装置,一般由玻璃钢或碳纤维复合材料制成,具有轻量化、高强度、抗风压等特性。
4. 传动系统将叶轮的旋转运动传递给发电机,通常采用齿轮箱或直驱系统,确保风能能够高效地转化为电能。
5. 控制系统是风力发电系统的大脑,主要负责监控和调节整个系统的运行状态,保证系统安全、稳定地生成电能。