高频变压器设计计算公式
- 格式:xls
- 大小:29.00 KB
- 文档页数:5
高频变压器电容量计算公式在高频变压器设计中,电容量的计算是非常重要的一部分。
电容量的大小直接影响着变压器的性能和稳定性。
因此,正确地计算电容量是非常关键的。
本文将介绍高频变压器电容量的计算公式,帮助读者更好地理解和应用这一重要知识。
首先,我们需要了解一些基本的概念。
在高频变压器中,电容量是指变压器绕组之间的电容。
电容的大小取决于绕组之间的绝缘性能和绕组的结构。
电容的计算需要考虑绕组的材料、绝缘层的厚度、绕组的布局等因素。
接下来,我们将介绍高频变压器电容量的计算公式。
在实际应用中,电容量的计算可以采用以下公式:C = 0.5 ε A / d。
其中,C表示电容量,单位为法拉(F);ε表示绝缘材料的介电常数;A表示绕组之间的有效面积;d表示绕组之间的绝缘距离。
在这个公式中,介电常数是绝缘材料的一个重要参数,它反映了绝缘材料的绝缘性能。
不同的绝缘材料具有不同的介电常数,因此在计算电容量时需要根据实际使用的绝缘材料来确定介电常数的数值。
绕组之间的有效面积是指绕组之间的有效绝缘面积,它取决于绕组的结构和布局。
通常情况下,绕组之间的有效面积可以通过绕组的几何形状和尺寸来计算得到。
绕组之间的绝缘距离是指绕组之间的绝缘层的厚度,它是影响电容量大小的重要因素。
绝缘距离越小,电容量越大;绝缘距离越大,电容量越小。
在实际应用中,我们还需要考虑一些其他因素。
例如,变压器的工作频率、工作温度、工作环境等因素都会对电容量的计算产生影响。
因此,在进行电容量计算时,需要综合考虑这些因素,以确保计算结果的准确性和可靠性。
除了上述的计算公式,还有一些其他的方法可以用来计算高频变压器的电容量。
例如,有些厂家会提供电容量计算软件,通过输入一些基本的参数,软件就可以自动计算出电容量的大小。
这些方法都可以帮助工程师更快速地进行电容量的计算,提高工作效率。
总之,高频变压器电容量的计算是一个复杂而重要的工作。
在实际应用中,需要综合考虑绝缘材料、绕组结构、工作环境等多个因素,以确保计算结果的准确性和可靠性。
AP表示磁心有效截面积与窗口面积的乘积。
计算公式为AP=AwAe式中,AP的单位是cm4;Aw为磁心可绕导线的窗口面积(cm2) Ae为磁心有效截面积(cm2),Ae≈Sj=CD,Sj为磁心几何尺寸的截面积,C 为舌宽,D为磁心厚度。
根据计算出的AP值,即可查表找出所需磁心型号。
下面介绍将AP法用于开关电源高频变压器设计时的公式推导及验证方法。
1 高频变压器电路的波形参数分析开关电源的电压及电流波形比较复杂,既有输入正弦波、半波或全波整流波,又有矩形波(PWM波形)、锯齿波(不连续电流模式的一次侧电流波形)、梯形波(连续电流模式的一次侧电流波形)等。
高频变压器电路中有3个波形参数:波形系数(Kf),波形因数(kf),波峰因数(kP)。
1)波形系数Kf为便于分析,在不考虑铜损的情况下给高频变压器的输入端施加交变的正弦电流,在一次、二次绕组中就会产生感应电动势e。
根据法拉第电磁感应定律,e=dΦ/dt=d( NABsinωt)/dt=NABoωcosωt其中N为绕组匝数,A为变压器磁心的截面积,B为交变电流产生的磁感应强度,角频率ω=2Πf。
正弦波的电压有效值为在开关电源中定义正弦波的波形系数Kf=√2*Π=4.44利用傅里叶级数不难求出方波的波形系数。
2)波形因数kf为便于对方波、矩形波、三角波、锯齿波、梯形波等周期性非正弦波形进行分析,需要引入波形因数的概念。
在电子测量领域定义的波形因数与开关电源波形系数的定义有所不同,它表示有效值电压压(URMS)与平均值电压之比,为便于和Kf区分,这里用小写的kf表示,有公式以正弦波为例,这表明,Kf=4kf,二者相差4倍。
开关电源6种常见波形的参数见表1。
因方波和梯形波的平均值为零,故改用电压均绝值来代替。
对于矩形波,表示脉冲宽度,丁表示周期,占空比D=t/T。
2 用AP法( 面积乘积法)选择磁心的公式推导令一次绕组的有效值电压为U1,一次绕组的匝数为NP,所选磁心的交流磁通密度为BAC,磁通量为Φ,开关周期为T,开关频率为f,一次侧电流的波形系数为Kf,磁心有效截面积为Ae(单位是cm2),有关系式考虑Kf=4kf关系式之后,可推导出同理,设二次绕组的有效值电压为US,二次绕组的匝数为NS,可得设绕组的电流密度为(单位是A/cm2),导线的截面积为S=I/J。
设计实例:要求:输入AC 220V±10%效率:80%工作频率 40KHZ输出电压 62V电流:2A辅助绕组电压:20V/0.1A最大占空比: 0.48一.计算最小直流电压和最大直流电压Emin=220*0.9*1.1=218VEmax=220*1.1*1.4=339V二.计算输入功率和视在功率Pin==Po/η=62*2/0.8=155WPt=Po/η+Po=155+124=279w三.计算AP值选择磁芯Pin*10²2*F*Bm*J*Ku*Ki279*10²2*40*103*0.15*4*0.4*1== 1.45选择PQ32/30磁芯Ae=1.6Aw=0.994Ap=1.6*0.994=1.59结果大于计算的值,符合要求。
材质选用PC40型。
四.计算初级电流峰值和有效值设定电路工作在连续模式,根据输入电压的范围取Krp为0.62PinEmin*Dmax*(2-Krp)2*155218*0.48*(2-0.6)= 2.1AIrms =Ip* Dmax*(Krp²/3-Krp+1)=2.1* 0.48*(0.6²/3-0.6+1)=1.05A五.计算初级电感量连续模式 Emin*Dmax Ip1 =Ip2(1-Krp)F*(Ip2-Ip1)=2.1*(1-0.6)=0.84218*0.4840*103*(2.1-0.84)= 2.076mH断续模式 Emin²*Dmax²2*Pin*F218²*0.48²2*155*40*103=883.0uH AP ==Aw*Ac====AP ==Aw*Ac====Ip ==Lp ==Lp==六.计算初级、次级、反馈绕组的圈数 Dmax Upmin 计算变压比:n=1-Dmax Up2 =0.482181-0.4862= 3.2454初级圈数 Emax*104 4*F*Bm*Ae339*1044*40*103*0.15*1.61=87.7TS 取整数88TS 次级圈数 Np Np*(1-Dmax)*Us1n Upmin* Dmax= Np 88n 3.2454=27TS反馈圈数Np*(1-Dmax)*Us1 Upmin* Dmax=8.7TS 取9TS 八.核算临界电感量(H )T2Pin 2 0.000025 2*155=882.8uH计算出的结果和断续模式的电感一致。
磁导率英文名称:magnetic permeability 表征磁介质磁性的物理量。
表示在空间或在磁芯空间中的线圈流过电流后、产生磁通的阻力、或者是其在磁场中导通磁力线的能力、其公式μ=B/H 、其中H=磁场强度、B=磁感应强度,常用符号μ表示,μ为介质的磁导率,或称绝对磁导率。
如果空气(非磁性材料)的相对磁导率是1,则铁氧体的相对磁导率为10,000,即当比较时,以通过磁性材料的磁通密度是10,000倍。
铸铁为200~400;硅钢片为7000~10000;镍锌铁氧体为10~1000初始磁导率μi:是指基本磁化曲线当H→0时的磁导率最大磁导率μm:在基本磁化曲线初始段以后,随着H的增大,斜率μ=B/H逐渐增大,到某一磁场强度下(Hm),磁密度达到最大值(Bm),即饱和磁导率μS:基本磁化曲线饱和段的磁导率,μs值一般很小,深度饱和时,μs=μo磁芯参数:(1)有效磁导率μro。
在用电感L形成闭合磁路中(漏磁可以忽略),磁心的有效磁导率为:式中 L——绕组的自感量(mH);W——绕组匝数;磁心常数,是磁路长度Lm与磁心截面积Ae的比值(mm).(2)饱和磁感应强度Bs。
随着磁心中磁场强度H的增加,磁感应强度出现饱和时的B值,称为饱和磁感应强度B。
(3)剩余磁感应强度Br。
磁心从磁饱和状态去除磁场后,剩余的磁感应强度(或称残留磁通密度)。
(4)矫顽力Hco。
磁心从饱和状态去除磁场后,继续反向磁化,直至磁感应强度减小到零,此时的磁场强度称为矫顽力(或保磁力)。
公式(5)温度系数aμ°温度系数为温度在T1~T2范围内变化时,每变化1℃相应磁导率的相对变化量,即式中μr1——温度为T1时的磁导率;μr2——温度为T2时的磁导率。
在介质中,磁场强度则通常被定,式中为磁化强度。
磁化强度,magnetization,描述磁介质磁化状态的物理量。
是磁化强度,通常用符号M表示。
定义为媒质微小体元ΔV内的全部分子磁矩矢量和与ΔV之比,即对于顺磁与抗磁介质,无外加磁场时,M恒为零;存在外加磁场时,则有或其中H是媒质中的磁场强度,B是磁感应强度,μo是真空磁导率,它等于4π×10^-7H/m。
高频变压器简单计算方法
高频变压器是一种用于变换交流电压的电器设备。
虽然计算高频变压器的精确参数需要更加复杂的方法和考虑更多的因素,但是在一些简单的应用中,我们可以使用一些基本的计算方法来估算高频变压器的参数。
首先,我们需要知道高频变压器的输入电压(Vin)、输出电压(Vout)、频率(f)和功率(P)。
如果其中任何一个参数未知,我们可以使用其他已知参数来确定。
请注意,这些计算方法是基于一些基本的假设和限制的,可能会有一定的误差。
1. 估算变压器的输出电流:
变压器的输出电流(Iout)可以通过下面的公式进行估算:
Iout = P / Vout
2. 估算变压器的变比:
变比(N)表示输入电压和输出电压之间的比例关系。
可以通过下面的公式进行估算:
N = Vin / Vout
3. 估算变压器的电感:
变压器的电感(L)可以通过以下公式进行估算:
L = (Vout * N) / (2 * π * f * Iout)
这些是一些基本的计算方法,可以帮助我们初步估算高频变压器的一些参数。
然而,考虑到高频变压器的复杂性和一些特殊的应用要求,更精确的计算方法可能需要进一步的分析和模拟。
因此,在实际设计和应用中,建议咨询专业的电气工程师或使用专业的电路设计软件来确保准确性和可靠性。
请记住,电气设备涉及到高压和高电流,操作时务必小心谨慎,并遵循相应的安全规定。
高频变压器参数计算一.电磁学计算公式推导:1.磁通量与磁通密度相关公式:Ф = B * S ⑴ Ф ----- 磁通(韦伯)B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯S ----- 磁路的截面积(平方米)B = H * μ ⑵μ ----- 磁导率(无单位也叫无量纲)H ----- 磁场强度(伏特每米)H = I*N / l ⑶I ----- 电流强度(安培)N ----- 线圈匝数(圈T)l ----- 磁路长路(米)2.电感中反感应电动势与电流以及磁通之间相关关系式:E L =⊿Ф / ⊿t * N ⑷E L = ⊿i / ⊿t * L ⑸⊿Ф ----- 磁通变化量(韦伯)⊿i ----- 电流变化量(安培)⊿t ----- 时间变化量(秒)N ----- 线圈匝数(圈T)L ------- 电感的电感量(亨)由上面两个公式可以推出下面的公式:⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得:N = ⊿i * L/⊿Ф再由Ф = B * S 可得下式:N = ⊿i * L / ( B * S ) ⑹且由⑸式直接变形可得:⊿i = E L * ⊿t / L ⑺联合⑴⑵⑶⑷同时可以推出如下算式:L =(μ* S )/ l * N2 ⑻这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素) 3.电感中能量与电流的关系:Q L = 1/2 * I2 * L ⑼Q L -------- 电感中储存的能量(焦耳)I -------- 电感中的电流(安培)L ------- 电感的电感量(亨)4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数比与占空比的关系式:N1/N2 = (E1*D)/(E2*(1-D)) ⑽N1-------- 初级线圈的匝数(圈) E1-------- 初级输入电压(伏特)N2-------- 次级电感的匝数(圈) E2-------- 次级输出电压(伏特)二.根据上面公式计算变压器参数:1.高频变压器输入输出要求:输入直流电压: 200--- 340 V输出直流电压: 23.5V输出电流: 2.5A * 2输出总功率: 117.5W2.确定初次级匝数比:次级整流管选用VRRM=100V正向电流(10A)的肖特基二极管两个,若初次级匝数比大则功率所承受的反压高匝数比小则功率管反低,这样就有下式:N1/N2 = VIN(max) / (VRRM* k / 2) ⑾N1 ----- 初级匝数 VIN(max)------ 最大输入电压 k ----- 安全系数 N2 ----- 次级匝数 Vrrm ------ 整流管最大反向耐压这里安全系数取0.9由此可得匝数比N1/N2 = 340/(100*0.9/2) ≌ 7.63.计算功率场效应管的最高反峰电压:Vmax = V in(max) + (Vo+Vd)/ N2/ N1 ⑿Vin(max)----- 输入电压最大值 Vo ----- 输出电压 Vd ----- 整流管正向电压Vmax = 340+(23.5+0.89)/(1/7.6)由此可计算功率管承受的最大电压: Vmax ≌ 525.36(V)4.计算PWM占空比:由⑽式变形可得:D = (N1/N2)*E2/(E1+(N1 /N2*E2)D=(N1/N2)*(Vo+Vd)/V in(min)+N1/N2*(Vo+Vd) ⒀D=7.6*(23.5+0.89)/200+7.6*(23.5+0.89)由些可计算得到占空比D≌ 0.4815.算变压器初级电感量:为计算方便假定变压器初级电流为锯齿波,也就是电流变化量等于电流的峰值,也就是理想的认为输出管在导通期间储存的能量在截止期间全部消耗完。
专业高频变压器设计计算公式大全要求:输入AC 220V±10% 效率:80%工作频率40KHZ输出电压62V 电流:2A辅助绕组电压:20V/0.1A最大占空比:0.48一.计算最小直流电压和最大直流电压Emin=220*0.9*1.1=218VEmax=220*1.1*1.4=339V二.计算输入功率和视在功率Pin==Po/η=62*2/0.8=155WPt=Po/η+Po=155+124=279w三.计算AP值选择磁芯AP == Aw*Ac==Pin*10²2*F*Bm*J*Ku*Ki== 279*10²2*40*103* 0.15*4*0.4 *1== 1.45选择PQ32/30磁芯Ae=1.6 Aw=0.994Ap=1.6*0.994=1.59结果大于计算的值,符合要求。
材质选用PC40型。
四.计算初级电流峰值和有效值设定电路工作在连续模式,根据输入电压的范围取Krp为0.6Ip =2PinEmin*Dmax*(2-Krp)= 2*155218*0.48*(2-0.6)= 2.1AIrms =Ip*Dmax*(Krp²/3-Krp+1)=2.1*0.48*(0.6²/3-0.6+1)= 1.05A五.计算初级电感量连续模式Lp = Emin*DmaxIp1=Ip2(1-Krp) F*(Ip2-Ip1)=2.1*(1-0.6)=0.84=218*0.4840*103*(2. 1-0.84)= 2.076mH断续模式Lp= Emin²*Dm ax²2*Pin*F=218²*0.48²2*155*40*103= 883.0uH六.计算初级、次级、反馈绕组的圈数DmaxUpmin 计算变压比:n=1-Dmax Up2=0.48218 1-0.48 62= 3.2454初级圈数Np=Emax*1044*F*Bm*Ae=339*1044*40*103*0.15*1.61= 87.7TS 取整数88TS次级圈数Ns1= Np Np*(1-Dmax)*Us1nUpmin*Dmax Np 88n 3.2454 = 27TS反馈圈数Nf= Np*(1-Dm ax)*Us1 Upmin* Dmax= 8.7TS 取9TS八.核算临界电感量(H)Lmin=Ein* nV 。
磁导率英文名称:magnetic permeability 表征磁介质磁性的物理量。
表示在空间或在磁芯空间中的线圈流过电流后、产生磁通的阻力、或者是其在磁场中导通磁力线的能力、其公式μ=B/H 、其中H=磁场强度、B=磁感应强度,常用符号μ表示,μ为介质的磁导率,或称绝对磁导率。
如果空气(非磁性材料)的相对磁导率是1,则铁氧体的相对磁导率为10,000,即当比较时,以通过磁性材料的磁通密度是10,000倍。
铸铁为200~400;硅钢片为7000~10000;镍锌铁氧体为10~1000初始磁导率μi:是指基本磁化曲线当H→0时的磁导率最大磁导率μm:在基本磁化曲线初始段以后,随着H的增大,斜率μ=B/H逐渐增大,到某一磁场强度下(Hm),磁密度达到最大值(Bm),即饱和磁导率μS:基本磁化曲线饱和段的磁导率,μs值一般很小,深度饱和时,μs=μo磁芯参数:(1)有效磁导率μro。
在用电感L形成闭合磁路中(漏磁可以忽略),磁心的有效磁导率为:式中 L——绕组的自感量(mH);W——绕组匝数;磁心常数,是磁路长度Lm与磁心截面积Ae的比值(mm).(2)饱和磁感应强度Bs。
随着磁心中磁场强度H的增加,磁感应强度出现饱和时的B值,称为饱和磁感应强度B。
(3)剩余磁感应强度Br。
磁心从磁饱和状态去除磁场后,剩余的磁感应强度(或称残留磁通密度)。
(4)矫顽力Hco。
磁心从饱和状态去除磁场后,继续反向磁化,直至磁感应强度减小到零,此时的磁场强度称为矫顽力(或保磁力)。
(5)温度系数aμ°温度系数为温度在T1~T2范围内变化时,每变化1℃相应磁导率的相对变化量,即式中μr1——温度为T1时的磁导率;μr2——温度为T2时的磁导率。
在介质中,磁场强度则通常被定,式中为磁化强度。
磁化强度,magnetization,描述磁介质磁化状态的物理量。
是磁化强度,通常用符号M表示。
定义为媒质微小体元ΔV内的全部分子磁矩矢量和与ΔV之比,即对于顺磁与抗磁介质,无外加磁场时,M恒为零;存在外加磁场时,则有或其中H是媒质中的磁场强度,B是磁感应强度,μo是真空磁导率,它等于4π×10^-7H/m。
专业高频变压器设计计算公式大全在设计变压器时,需要考虑多个因素,包括输入和输出电压、电流、功率、频率、磁通密度、磁路结构等。
下面是一些常用的变压器设计计算公式:1.需求计算公式:(1)计算输入和输出功率:P=V*I其中,P是功率,V是电压,I是电流。
(2)计算变压器变比:N=V1/V2其中,N是变比,V1是输入电压,V2是输出电压。
(3)计算输入和输出电流:I1=P/V1,I2=P/V2其中,I1是输入电流,I2是输出电流。
2.磁路计算公式:(1)计算磁路截面积:A=B/(f*μ*H)其中,A是磁路截面积,B是磁感应强度,f是频率,μ是磁导率,H 是磁场强度。
(2)计算磁通量:Φ=B*A其中,Φ是磁通量。
(3)计算铁心横截面积:S=Φ/B其中,S是铁心横截面积。
3.匝数计算公式:(1)计算初级匝数:N1=(V1*10^8)/(B*f*A)其中,N1是初级匝数。
(2)计算次级匝数:N2=(V2*10^8)/(B*f*A)其中,N2是次级匝数。
4.器件尺寸计算公式:(1)计算铁芯尺寸:U=1.8*(Lc/μ)*B*H/Bm其中,U是铁芯尺寸,Lc是直径或长度,B是磁感应强度,H是磁场强度,Bm是饱和磁感应强度。
(2)计算绕线长度:Lw=π*D*(N1+N2)其中,Lw是绕线长度,D是变压器内径。
(3)计算线径:d=(I*K)/(0.4*J*D)其中,d是线径,I是电流,K是充填系数,J是电流密度,D是变压器内径。
这些公式提供了一些变压器设计的基本计算方法。
在实际设计中,还需要考虑到其它因素,如损耗、效率、温升等,以确保设计的变压器满足要求。
高频变压器参数计算一.电磁学计算公式推导:1.磁通量与磁通密度相关公式:Ф = B * S⑴Ф----- 磁通(韦伯)B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯S ----- 磁路的截面积(平方米)B = H * μ⑵μ----- 磁导率(无单位也叫无量纲)H ----- 磁场强度(伏特每米)H = I*N / l⑶I ----- 电流强度(安培)N ----- 线圈匝数(圈T)l ----- 磁路长路(米)2.电感中反感应电动势与电流以及磁通之间相关关系式:EL =⊿Ф / ⊿t * N⑷EL = ⊿i / ⊿t * L⑸⊿Ф----- 磁通变化量(韦伯)⊿i ----- 电流变化量(安培)⊿t ----- 时间变化量(秒)N ----- 线圈匝数(圈T)L ------- 电感的电感量(亨)由上面两个公式可以推出下面的公式:⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得:N = ⊿i * L/⊿Ф再由Ф = B * S可得下式:N = ⊿i * L / ( B * S )⑹且由⑸式直接变形可得:⊿i = EL * ⊿t / L⑺联合⑴⑵⑶⑷同时可以推出如下算式:L =(μ* S )/ l * N2⑻这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素)3.电感中能量与电流的关系:QL = 1/2 * I2 * L⑼QL -------- 电感中储存的能量(焦耳)I -------- 电感中的电流(安培)L ------- 电感的电感量(亨)4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数比与占空比的关系式:N1/N2 = (E1*D)/(E2*(1-D))⑽N1 -------- 初级线圈的匝数(圈) E1 -------- 初级输入电压(伏特)N2 -------- 次级电感的匝数(圈) E2 -------- 次级输出电压(伏特)二.根据上面公式计算变压器参数:1.高频变压器输入输出要求:输入直流电压:200--- 340 V输出直流电压:23.5V输出电流: 2.5A * 2输出总功率:117.5W2.确定初次级匝数比:次级整流管选用VRRM =100V正向电流(10A)的肖特基二极管两个,若初次级匝数比大则功率所承受的反压高匝数比小则功率管反低,这样就有下式:N1/N2 = VIN(max) / (VRRM * k / 2)⑾N1 ----- 初级匝数VIN(max) ------ 最大输入电压k ----- 安全系数N2 ----- 次级匝数Vrrm ------ 整流管最大反向耐压这里安全系数取0.9由此可得匝数比N1/N2 = 340/(100*0.9/2) ≌7.63.计算功率场效应管的最高反峰电压:Vmax = Vin(max) + (Vo+Vd)/ N2/ N1⑿Vin(max) ----- 输入电压最大值Vo ----- 输出电压Vd ----- 整流管正向电压Vmax = 340+(23.5+0.89)/(1/7.6)由此可计算功率管承受的最大电压: Vmax ≌525.36(V)4.计算PWM占空比:由⑽式变形可得:D = (N1/N2)*E2/(E1+(N1 /N2*E2)D=(N1/N2)*(Vo+Vd)/Vin(min)+N1/N2*(Vo+Vd)⒀D=7.6*(23.5+0.89)/200+7.6*(23.5+0.89)由些可计算得到占空比D≌0.4815.算变压器初级电感量:为计算方便假定变压器初级电流为锯齿波,也就是电流变化量等于电流的峰值,也就是理想的认为输出管在导通期间储存的能量在截止期间全部消耗完。
高频变压器计算1. 引言高频变压器在电子领域中具有广泛的应用,尤其在通信、电力电子、医疗器械等领域中扮演着重要的角色。
在设计高频变压器时,正确的计算方法可以保证其性能和可靠性。
本文将介绍高频变压器计算的基本原理和方法。
2. 变压器的基本原理变压器是基于电磁现象工作的电子设备,它通过电流的变化在一个线圈中产生磁场,进而将磁场传递给另一个线圈,并在另一个线圈中产生电流。
根据电磁感应定律,当一个线圈的磁场变化时,另一个线圈中就会产生感应电动势。
变压器是根据线圈的匝数比来调整输出电压和电流的。
在高频变压器中,由于工作频率较高,需要更细致的计算方法。
3. 高频变压器的主要参数在高频变压器的设计中,需要考虑以下几个主要参数:3.1 匹配阻抗在高频电路中,要达到最大功率传输,输入和输出线圈的阻抗需要匹配。
当输入线圈的阻抗与输出线圈的阻抗相等时,能够实现最大功率传输效率。
因此,通过计算输入线圈和输出线圈的等效电阻,并进行匹配阻抗计算,可以得到最佳的转换效率。
3.2 磁芯选材高频变压器中磁芯的选材非常重要。
磁芯的材料应具有低磁滞、低损耗和高饱和磁感应强度等特性。
常用的磁芯材料有硅钢片、铁氧体、纳米晶等。
根据应用需求和工作频率的不同,选择适合的磁芯材料可以提高变压器的效率和稳定性。
3.3 匝数比计算变压器的匝数比决定了输出电压与输入电压之间的比例关系。
在高频变压器设计中,需要根据所需的输出电压和输入电压计算匝数比。
根据变压器的工作原理以及电压和匝数的关系,可以使用以下公式进行计算:匝数比 = 输出电压 / 输入电压3.4 磁链密度计算磁链密度是指磁场中磁感应强度的大小。
磁链密度的计算是为了保证变压器在工作时不出现过磁和饱和现象,从而提高变压器的性能和可靠性。
通过根据磁芯的特性和工作条件,计算磁链密度的大小,并进行合理的选择和优化。
4. 高频变压器计算实例以一个具体的高频变压器为例,假设输入电压为12V,输出电压为120V,工作频率为1MHz。
高频变压器参数计算一.电磁学计算公式推导:1.磁通量与磁通密度相关公式:Ф = B * S⑴Ф ----- 磁通(韦伯)B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯S ----- 磁路的截面积(平方米)B = H * μ⑵μ ----- 磁导率(无单位也叫无量纲)H ----- 磁场强度(伏特每米)H = I*N / l⑶I ----- 电流强度(安培)N ----- 线圈匝数(圈T)l ----- 磁路长路(米)2.电感中反感应电动势与电流以及磁通之间相关关系式:EL =⊿Ф / ⊿t * N⑷EL = ⊿i / ⊿t * L⑸⊿Ф ----- 磁通变化量(韦伯)⊿i ----- 电流变化量(安培)⊿t ----- 时间变化量(秒)N ----- 线圈匝数(圈T)L ------- 电感的电感量(亨)由上面两个公式可以推出下面的公式:⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得:N = ⊿i * L/⊿Ф再由Ф = B * S 可得下式:N = ⊿i * L / ( B * S )⑹且由⑸式直接变形可得:⊿i = EL * ⊿t / L⑺联合⑴⑵⑶⑷同时可以推出如下算式:L =(μ* S )/ l * N2⑻这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素)3.电感中能量与电流的关系:QL = 1/2 * I2 * L⑼QL -------- 电感中储存的能量(焦耳)I -------- 电感中的电流(安培)L ------- 电感的电感量(亨)4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数比与占空比的关系式:N1/N2 = (E1*D)/(E2*(1-D))⑽N1 -------- 初级线圈的匝数(圈) E1 -------- 初级输入电压(伏特)N2 -------- 次级电感的匝数(圈) E2 -------- 次级输出电压(伏特)二.根据上面公式计算变压器参数:1.高频变压器输入输出要求:输入直流电压: 200--- 340 V输出直流电压: 23.5V输出电流: 2.5A * 2输出总功率: 117.5W2.确定初次级匝数比:次级整流管选用VRRM =100V正向电流(10A)的肖特基二极管两个,若初次级匝数比大则功率所承受的反压高匝数比小则功率管反低,这样就有下式:N1/N2 = VIN(max) / (VRRM * k / 2)⑾N1 ----- 初级匝数 VIN(max) ------ 最大输入电压 k ----- 安全系数N2 ----- 次级匝数 Vrrm ------ 整流管最大反向耐压这里安全系数取0.9由此可得匝数比N1/N2 = 340/(100*0.9/2) ≌ 7.63.计算功率场效应管的最高反峰电压:Vmax = Vin(max) + (Vo+Vd)/ N2/ N1⑿Vin(max) ----- 输入电压最大值 Vo ----- 输出电压Vd ----- 整流管正向电压Vmax = 340+(23.5+0.89)/(1/7.6)由此可计算功率管承受的最大电压: Vmax ≌ 525.36(V)4.计算PWM占空比:由⑽式变形可得:D = (N1/N2)*E2/(E1+(N1 /N2*E2)D=(N1/N2)*(Vo+Vd)/Vin(min)+N1/N2*(Vo+Vd)⒀D=7.6*(23.5+0.89)/200+7.6*(23.5+0.89)由些可计算得到占空比 D≌ 0.4815.算变压器初级电感量:为计算方便假定变压器初级电流为锯齿波,也就是电流变化量等于电流的峰值,也就是理想的认为输出管在导通期间储存的能量在截止期间全部消耗完。
高频变压器效率
高频变压器是指工作频率较高的变压器,其工作频率通常在数十千赫兹到数兆赫兹的范围内。
与传统的低频变压器相比,高频变压器在尺寸小、重量轻、效率高等方面具有一些优势。
变压器的效率通常是通过功率传输的效率来衡量,计算公式为:
Efficiency (%)=Input Power/Output Power×100高频变压器的效率受到多种因素的影响,以下是一些可能影响高频变压器效率的因素:
1.磁芯材料:高频变压器通常采用特殊的磁芯材料,如磁性材料
和铁氧体。
这些材料的选择直接影响变压器的磁导率和损耗,
从而影响效率。
2.绕组设计:高频变压器的绕组设计需要考虑电流密度、匝数等
因素,以最大限度地减小电阻和焦耳热损耗。
3.绝缘材料:高频变压器需要使用能够在高频条件下保持稳定性
的绝缘材料,以防止电容损耗和漏电流的增加。
4.开关频率:高频变压器通常与开关电源等高频电路一起使用。
开关频率的选择会影响变压器的性能和效率。
5.冷却系统:高频变压器在工作时可能会产生较多的热量,因此
高效的冷却系统对于维持其效率至关重要。
6.磁耦合和电容耦合:在高频条件下,磁耦合和电容耦合的影响
可能会比低频更为显著。
合理设计变压器结构以减小这些耦合
效应对效率的影响。
总体而言,高频变压器的设计和制造需要在上述多个方面进行综合考虑,以达到较高的效率水平。
高频变压器通常用于需要小型化和高效率的电源系统,例如电子设备、通信设备以及一些新能源技术中。
设计实例:要求:输入AC 220V±10%效率:80%工作频率40KHZ输出电压62V电流:2A辅助绕组电压:20V/0.1A 最大占空比:0.48一.计算最小直流电压和最大直流电压Emin=220*0.9*1.1=218V Emax=220*1.1*1.4=339V 二.计算输入功率和视在功率Pin==Po/η=62*2/0.8=155W Pt=Po/η+Po=155+124=279w三.计算AP 值选择磁芯Pin*10²2*F*Bm*J*Ku*Ki279*10²AP ==Aw*Ac==2*40*103*0.15*4*0.4*1== 1.45选择PQ32/30磁芯Ae=1.6Aw=0.994Ap=1.6*0.994=1.59结果大于计算的值,符合要求。
材质选用PC40型。
四.计算初级电流峰值和有效值设定电路工作在连续模式,根据输入电压的范围取Krp 为0.62PinEmin*Dm ax*(2-Krp)2*155218*0.48*(2-0.6)= 2.1A Irms =Ip*Dmax*(K rp²/3-Krp+1) =2.1*0.48*(0.6²/3-0.6+1)=1.05A== Ip = =五.计算初级电感量连续模式Emin*DmaxIp1=Ip2(1-Krp)F*(Ip2-Ip1)=2.1*(1-0.6)=0.84218*0.4840*103*(2.1-0.84)= 2.076mH断续模式Emin²*Dmax²2*Pin*F218²*0.48²2*155*40*103=883.0uH六.计算初级、次级、反馈绕组的圈数Dmax Upmin 计算变压比:n=1-Dmax Up2=0.4821862= 3.2454初级圈数Emax*1044*F*Bm*Ae=Lp==Np=Lp =339*1044*40*103*0.15*1.61=87.7TS取整数88TS次级圈数 NpNp*(1-Dmax)*U s1nUpmin*Dmax= Np88 n3.2454=27TS反馈圈数Np*(1-Dmax)*Us1Upmin*Dmax=8.7TS 取9TS八.核算临界电感量(H )2T 。
高频变压器的线圈匝数和线径计算步骤介绍高频变压器线径计算高频变压器线径的确定根据公式D=1.13(I/J)^1/2可以计算出来,J是电流密度,不同的取值计算出的线径不同。
由于高频电流在导体中会有趋肤效应,所以在确定线经时还要计算不同频率时导体的穿透深度。
穿透深度公式:d=66.1/(f)^1/2如果计算出的线径D大于两倍的穿透深度,就需要采用多股线或利兹线。
例如:1A电流,频率100K.假设电流密度取4A/mm^2D=1.13*(1/4)^1/2=0.565mm Sc=0.25mm^d=66.1/(f)^1/2=66.1/(100000)^1/2=0.209mm2d=0.418mm采用0.4mm的线,单根0.4的截面积Sc=0.1256mm^2。
2根0.4的截面积Sc=0.1256*2=0.2512mm^2可以看出采用2*0.4的方案可以满足计算的要求。
高频变压器匝数计算一.电磁学计算公式推导:1.磁通量与磁通密度相关公式:Ф = B * S ⑴B = H * μ ⑵H = I*N / l ⑶2.电感中反感应电动势与电流以及磁通之间相关关系式:EL =⊿Ф / ⊿t * N ⑷EL = ⊿i / ⊿t * L ⑸由上面两个公式可以推出下面的公式:⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得:N = ⊿i * L/⊿Ф再由Ф = B * S 可得下式:N = ⊿i * L / ( B * S ) ⑹且由⑸式直接变形可得:⊿i = EL * ⊿t / L ⑺联合⑴⑵⑶⑷同时可以推出如下算式:L =(μ* S )/ l * N2 ⑻这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素)3.电感中能量与电流的关系:QL = 1/2 * I2 * L ⑼4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数比与占空比的关系式:N1/N2 = (E1*D)/(E2*(1-D)) ⑽二.根据上面公式计算变压器参数:1.高频变压器输入输出要求:输入直流电压:200--- 340 V输出直流电压:23.5V输出电流:2.5A * 2输出总功率:117.5W2.确定初次级匝数比次级整流管选用VRRM =100V正向电流(10A)的肖特基二极管两个,若初次级匝数比大则功率所承受的反压高匝数比小则功率管反低,这样就有下式:N1/N2 = VIN(max) / (VRRM * k / 2) ⑾ 这里安全系数取0.9由此可得匝数比N1/N2 = 340/(100*0.9/2) ≌ 7.63.计算功率场效应管的最高反峰电压:Vmax = Vin(max) + (Vo+Vd)/ N2/ N1 ⑿Vmax = 340+(23.5+0.89)/(1/7.6)由此可计算功率管承受的最大电压: Vmax ≌ 525.36(V)4.计算PWM占空比由⑽式变形可得:D = (N1/N2)*E2/(E1+(N1 /N2*E2)D=(N1/N2)*(Vo+Vd)/Vin(min)+N1/N2*(Vo+Vd) ⒀D=7.6*(23.5+0.89)/200+7.6*(23.5+0.89)由些可计算得到占空比D≌ 0.4815.算变压器初级电感量:为计算方便假定变压器初级电流为锯齿波,也就是电流变化量等于电流的峰值,也就是理想的认为输出管在导通期间储存的能量在截止期间全部消耗完。