常见植物转基因技术
- 格式:doc
- 大小:34.00 KB
- 文档页数:4
转基因植物的方法转基因植物是指通过人工手段将外源基因导入植物细胞中,使其产生新的性状或改善原有性状的植物。
转基因植物的方法主要包括以下几个步骤:1. 基因克隆基因克隆是指将所需的基因从外源生物中分离出来,并将其插入到载体DNA中。
载体DNA是一种能够自我复制的DNA分子,通常采用的载体有质粒、噬菌体等。
基因克隆的过程需要利用限制性内切酶切割DNA,将所需的基因与载体DNA连接起来,形成重组DNA分子。
2. 转化转化是指将重组DNA分子导入植物细胞中,使其成为植物细胞的一部分。
转化的方法有多种,包括农杆菌介导转化、基因枪法等。
其中,农杆菌介导转化是最常用的方法。
农杆菌是一种能够感染植物的细菌,通过将重组DNA分子导入农杆菌中,再将农杆菌接种到植物体内,使其将重组DNA分子导入植物细胞中。
3. 选择选择是指通过筛选,将转化成功的植物细胞筛选出来。
为了使转化成功率更高,通常会在重组DNA分子中加入一些标记基因,如抗生素抗性基因等。
在转化后,将植物细胞培养在含有抗生素的培养基上,只有转化成功的细胞才能够生长下去,从而筛选出转化成功的植物细胞。
4. 培育培育是指将转化成功的植物细胞培养成完整的植物。
在培育过程中,需要对植物进行筛选和鉴定,以确保其具有所需的性状。
同时,还需要对植物进行基因检测,以确保其基因组稳定性和安全性。
转基因植物的方法虽然可以为人类提供更多的食品和药品,但也存在一定的风险。
因此,在进行转基因植物研究和开发时,需要严格遵守相关法律法规,确保其安全性和可控性。
同时,还需要加强对转基因植物的监管和管理,以保障公众的健康和安全。
植物转基因技术的原理和方法
1、植物转基因技术的原理
植物转基因技术是指将外源DNA片段插入到植物细胞的过程,从而改变植物的表型特征。
在植物转基因技术中,将外源DNA插入到植物细胞的过程包括以下几个步骤:
(1) DNA片段的生产和收集:DNA片段的生产和收集是通过一系列的生物技术手段来实现的,比如PCR扩增技术、染色体复制,等等。
(2)特異性克隆:特異性克隆是一种利用抗原受体系统的分子生物学技术,主要是通过聚合酶链反应的方法,将无菌的DNA片段植入到宿主细胞中,从而使改变细胞表型性状的抗原受体获得潜在的克隆特异来源。
(3) 载体特异性转染:载体特异性转染是将DNA片段植入到宿主细胞中的过程,它通常是利用哺乳动物质粒等载体将外源DNA片段植入到宿主细胞中。
(4) 转化:转化是植物细胞在受到DNA片段植入后,能够形成含有外源基因的植物的过程。
2、植物转基因技术的方法
(1) 诱导细胞抗性:植物转基因技术可以利用一些诱导剂,如多聚糖、双链RNA等,通过诱导植物细胞的自然抗性,让其增加免疫反应及抗外源性抗原的能力,从而提高转基因植物的转化效率。
(2) 共价结合技术:共价结合技术是一种利用化学方法将外源DNA植入植物细胞的技术,它通常利用某种活性稀释剂将DNA片段与
植物细胞表面形成稳定的共价结合,从而使外源DNA片段能够植入宿主细胞。
(3) 转化抗性:转化抗性是一种利用抗生素来抑制植物细胞的自然抗性,从而促进植物细胞内部外源DNA的转化。
一般常用的抗生素有青霉素和环丙沙星。
(4) 小麦内含体技术:小麦内含体技术是一种利用小麦内含体将外源DNA植入植物细胞的技术,它通常利用小麦内含体外质壁偶联(ECC)促进外源DNA的转化。
植物转基因技术的原理和方法
植物转基因技术是一种利用分子生物学手段将外源基因导入植物细胞内,使其具有新的性状的技术。
转基因技术的原理是通过将外源基因导入植物细胞内,使得这些基因能够在植物细胞内正常表达,从而实现对植物性状的改良。
转基因技术的方法主要包括以下几个步骤:首先,利用现代分子生物学技术,将需要导入植物细胞内的外源基因与载体DNA连接起来,形成转基因载体。
其次,将转基因载体导入到植物细胞内,使其与植物细胞内的DNA发生重组,从而使外源基因被整合到植物细胞内。
最后,通过筛选和鉴定,确定已经被整合外源基因的植物细胞,并进行培养和繁殖。
转基因技术应用广泛,可以用于改良植物的品质、抗病性、耐旱性等性状。
在农业生产中,转基因技术可以提高作物的产量和品质,减少使用农药和化肥的数量,从而减少对环境的污染。
同时,转基因技术也可以用于生物医药领域,生产一些高价值的药物和医疗用品。
然而,转基因技术也存在一些争议和风险。
一些人担心转基因作物可能会对生态环境造成负面影响,并可能对人类健康产生潜在风险。
因此,在使用转基因技术时,需要进行严格的安全评估和监管。
同时,为了保护消费者的知情权和选择权,一些国家和地区还规定了
转基因食品的强制标识。
植物转基因技术是一种强大的生物技术手段,具有广泛的应用前景。
同时,也需要充分考虑其潜在的风险和影响,采取相应的安全措施和监管措施,确保其合理、安全地应用。
农杆菌介导的植物转基因技术
农杆菌介导的植物转基因技术(Agrobacterium-mediated plant transformation)是一种常用的植物遗传转化技术。
该技术利用农杆菌(Agrobacterium tumefaciens)作为载体,将外源基因
导入目标植物细胞,使其产生转基因植物。
农杆菌天然具有植物细胞转化的能力。
当农杆菌感染植物时,其携带的质粒(T质粒)能够在植物细胞中插入外源基因,并
将其转化为转座子形式,随后将其整合入宿主植物基因组中。
转座子通常包含目标基因、转座酶和调控序列,它们共同确保外源基因正确表达。
T质粒还携带有自身所需的发育激素和植
物生长调节物质,以维持转化后细胞的生存和分裂。
农杆菌介导的植物转基因技术具有许多优点。
首先,它可以用于许多不同植物物种的基因转化。
其次,该技术可以实现整株或局部的基因转化,包括细胞、组织、器官或整个植株。
此外,农杆菌介导的转基因技术可实现稳定遗传转化,外源基因可以遗传到植物后代中。
最后,该技术对植物基因组中的特定位点插入外源基因,使得外源基因可以与内源基因进行正常结合。
随着转基因技术的不断发展,农杆菌介导的植物转基因技术仍然广泛应用于研究和农业生产领域。
它为植物功能研究、抗病虫害、提高产量和改善品质等方面提供了有效手段。
然而,农杆菌介导的转基因技术也面临着一些挑战,如转化效率低、插入位点随机性以及响应植物抗性等问题。
因此,研究人员不断探索新的转基因技术和改进农杆菌介导的植物转基因技术的方法,以改善转基因植物的性状和应用。
五种常用的植物转基因技术植物转基因技术是通过各种物理的、化学的和生物的方法将从动物、植物及微生物中分离的目的基因整合到植物基因组中,使之正确表达和稳定遗传并且赋予受体植物预期性状的一种生物技术方法。
1983年,首例抗病毒转基因烟草的成功培育标志着人类开始尝试利用转基因技术改良农作物。
目前,植物转基因技术已在作物改良和育种领域发挥了重要作用。
通过植物转基因技术,一些来自于动物、植物及微生物的有益基因如抗病/虫基因、抗非生物胁迫性状基因及特殊蛋白基因已被转化到农作物中以改良现有的农作物和培育新的农作物品种。
以DNA重组技术为基础的植物转基因技术极大地扩展了基因信息的来源,打破了远缘物种间自身保持遗传稳定性的屏障。
植物转基因技术已应用到玉米、水稻、小麦、大豆和棉花等许多农作物。
同时,该技术也正在被尝试用于茄子和草莓等其它的作物中‘1’纠。
目前,根据转基因植物的受体类型,植物转基因方法可以分为3大类:以外植体为受体的基因转化方法,如农杆菌介导法、基因枪法和超声波介导法;以原生质体为受体的基因转化方法,如聚乙二醇法、电击法、脂质体法及磷酸钙-DNA共沉淀法;以种质系统为受体的基因转化方法,如子房注射法和花粉管通道法。
由于以原生质体为受体的基因转化方法有原生质体培养难度大,培养过程繁杂,培养工作量大且培养技术不易掌握;原生质体再生植株的遗传稳定性差、再生频率低并且再生周期长;相关的转化方法的转化率低、效果不理想等缺点,所以该类基因转化方法未被作为植物转基因的常规方法广泛使用。
本文将对农杆菌介导法、基因枪法、超声波介导法、子房注射法和花粉管通道法的原理、基本步骤和优缺点作以简要介绍。
1以外植体为受体的基因转化方法1.1农杆菌介导法农杆菌介导法是最早应用、最实用有效并且具有最多成功实例的一种植物转基因方法。
农杆菌是一类普遍存在于土壤中的革兰氏阴性细菌。
目前,用于植物转基因介导的农杆菌是根癌农杆菌和发根农杆菌。
某些根癌农杆菌和发根农杆菌分别含有大小为200 -800bp的结构和功能相似的Ti质粒和Ri质粒。
转基因技术动植物转基因方法转基因技术是一种现代生物技术,通过对生物体的基因进行修饰和重组,从而实现特定的性状改良或新性状的引入。
在动植物领域,有多种转基因方法被广泛应用,以下将为您详细介绍。
一、动物转基因方法1、显微注射法这是动物转基因技术中最常用的方法之一。
其基本原理是在显微镜下,将经过处理的外源基因直接注射到受精卵的雄原核中。
因为雄原核较大,更容易容纳和整合外源基因。
注射后的受精卵经过培养和筛选,然后移植到代孕母体的子宫内,最终发育成转基因动物。
这种方法的优点是操作相对直接,成功率较高;但缺点是技术难度大,对设备和操作人员的要求较高,且可能会对受精卵造成一定的损伤。
2、病毒载体法利用病毒作为载体将外源基因导入动物细胞。
经过改造的病毒失去了致病性,但仍能携带外源基因并将其整合到宿主细胞的基因组中。
常用的病毒载体包括逆转录病毒、腺病毒等。
此方法的优势在于转染效率较高,能够感染多种类型的细胞;然而,病毒载体的容量有限,可能引起免疫反应,且存在潜在的生物安全风险。
3、胚胎干细胞介导法首先从早期胚胎中分离出胚胎干细胞,然后通过基因工程技术将外源基因导入胚胎干细胞。
经过筛选和鉴定,含有外源基因的胚胎干细胞被重新注入到囊胚腔中,与囊胚细胞融合,形成嵌合体胚胎。
最后将嵌合体胚胎移植到代孕母体子宫内发育。
这种方法可以实现精确的基因修饰,但胚胎干细胞的培养和操作难度较大。
4、体细胞核移植法先将供体细胞进行基因修饰,使其携带外源基因,然后将供体细胞的细胞核移植到去核的卵母细胞中,构建重组胚胎,再将重组胚胎移植到代孕母体中发育。
这种方法的优点是可以获得大量遗传背景相同的转基因动物,但技术流程复杂,成功率相对较低。
二、植物转基因方法1、农杆菌介导转化法农杆菌是一种天然的植物基因转化载体。
当植物受伤时,农杆菌会感染植物,并将其携带的一段 DNA(称为 TDNA)转移并整合到植物基因组中。
在转基因操作中,将含有目的基因的 TDNA 载体导入农杆菌,然后用农杆菌感染植物细胞,从而实现目的基因的转化。
植物基因转变技术的研究与应用第一章:引言植物基因转变技术是指利用生物工程的手段,对植物基因进行改造和转变的科学方法。
它能够通过选择性地引入外源基因或改造内源基因,使植物获得新的性状或改善现有性状,从而应对环境压力、提高产量和质量等。
本文旨在对植物基因转变技术的研究与应用进行深入探讨。
第二章:植物基因转变技术的研究方法2.1 基因传递方式植物基因转变技术常用的传递方式包括农杆菌介导的转化、基因枪法和电击法等。
农杆菌介导的转化是较常用的方法,通过利用农杆菌及其质粒将外源基因导入到植物细胞中。
基因枪法是将外源基因包裹在微小金属颗粒上,通过高速撞击的方式将基因引入到植物细胞中。
电击法则是利用电场脉冲使植物细胞膜通透性增加,以便外源基因能够进入细胞。
2.2 基因的选择和构建基因的选择是植物基因转变技术中的重要步骤。
常用的外源基因包括抗病基因、抗虫基因、抗逆基因和营养改良基因等。
构建外源基因则需要将目标基因与适当的调控序列组合,并经过人工合成或进行PCR扩增,最终构建出能够在转基因植物中进行表达的基因。
第三章:植物基因转变技术的应用3.1 抗病基因的导入通过转基因技术将抗病基因导入到植物中,能够提高植物的抗病能力。
例如,在水稻中导入水稻白叶枯病的抗性基因Xa21,能够显著提高水稻对白叶枯病的抗性,从而实现重要农作物的病害防控。
3.2 抗虫基因的导入抗虫基因的导入能够有效降低植物受虫害的损失,并减少对化学农药的依赖。
例如,通过导入杀虫蛋白基因Bt基因到作物中,可以使作物在遭受害虫攻击时产生抗虫蛋白,从而实现对害虫的有效防控。
3.3 抗逆基因的导入逆境胁迫对植物的生长和产量产生严重影响。
通过导入抗逆基因,可以增强植物的抵抗逆境胁迫的能力。
例如,在水稻中导入轮播麦作为转基因水稻的耐旱基因,能够显著提高转基因水稻的耐旱能力,并增加其产量。
3.4 营养改良基因的导入通过导入营养改良基因,可以增加植物对营养元素的吸收和利用效率,从而提高作物的产量和品质。
植物转基因技术植物转基因技术,也被称为植物基因工程技术,是一种利用生物技术手段改造植物基因组的方法。
通过将外源基因导入植物细胞中,植物转基因技术使得植物获得了新的性状或功能,从而在农业、环境保护和医药等领域带来了革命性的变化。
一、植物转基因技术的原理和方法植物转基因技术主要依靠DNA分子的重组和重构完成。
其中,常用的方法包括基因枪法、农杆菌介导转化法和双链RNA法。
基因枪法是将外源基因通过微粒轰击的方式送入植物细胞中,使得外源基因插入目标植物基因组中。
农杆菌介导转化法则通过利用农杆菌将外源基因转移到植物细胞中。
双链RNA法则是通过RNA干扰的方式,引导RNA分子与目标基因互作,从而达到基因沉默的目的。
二、植物转基因技术的应用植物转基因技术在农业领域中有着广泛的应用。
常见的转基因植物作物包括转基因水稻、转基因玉米、转基因大豆等。
这些作物通过引入耐草酮类和杀虫剂抗性基因,提高了作物的抗蚜、抗虫能力,从而减少了农药的使用量。
此外,转基因作物还能够抵抗病毒、细菌和真菌等各类病害,提高了作物的产量和质量。
植物转基因技术在环境保护领域也有重要的应用。
通过转基因技术改造植物的性状,例如增加植物的污染物吸收能力和金属离子富集能力,可以用于修复受到污染的土壤和水源。
此外,转基因技术还可以改善植物的耐旱、抗盐性能,以应对气候变化和土地退化等问题。
植物转基因技术还在医药领域有着巨大的潜力。
通过转基因技术,植物可以成为生产蛋白质药物和疫苗的“生物工厂”。
例如,转基因植物可以表达人类胰岛素、乳制品过敏症患者所需的乳头素等蛋白质,用于治疗糖尿病、乳制品过敏等疾病。
三、植物转基因技术的争议和风险尽管植物转基因技术在农业、环境保护和医药领域带来了巨大的潜力,但它也面临着一些争议和风险。
其中,最主要的争议之一是关于转基因食品的安全性问题。
有人担心转基因食品对人体健康产生潜在影响,而另一些人则认为已有的科学研究没有证明转基因食品有害。
转基因的应用实例一、植物领域1. 转基因水稻转基因水稻是应用最为广泛的转基因植物之一。
通过在水稻中加入外源基因,可以使其具有抗病性、耐旱性、耐盐碱性等优良特性。
例如,中国科学院遗传与发育生物学研究所研发的“超级稻”就是一种具有高产、抗虫、耐旱等特性的转基因水稻。
2. 转基因玉米转基因玉米也是应用较为广泛的转基因植物之一。
通过在玉米中加入外源基因,可以使其具有抗虫、抗草害、耐旱等优良特性。
例如,美国孟山都公司研发的“BT玉米”就是一种具有抗虫特性的转基因玉米。
二、畜牧领域1. 转基因奶牛转基因奶牛可以产生更多和更好的乳制品,例如含有更多脂肪和蛋白质的牛奶以及更多乳清蛋白等。
此外,通过在奶牛中加入外源基因还可以使其具有抵抗疾病、提高生产效率等特性。
例如,美国加州大学洛杉矶分校的科学家们就成功地将人类乳腺癌基因转移到了奶牛中,使其产生含有人类乳腺癌药物的牛奶。
2. 转基因猪转基因猪可以使其具有更好的生长速度、更高的肉质量和更强的抵抗力等特性。
例如,中国农业大学研发的“超级瘦肉猪”就是一种具有快速生长和高肉质量特性的转基因猪。
三、医药领域1. 转基因细胞转基因细胞可以用于制造各种医药产品,例如重组蛋白、单克隆抗体等。
此外,通过在细胞中加入外源基因还可以使其具有抵抗疾病、提高生产效率等特性。
例如,美国默克制药公司就利用转基因技术成功地制造出了一种名为“Recombinant Factor VIII”的血友病治疗药物。
2. 转基因动物模型转基因动物模型可以用于进行各种医学实验和药物筛选。
例如,瑞士诺华制药公司就利用转基因技术制造出了一种名为“NOD-SCID小鼠”的免疫缺陷模型,用于进行人类肿瘤细胞的移植和药物筛选实验。
四、环境领域1. 转基因植物清除污染转基因植物可以用于清除土壤和水体中的各种污染物,例如重金属、有机化合物等。
通过在植物中加入外源基因,可以使其具有更好的吸附能力和分解能力。
例如,美国佐治亚大学的科学家们就利用转基因技术成功地制造出了一种名为“超级芥菜”的植物,可以有效地清除土壤中的镉等重金属。
植物转基因技术是指将外源基因导入植物基因组中,使植物获得新的遗传特性,如抗病、抗虫、抗逆、高产、优质等。
目前,植物转基因技术已经成为农业生产中的重要工具,广泛应用于农业、医药、食品等领域。
植物转基因技术主要分为两类:农杆菌介导转化法和基因枪转化法。
其中,农杆菌介导转化法是最常用的方法之一。
该方法是将外源基因导入植物细胞中,利用农杆菌的天然转化系统,将外源基因导入植物细胞中。
基因枪转化法则是利用高压气体将外源基因导入植物细胞中。
植物转基因技术可以为植物赋予新的性状,如抗病、抗虫、耐旱、耐盐、抗逆、高产等。
例如,转基因作物可以通过增加耐旱基因,提高抗旱能力;通过增加抗病基因,提高作物的抗病能力;通过增加产量基因,提高作物的产量等。
然而,植物转基因技术也存在一些问题和挑战。
例如,转基因作物可能会对生态环境造成影响,如对非目标物种的影响、对生态系统功能的影响等。
此外,转基因技术还存在安全性问题,如可能对人类健康造成潜在威胁等。
因此,在推广和应用植物转基因技术时,需要进行充分的安全性评估和风险管理。
总的来说,植物转基因技术在农业生产中具有重要的应用价值,但需要在技术、安全性和环境等方面进行充分的研究和评估。
植物基因转化及转基因植物的分析与鉴定1. 引言植物基因转化是一种重要的生物工程技术,利用这种技术可以引入外源基因或修改内源基因,从而改变植物的性状和功能。
转基因植物是通过植物基因转化技术获得的具有外源基因的植物,具有重要的应用价值。
本文将介绍植物基因转化的基本原理和方法,并探讨转基因植物的分析与鉴定方法。
2. 植物基因转化的基本原理和方法2.1 基本原理植物基因转化利用穿透细胞壁的技术,将外源DNA导入植物细胞,通过细胞的内源机制使其稳定地表达。
常用的植物基因转化方法包括农杆菌介导的转化、生物弹射法和基因枪法等。
2.2 基本方法2.2.1 农杆菌介导的转化农杆菌介导的转化是最常用的植物基因转化方法之一。
基本步骤包括构建表达载体、感受剂的处理和遗传转化的选择和鉴定。
构建表达载体时,将目标基因插入适当的载体上,并添加转录和翻译的调控序列,如启动子和终止子,以确保目标基因的表达。
感受剂的处理是将表达载体导入农杆菌中,并通过培养条件的优化,使农杆菌中的表达载体得到高效表达。
遗传转化的选择和鉴定是将感受剂经过适当的处理后,转化到植物细胞中,并通过筛选和鉴定来确定转化成功的细胞株。
2.2.2 生物弹射法生物弹射法是将DNA以高速撞击植物细胞,使其穿透细胞的质壁和细胞膜,进而将外源基因导入细胞内。
生物弹射法通常使用微粒子加速器或毛发管射击法进行。
微粒子加速器是一种将金属微粒或微球与外源DNA一起加速,并将其发射到目标细胞上的设备。
通过微粒的高速撞击,外源基因能够穿透细胞的质壁和细胞膜。
毛发管射击法是将DNA包裹在微小的金属颗粒上,然后使用高压气体将金属颗粒射击到目标细胞上。
这种方法也能够使外源基因穿透细胞膜进入细胞。
2.2.3 基因枪法基因枪法是将外源DNA包裹在金粒或微米级金属颗粒上,并使用高压气体或炮发射器将其穿过细胞质,进入植物细胞。
基因枪法不需要依赖转化菌或细胞融合等辅助手段,直接将外源DNA送入目标细胞,因此具有较高的成功率。
五种常用的植物转基因技术植物转基因技术是通过各种物理的、化学的和生物的方法将从动物、植物及微生物中分离的目的基因整合到植物基因组中,使之正确表达和稳定遗传并且赋予受体植物预期性状的一种生物技术方法。
1983年,首例抗病毒转基因烟草的成功培育标志着人类开始尝试利用转基因技术改良农作物。
目前,植物转基因技术已在作物改良和育种领域发挥了重要作用。
通过植物转基因技术,一些来自于动物、植物及微生物的有益基因如抗病/虫基因、抗非生物胁迫性状基因及特殊蛋白基因已被转化到农作物中以改良现有的农作物和培育新的农作物品种。
以DNA重组技术为基础的植物转基因技术极大地扩展了基因信息的来源,打破了远缘物种间自身保持遗传稳定性的屏障。
植物转基因技术已应用到玉米、水稻、小麦、大豆和棉花等许多农作物。
同时,该技术也正在被尝试用于茄子和草莓等其它的作物中‘1’纠。
目前,根据转基因植物的受体类型,植物转基因方法可以分为3大类:以外植体为受体的基因转化方法,如农杆菌介导法、基因枪法和超声波介导法;以原生质体为受体的基因转化方法,如聚乙二醇法、电击法、脂质体法及磷酸钙-DNA共沉淀法;以种质系统为受体的基因转化方法,如子房注射法和花粉管通道法。
由于以原生质体为受体的基因转化方法有原生质体培养难度大,培养过程繁杂,培养工作量大且培养技术不易掌握;原生质体再生植株的遗传稳定性差、再生频率低并且再生周期长;相关的转化方法的转化率低、效果不理想等缺点,所以该类基因转化方法未被作为植物转基因的常规方法广泛使用。
本文将对农杆菌介导法、基因枪法、超声波介导法、子房注射法和花粉管通道法的原理、基本步骤和优缺点作以简要介绍。
1 以外植体为受体的基因转化方法1.1农杆菌介导法农杆菌介导法是最早应用、最实用有效并且具有最多成功实例的一种植物转基因方法。
农杆菌是一类普遍存在于土壤中的革兰氏阴性细菌。
目前,用于植物转基因介导的农杆菌是根癌农杆菌和发根农杆菌。
转基因植物表
以下是一些常见的转基因作物及其特点:
1. 转基因大豆:大豆是世界上最重要的粮食作物之一,通过转基因技术可以提高抗性,耐受性和产量。
一些转基因大豆植物具有耐草剂、抗虫害和耐逆境性能。
2. 转基因玉米:转基因玉米是通过基因工程技术插入抗虫害基因,如BT基因。
这种转基因玉米植物具有更高的抗虫害能力,减少了化学农药的使用。
3. 转基因水稻:转基因水稻通常被用于提高产量和抵抗病虫害。
一些转基因水稻表达了抗性基因,可以帮助抵御病菌和虫害。
4. 转基因棉花:转基因棉花是世界上最重要的纤维作物之一,具有抗虫害能力。
这些转基因棉花植物通过插入一种名为BT
基因的基因来实现抗虫。
5. 转基因番茄:转基因番茄通常通过插入抗性基因来提高其抵抗力和耐逆性。
这些基因通常帮助番茄抵御病原体、减少野生动物侵袭等。
需要注意的是,转基因植物的安全性和对环境的影响一直是一个有争议的问题。
在推广和使用转基因作物时,需要充分考虑其生态系统影响和对人类健康的潜在风险。
因此,对于转基因植物的研究和监管非常重要。
五种常用的植物转基因技术植物转基因技术是通过各种物理的、化学的和生物的方法将从动物、植物及微生物中分离的目的基因整合到植物基因组中,使之正确表达和稳定遗传并且赋予受体植物预期性状的一种生物技术方法。
1983年,首例抗病毒转基因烟草的成功培育标志着人类开始尝试利用转基因技术改良农作物。
目前,植物转基因技术已在作物改良和育种领域发挥了重要作用。
通过植物转基因技术,一些来自于动物、植物及微生物的有益基因如抗病/虫基因、抗非生物胁迫性状基因及特殊蛋白基因已被转化到农作物中以改良现有的农作物和培育新的农作物品种。
以DNA重组技术为基础的植物转基因技术极大地扩展了基因信息的来源,打破了远缘物种间自身保持遗传稳定性的屏障。
植物转基因技术已应用到玉米、水稻、小麦、大豆和棉花等许多农作物。
同时,该技术也正在被尝试用于茄子和草莓等其它的作物中‘1’纠。
目前,根据转基因植物的受体类型,植物转基因方法可以分为3大类:以外植体为受体的基因转化方法,如农杆菌介导法、基因枪法和超声波介导法;以原生质体为受体的基因转化方法,如聚乙二醇法、电击法、脂质体法及磷酸钙-DNA共沉淀法;以种质系统为受体的基因转化方法,如子房注射法和花粉管通道法。
由于以原生质体为受体的基因转化方法有原生质体培养难度大,培养过程繁杂,培养工作量大且培养技术不易掌握;原生质体再生植株的遗传稳定性差、再生频率低并且再生周期长;相关的转化方法的转化率低、效果不理想等缺点,所以该类基因转化方法未被作为植物转基因的常规方法广泛使用。
本文将对农杆菌介导法、基因枪法、超声波介导法、子房注射法和花粉管通道法的原理、基本步骤和优缺点作以简要介绍。
1 以外植体为受体的基因转化方法1.1农杆菌介导法农杆菌介导法是最早应用、最实用有效并且具有最多成功实例的一种植物转基因方法。
农杆菌是一类普遍存在于土壤中的革兰氏阴性细菌。
目前,用于植物转基因介导的农杆菌是根癌农杆菌和发根农杆菌。
某些根癌农杆菌和发根农杆菌分别含有大小为200 -800bp的结构和功能相似的Ti质粒和Ri质粒。
Ti质粒和Ri质粒含有3个功能区:参与农杆菌侵染植物过程的vir区、参与农杆菌基因整合到宿主植物基因组过程的T-DNA区、在农杆菌中启动质粒复制的ori区。
在vir区上的vir操纵子群作用下,Ti质粒和Ri质粒能将自身的T-DNA转入宿主植物细胞内,而后将T-DNA整合到植物基因组中。
T—DNA是质粒上一段10—30kb 的序列,它的两端各有一段高度保守的25bp的同向重叠序列。
由于T-DNA转化无序列特异性,因此可用任何基因片段代替原来的T-DNA基因片段进行。
农杆菌介导法的原理是:在农杆菌基因ehvA,chvB,pscA,and att家族所编码的蛋白和植物伤口产生的酚类物质和糖类物质的共同作用下,农杆菌识别并附着在宿主细胞壁上。
virD4和virB基因编码蛋白组成的type IV分泌系统将单链VirD2-T-DNA复合体运送到宿主细胞内。
此外,VirE3、VirE2和VirF蛋白也通过该系统进入宿主细胞质中。
在宿主细胞质中,VirE2蛋白与VirD2-T-DNA复合体结合。
在V irD2核定位信号、某些农杆菌蛋白和宿主细胞蛋白的共同作用下,VirD2-T-DNA复合体进入细胞核。
在VirD2、VirE2、某些宿主细胞核蛋白如AtKu80和DNA连接酶的作用下,T-DNA被整合到宿主基因组中,但具体过程不详。
农杆菌介导法的基本步骤是:(1)诱导目标植物外植体;(2)构建含有目的基因的质粒;(3)质粒导人合适的农杆菌菌株中及该菌株的活化过程;(4)植物愈伤组织的微伤口处理及农杆菌侵染;(5)共培养及脱菌处理;(6)愈伤组织筛选、分化与植株再生;(7)再生植株及其后代的外源基因及其表达产物的分子检测;(7)转基因T1代的目标性状鉴定。
农杆菌介导法具有操作简单、转化效率较高、重复性好、单拷贝整合、基因沉默现象少、转育周期短、转化片段较大且插入片段明显及实验费用低等优点,因此,农杆菌介导法是目前应用最广泛的一种植物转基因方法。
但是,农杆菌介导法也存在一些问题。
首先,在自然条件下,农杆菌只侵染双子叶植物。
对于单子叶植物,虽然可以采用人工添加酚类物质的方法,诱导农杆菌完成侵染过程,但是单子叶植物的组织培养有一定的难度。
目前,只发现20多种单子叶植物能被农杆菌侵染。
其次,植物细胞壁对农杆菌介导转化效果有一定影响。
再次,影响农杆菌转化效率的因素较多。
在设计农杆菌介导实验时,研究者要考虑农杆菌菌株类型、质粒载体类型及两者间的匹配情况;外植体的基因型、来源和发育状态;培养基成分及某些诱导条件如是否加入酚类物质等。
此外,植物愈伤组织的诱导过程有时会存在困难。
1.2基因枪法基因枪是20世纪80年代初由园艺学家Sanford等人发明的。
在此基础上,Klein等以基因枪为工具发展了一套物理学转基因方法。
经过10多年的改进和提高,基因枪的发展经历了3个阶段:第一代基因枪是1987年由Sanford等设计制造的火药基因枪,它是以火药爆炸的冲力为动力;第二代基因枪是高压放电基因枪,它是以高压放电引起水滴汽化所产生的冲力为动力;第三代基因枪是压缩气体驱动基因枪,它是以高压惰性气体为动力。
由于存在明显的安全性和稳定性问题,前两代基因枪现已基本被淘汰。
作为一种物理学方法,基因枪技术已成功应用在烟草、水稻、小麦、甘蔗、棉花、大豆、洋葱、番木瓜和葡萄等许多农作物的品种改良上,并且该技术被用于瞬间表达研究和培育稳定的转基因植株等研究领域。
基因枪法的原理是:利用基因枪产生的高压动力冲击波将包裹外源DNA的重金属颗粒(如钨粉、金粉等)射穿植物细胞壁和细胞膜,射入植物细胞,使外源DNA随机整合到植物细胞染色体中,达到使外源DNA在受体植物中正常表达和稳定遗传的目的。
基因枪法的基本步骤是:(1)诱导目标植物外植体;(2)构建含有目的基因的质粒或制备外源DNA样品;(3)重金属颗粒的外源基因包被过程;(4)植物愈伤组织的前处理;(5)基因枪轰击过程;(6)愈伤组织筛选、分化与植株再生;(7)再生植株及其后代的外源基因及其表达产物的分子检测。
基因枪法具有操作方法简单,转化时间短、数量大,对受体植物几乎无要求,基因用量少,可转化基因片段大,可获得较长时间的瞬时表达,实验费用低等优点。
然而基因枪法也有许多缺点。
首先,由于基因枪法转导的外源DNA是随机整合到宿主基因组中的,这不利于外源DNA在宿主植物中稳定地表达和遗传。
其次,因为随机整合位点不固定和外源DNA拷贝数多等问题会导致转基因后代的突变率提高、整合的外源DNA丢失及基因沉默等现象。
此外,基因枪法还存在转化过程对细胞有损害、转化率低、嵌合体多、可重复性差及设备昂贵等缺点。
1.3超声波介导法作为一种新创建的物理学基因转化方法,超声波介导法已被用于真核生物的基因转化研究和人类基因治疗领域。
在农作物基因转化研究中,超声波介导法已成功地将外源DNA转导人烟草和甜菜的原生质体、玉米和小麦的未成熟胚及烟草的叶片中。
目前,该方法常与农杆菌介导法共用以提高外源DNA的转化效率。
超声波介导法的原理是:利用超声波的空化作用,在细胞膜上产生可恢复的渗透孔空洞,从而使外源DNA进入细胞。
超声波介导法的基本步骤是:(1)目标植物外植体的制备;(2)目的基因的制备;(3)超声波处理;(4)转化受体俞伤组织的筛选与植株再生;(5)再生植株及其后代的外源基因及其表达产物的分子检测。
超声波介导法的优点有:该方法不受宿主范围的限制,可以将外源基因导入任何基因型的植物细胞内;该方法可以避免对细胞的机械性损伤,有利于原生质体的存活;该方法操作简便、设备便宜等优点。
由于超声波介导法也存在外源DNA随机整合及外源DNA拷贝数多等问题。
因此,该方法也会导致转基因后代的突变率提高、整合的DNA丢失及基因沉默等现象。
2 以种质系统为受体的基因转化方法2.1子房注射法子房注射法是一种育种工作中经常使用的简便易行的植物转基因方法。
1993年,丁群星及其同事首次使用子房注射法将Bt基因导入玉米子粒中并成功获得了具有一定玉米螟抗性的转基因玉米。
目前,子房注射法成功用于玉米、小麦、甜瓜和黄瓜等农作物的转基因育种工作中。
子房注射法的原理是:使用微注射针或显微注射仪将外源DNA注入处于减数分裂期的受体植物的子房中,借助子房产生的压力和卵细胞产生的吸收力,外源DNA进入受精的卵细胞中,借助合子胚旺盛分裂过程中基因组的复制、重组、缺失或易位等现象,外源DNA被随机整合到受体染色体上。
子房注射法的基本步骤是:(1)目的基因的制备;(2)根据受体植物受精后其子房的变化特点,确定最佳时间,进行外源DNA注射或将离体的受精子房进行外源DNA注射,再对该离体子房进行培养;(3)转化种子及其后代的外源基因及其表达产物的分子检测。
子房注射法的优点:该方法无需组织培养过程,因此实验过程简单,操作便捷;该方法所用的仪器设备简单便宜;外源DNA直接注射进入子房可以提高转化率;该方法可以直接得到转化种子,因此缩短了育种周期。
其缺点是:田间转化过程的工作量大;转化过程中,子房受到机械性伤害易导致转化率和结实率低;易产生杂基因污染;该方法只能在授粉期进行,受季节和天气等自然条件影响;由于后代群体规模较大,筛选过程工作量较大。
2.2花粉管通道法20世纪70年代末期,在DNA片段杂交假设理论和对植物开花受精过程的解剖学及细胞学特征研究的基础上,周光宇等推测外源DNA可以通过花粉管经过的珠心通道进入受精胚囊,转化进入精卵融合细胞、早期合子及早期胚细胞。
随后,周光宇等创建花粉管通道技术并通过该技术将外源DNA导入陆地棉,成功地培育出抗枯萎病的新品种。
目前,花粉管通道法已成功应用于棉花、水稻、小麦、大豆等农作物的改良和育种工作。
花粉管通道法的原理是:在植物授粉后的特定时期内,利用精卵融合细胞、早期合子及早期胚细胞无细胞壁和核膜结构的特点,以柱头内形成的花粉管为通道,将外源DNA导人受精胚囊。
在受精后细胞基因组合成和复制活跃的条件下,将外源DNA随机整合到受体植株基因组上。
花粉管通道法的基本步骤是:(1)目的基因的制备;(2)根据受体植物受精后,花粉管形成的情况和精卵细胞融合的时间,确定最佳时间,进行外源DNA导入;(3)转化种子及其后代的外源基因及其表达产物的分子检测。
花粉管通道法的优点:操作简单;对受体植物无种类的要求;对外源DNA无特别要求;无组织培养过程;转化速度较快,育种周期短等。
其缺点是:该方法的具体机制不清,且缺乏分子生物学证据;受自然条件、环境条件及受体植物的花期等生理条件限制;该方法要求充分了解受体植物开花受精的时间;该方法要求很强的经验性,对某些农作物的操作难度较大;转化率低;结果的可重复性差;在转基因植株的后代中,外源基因的稳定遗传性差。