整车速度计算表
- 格式:xls
- 大小:206.00 KB
- 文档页数:2
Vol. 33 No. 1Juz 0071第38卷第1期2071年1月贵州大学学报(自然科学版)Journal of Guizhou University ( Natural Sciecces)文章编号 10004269(2021)019098 26DOI : 10. 15755/j. ctU ydxPzrb. 0071.01. 15基于Crrise 的整车动力性和经济性分析郁逸桢,郑长江*(河海大学土木与交通学院,江苏南京710098 )摘要:动力传动系统作为影响车辆动力性和燃油经济性的重要部件,开展传动系统的优化设计 对车辆研发具有重要意义。
文中基于Cruise 软件建立了整车模型,将仿真结果对比工信部实测 数据,验证了 Cruise 软件所建立的车辆仿真模型是可靠的。
动力性计算指标误差在3%以内,燃油经济性误差在5%以内,具有较高精度。
通过改变传动系统中主减速器传动比和变速器各挡 位传动比对车辆性能进行优化,在动力性减弱1.52%的情况下,提升了 4. 97%的经济性,符合当 前节能减排的发展趋势。
该研究结果表明:基于Cruise 软件对车辆进行性能优化是非常有必要的,具有重要的工程应用和理论参考价值。
关键词:动力性;燃油经济性;Cruise 仿真模拟;优化匹配中图分类号:U492.8 文献标志码:A车辆的动力性和燃油经济性是综合评估汽车 性能的重要指标。
王锐[]通过对比某车型的动力 性理论数据和Cruwo 软件仿真结果得出,仿真分析 精确度高于理论计算。
朱路生⑵针对轻型卡车建 模仿真,对比分析了 Mule 车和标杆车型,确认了 Mule 车性能指标优于标杆车型,具备细分市场的 差异化竞争力。
王琳4]基于Cruise 软件仿真分析 了某款手动挡汽车,并将仿真结果与试验结果对比 研究,验证了动态建模仿真分析应用于产品开发研 究的可行性。
采用软件仿真并配合试验研究,在整 车动力性和经济性评价方面取得了较好的应用效 果。
盛年不重来,一日难再晨。
及时宜自勉,岁月不待人。
AVL-Cruise整车性能分析1 模型的构建要求1.1 整车动力性、经济性计算分析参数的获取收集和整理关于该车的整车配置组件参数数据。
主要包括发动机动力性、经济性参数;变速箱档位速比参数;后桥主减速比参数;轮胎参数;整车参数等。
具体参数项目见附录1。
1.2 各配置组件建模1.2.1 启动软件在桌面或程序中双击AVL-Cruise快捷图标,进入到AVL-Cruise用户界面,点击下图所示工具图标,进入模型创建窗口。
进入模型创建窗口1.2.2 建立整车参数模型进入模型创建窗口后,将鼠标选中Vehicle Model,鼠标左键点击整车图标,按住左键将图标拖曳到建模区,如下图所示:双击整车图标后打开整车参数输入界面,根据参数输入要求依次填写数据:Author :此处填写计算者,不能用中文,可以用汉语拼音和英文,该软件所有填写参数处均不能出现中文。
Comment :此处填写分析的车型号。
Notice1、Notice2、Notice3:此处填写分析者认为需要注意的事项,比如特殊发动机型号等,没有可 以不填。
1.2.2.1 整车参数数据填写规则序号 驾驶室形式 迎风面积 风阻系数 备注1 奇兵车身(平顶) 5.0(1830*2760) 0.7 迎风面积=前轮距*整车高度2奇兵车身(高顶)6.422(1900*3380)0.75作者名称、注解说明,可以不填注解说明,可以不填油箱容积 内外温差:0试验台架支点高度:100内外压差:0 牵引点到前轴距离轴距空载、半载、满载下整车重心到前轴中心距离、重心高度、鞍点高度、前轮充气压力、后轮充气压力整备质量 整车总重迎风面积风阻系数前轮举升系数后轮举升系数3 6系、9系平顶车身6.1(2020*3020) 0.8重卡风阻系数参考值:0.7-14 6系、9系高顶车身7.0(2020*3460)0.95 高顶加导流罩7.3(2020*3637)0.92进入模型创建窗口后,将鼠标选中Engine Model,鼠标左键点击发动机图标,按住左键将图标拖曳到建模区,如下图所示:双击发动机图标后打开发动机参数输入界面,根据参数输入要求依次填写数据:1.2.3.1 发动机参数输入规则型号是否有增压器发动机排量发动机工作温度缸数冲程数怠速转速额定最高转速惯量达到全功率响应时间0.1S燃油类型热值燃油密度作者名陈、注解说明注解说明序号发动机惯量达到全功率的响应时间柴油热值柴油密度1 参考值:1.25 参考值:0.1 参考值:44000kj/kg 0.82kg/L23按照图示箭头位置单击按钮,弹出外特性输入窗口:此处根据厂家提供的发动机数据输入转速与扭矩关系发动机转速与扭矩的关系从外特性数据表中可以直接得到;填写时注意对应关系即可。
汽车整车动力性仿真计算汽车整车动力性仿真计算是指通过计算机模拟的方式,对汽车整车在行驶过程中的动力性能进行分析和评估的过程。
该计算是基于车辆的动力学模型和各种输入参数,通过数值计算方法得出的结果,可以用于优化车辆的设计和调整工艺参数,以提高汽车的动力性能。
1.动力系统模型:汽车整车动力性仿真计算首先要建立动力系统的模型,包括发动机、变速器、传动轴、驱动轴和车轮等组成部分。
这些部分的动力学模型要准确地描述各个部件之间的作用和相互影响。
2.输入参数设置:仿真计算需要确定一系列的输入参数,如车辆的质量、空气阻力系数、轮胎的摩擦系数、发动机的功率和扭矩曲线等。
这些参数对于仿真计算的结果有着重要的影响,需要根据实际情况进行准确的测量和设置。
3.常规工况仿真计算:仿真计算通常会对车辆在不同的工况下进行仿真计算,如加速、匀速和制动等情况。
通过这些仿真计算可以得到车辆在各个工况下的加速性能、最高速度、制动距离等数据,用于评估车辆的动力性能。
4.特殊工况仿真计算:除了常规工况外,还需要对一些特殊工况进行仿真计算,如起步时的爆发力、高速行驶时的超车能力等。
这些特殊工况对于车辆的动力性能有着重要的影响,需要进行详细的仿真计算和评估。
5.仿真计算结果分析:对仿真计算的结果进行详细的分析,比如加速时间、最高速度、制动距离等数据。
通过这些数据的分析,可以找出车辆的优点和不足之处,为进一步的优化工作提供依据。
6.参数优化和调整:根据仿真计算的结果,对车辆的各个参数进行优化和调整,以提高车辆的动力性能。
比如调整发动机的进气和排气系统,改善传动系统的效率等。
总之,汽车整车动力性仿真计算是一项非常复杂和关键的工作,通过对汽车的动力性能进行仿真计算和分析,可以为汽车的设计和优化提供参考依据,从而提高汽车的动力性能和性价比。
第六章整车计算及质心位置确定第一节轴荷计算及质心位置确定1、本章所用质量参数说明(Kg)T 底盘承载质量F 底盘整备质量(不含上车装置)NL 有效载荷V A1 底盘整备质量时的前轴荷HA1 底盘整备质量时的后轴荷V A2 允许前轴荷HA2 允许后轴荷HAG2 允许总的后轴荷(驱动轴+支撑轴)NLA2 允许后支撑轴轴荷VLA2 允许中支撑轴轴荷GG2 允许总质量(载货汽车底盘整备质量+上车装置质量+允许载荷)NL2 允许有效载荷V A3 实际有效载荷(AB+NL)时的前轴荷HA3 实际有效载荷(AB+NL)时的后轴荷)GG3 实际有效载荷(AB+NL)时的总质量NL3 实际有效载荷(AB+NL)HA4 底盘后轴荷(包括所有附加质量例如驾驶员、附加油箱,但不含AB和NL)GG4 底盘总质量(包括所有附加质量例如驾驶员、附加油箱,但不含AB和NL)NLV 由轴荷超载引起的有效载荷损失HAü超过允许后轴荷V Aü超过允许前轴荷AB 上车装置质量EG 整车整备质量(载货汽车底盘+AB)M 附加质量,例如:M1 驾驶员+副驾驶员M2 备胎(新、老位置移动时)M3 起重机(随车吊)、起重尾板等LV A 前轴荷占总质量的比例(%)2、本章所用尺寸参数说明(mm)A、轴距A1、轴距(第一后轴中心线至第二后轴中心线)A理论理论轴距(只用于3轴或4轴)a1 与轴荷比例(驱动轴与支撑轴之比)有关的从理论轴线到驱动轴的距离W 前轴中心线至驾驶室后围的距离W2 前轴中心线至上车装置前缘的距离X 货厢或上车装置的长度y 均布载荷时最佳质心位置至前轴中心线的距离(AB+NL)y'假设的质心位置至前周中心线的位置y1 驾驶员+副驾驶员位置距前轴中心线位置y2 备胎(新、老位置移动的距离)y3 起重机(随车吊)、起重尾板等MHS 附加质量的质心高度GHSL 整车空载质心高度GHSV 整车满载质心高度FHS 底盘的质心高度ABHS 上车装置的质心高度NLHS 允许有效载荷的质心高度2、轴荷计算a)双后轴:a1=A1/2A理论=A+a1b)后支撑轴:a1=NLA2×A1/HAG2A理论=A+a1c)中支撑轴:a1=VLA2×A1/HAG2A理论=A+A1-a1示例(一般)对于上车装置比较简单的车辆,例如自卸车、栅栏车或厢式车(未装随车吊、起重栏板等),为实现轴荷的最佳分配,y值和y'值应相等,否则会减少有效载荷。
整车速比计算公式整车速比是汽车传动系统中一个非常重要的概念,它对于车辆的性能和驾驶体验有着至关重要的影响。
那到底啥是整车速比呢?简单来说,整车速比就是驱动轮转速与发动机转速的比值。
咱们先来说说整车速比的计算公式。
整车速比 = 主减速比 ×变速器传动比。
主减速比呢,通常是由车辆后桥的齿轮传动比决定的。
变速器传动比呢,则是根据不同挡位而变化。
我记得有一次,我在路上看到一辆车在爬坡,那发动机的声音可大了,速度却上不去。
后来我一琢磨,估计就是整车速比没调好。
要是速比合适,发动机的动力就能更有效地传递到车轮上,爬坡也就不那么费劲啦。
再深入一点讲讲,变速器的每个挡位都有对应的传动比。
比如说,低挡位传动比大,能提供更大的扭矩,适合起步和爬坡;高挡位传动比小,能让车辆在高速行驶时降低发动机转速,节省燃油。
这就好比我们骑自行车,小齿轮带大齿轮的时候,虽然费力,但是能骑得快;大齿轮带小齿轮的时候,虽然轻松,但是速度慢。
汽车的变速器也是这个道理。
想象一下,如果一辆车的整车速比不合理,那开起来得多难受啊。
比如说,速比太大,车就没劲儿,加速慢;速比太小,车速是上去了,可发动机一直高速运转,又费油又伤车。
所以啊,汽车厂家在设计车辆的时候,都会精心计算和调整整车速比,以达到动力性、经济性和舒适性的平衡。
这可不是一件简单的事儿,需要考虑发动机的性能、车辆的用途、重量等等好多因素。
而且,不同类型的车辆,整车速比的要求也不一样。
像货车,需要大扭矩来拉货,速比就会相对大一些;而轿车,更注重舒适性和高速性能,速比就会小一些。
在实际驾驶中,我们也能通过感受车辆的加速、换挡平顺性等方面来大致判断整车速比是否合适。
如果换挡的时候顿挫感很强,或者加速的时候感觉动力不足,那可能就跟整车速比有关。
总之,整车速比虽然听起来有点复杂,但它确实对我们的驾驶体验有着实实在在的影响。
了解它,能让我们更好地理解汽车的工作原理,也能在选车和开车的时候心里更有数。
精品文档AVL-Cruise计算分析整车性能的流程与规范1 模型的构建要求1.1 整车动力性、经济性计算分析参数的获取收集和整理关于该车的整车配置组件参数数据。
主要包括发动机动力性、经济性参数;变速箱档位速比参数;后桥主减速比参数;轮胎参数;整车参数等。
具体参数项目见附录1。
1.2 各配置组件建模1.2.1 启动软件在桌面或程序中双击AVL-Cruise快捷图标,进入到AVL-Cruise用户界面,点击下图所示工具图标,进入模型创建窗口。
进入模型创建窗口1.2.2 建立整车参数模型进入模型创建窗口后,将鼠标选中Vehicle Model,鼠标左键点击整车图标,按住左键将图标拖曳到建模区,如下图所示:双击整车图标后打开整车参数输入界面,根据参数输入要求依次填写数据:Author :此处填写计算者,不能用中文,可以用汉语拼音和英文,该软件所有填写参数处均不能出现中文。
Comment :此处填写分析的车型号。
Notice1、Notice2、Notice3:此处填写分析者认为需要注意的事项,比如特殊发动机型号等,没有可 以不填。
1.2.2.1 整车参数数据填写规则进入模型创建窗口后,将鼠标选中Engine Model ,鼠标左键点击发动机图标,按住左键将图标拖曳到建模区,如下图所示:作者名称、注解说明,可以不填注解说明,可以不填油箱容积 内外温差:0试验台架支点高度:100内外压差:0 牵引点到前轴距离轴距空载、半载、满载下整车重心到前轴中心距离、重心高度、鞍点高度、前轮充气压力、后轮充气压力整备质量 整车总重迎风面积风阻系数前轮举升系数后轮举升系数双击发动机图标后打开发动机参数输入界面,根据参数输入要求依次填写数据:1.2.3.1 发动机参数输入规则按照图示箭头位置单击按钮,弹出外特性输入窗口:此处根据厂家提供的发动机数据输入转速与扭矩关系发动机转速与扭矩的关系从外特性数据表中可以直接得到;填写时注意对应关系即可。
汽车整车性能计算分解汽车整车性能是指汽车在各种工况下的运行情况和表现。
它是汽车设计和制造的一个重要指标,可以反映出汽车的动力性、操控性、经济性、舒适性以及安全性等方面的综合表现。
为了评价汽车整车性能,需要对汽车的各个方面进行计算和分解。
首先,汽车的动力性是指汽车在行驶过程中的加速能力和最高速度等指标。
为了计算汽车的动力性能,需要考虑到汽车的发动机功率、扭矩和车辆的重量等因素。
通过计算发动机的输出功率和扭矩,以及汽车的质量,可以得出汽车的加速性能和最高速度。
操控性是指汽车在行驶过程中的操纵性和稳定性。
为了计算汽车的操纵性能,需要考虑到汽车的转向精度、制动能力和悬挂系统等因素。
通过计算转向系统的转向角度和制动系统的制动力,以及悬挂系统的刚度和减震效果,可以评估汽车的操纵性和稳定性。
经济性是指汽车在行驶过程中的燃油消耗和能源利用效率等指标。
为了计算汽车的经济性能,需要考虑到汽车的油耗和行驶里程等因素。
通过计算汽车的平均油耗和续航里程,可以评估汽车的燃油消耗和能源利用效率。
舒适性是指汽车在行驶过程中的乘坐舒适程度和噪音振动等指标。
为了计算汽车的舒适性能,需要考虑到汽车的座椅舒适度、悬挂系统的减震效果以及车辆噪音和振动等因素。
通过计算座椅的舒适度指数和车辆的噪音振动水平,可以评估汽车的乘坐舒适程度和噪音振动性能。
安全性是指汽车在行驶过程中的安全性能和碰撞保护能力等指标。
为了计算汽车的安全性能,需要考虑到汽车的车身强度、悬挂系统的稳定性和主动安全装备等因素。
通过计算车身的强度指数和碰撞保护装置的性能,可以评估汽车的安全性能和碰撞保护能力。
综上所述,汽车整车性能的计算和分解涉及到多个方面,包括动力性、操控性、经济性、舒适性和安全性等指标。
通过对这些指标的计算和分析,可以评估汽车的整体性能,并为汽车设计和制造提供参考。
汽车整车性能的提升需要综合考虑各个方面的因素,并在设计和制造过程中进行优化和改进。
整车动力学公式主要包括:
1. 驱动力与阻力公式:驱动力(Ft)等于各阻力(Ff、Fw、Fi、Fj)之和,即Ft=Ff+Fw+Fi+Fj。
2. 滚动阻力公式:滚动阻力(Ff)与车轮垂直载荷、轮胎结构与路面情况影响滚动阻力系数(f),即Ff=f×(Fzf+Fzr)。
3. 空气阻力公式:空气阻力(Fw)等于1/2×CD×A×ρ×u^2,其中CD为空气阻力系数,A为迎风面积,ρ为空气密度,u为汽车与空气的相对速度。
4. 坡度阻力公式:坡度阻力(Fi)等于车重(G)乘以道路坡度(i),即Fi=G×i。
5. 加速阻力公式:加速阻力(Fj)等于车重(G)乘以加速度(dudt),即Fj=G×dudt。
6. 马力、扭矩和转速公式:马力=扭矩×转速÷5252;扭矩=马力×5252÷转速;转速=马力×5252÷扭矩。
7. 动能和动量公式:动能=质量×速度^2÷2;动量=质量×速度。
8. 加速度公式:加速度=动力÷质量。
9. 刹车距离公式:刹车距离=(初速度-终速度)÷2×刹车减速度。
10. 阻力公式:阻力=空气密度×面积×滑行系数×速度。
此外,还有一些具体的汽车动力学模型公式,如最高车速计算公式、发动机转速与车速关系公式等。
这些公式在汽车设计和性能分析中非常重要,可以帮助工程师更好地了解和控制车辆的动力学行为。