3.1.2两角和与差的正弦、余弦、正切公式
- 格式:pdf
- 大小:1.91 MB
- 文档页数:15
3.12 两角和与差的正弦、余弦、正切公式知识点一 两角和的余弦公式解决给角求值问题的策略(1)对于非特殊角的三角函数式求值问题,一定要本着先整体后局部的基本原则,如果整体符合三角公式的形式,则整体变形,否则进行各局部的变形.(2)一般途径有将非特殊角化为特殊角的和或差的形式,化为正负相消的项并消项求值,化分子.分母形式进行约分,解题时要逆用或变用公式.1.sin7°cos37°-sin83°sin37° 2.sin50°-sin20°cos30°cos20°3、sin14°cos16°+sin76°cos74°4、sin7°+cos15°sin8°cos7°-sin15°sin8°5、已知角α的终边经过点(-3,4),则sin ⎝ ⎛⎭⎪⎫α+π4的值为6.求函数f (x )=sin x -cos ⎝⎛⎭⎪⎫x +π6的值域.类型二 给值求值1、已知sin ⎝ ⎛⎭⎪⎫3π4+α=513,cos ⎝ ⎛⎭⎪⎫π4-β=35,且0<α<π4<β<3π4,求cos(α+β).2、已知cos ⎝⎛⎭⎪⎫x +π6=35,x ∈(0,π),求sin x 的值。
3.已知锐角α,β满足sin α=255,cos β=1010,求α+β。
类型三 辅助角公式对于形如y=asinx+bcosx 的三角式,可变形如下: y=asinx=bcosx =++++a b x a a bx b a b222222(sin cos )··。
上式中的a a b22+与b a b22+的平方和为1,故可记a a b22+=cos θ,b a b22+=sin θ,则。
)x sin(b a )sin x cos cos x (sin b a y 2222θ++=θ+θ+=1、求值(1)cos π12+3sin π12 (2)sin π12-3cos π12(3)2cos π12+6sin π12 (4)当函数y =sin x -3cos x (0≤x ≤2π)取得最大值时,求x.2、求周期求函数y x x x =+-+24432cos()cos()sin ππ的最小正周期。
3.1.2 两角和与差的正弦、余弦、正切公式民族中学王克伟[教学目标]知识与技能目标:理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用.过程与方法目标:让学生亲身经历“从已知入手,研究对象的性质,再联系所学知识,推导出相应公式。
”这一研究过程,培养他们观察、分析、联想、归纳、推理的能力。
通过阶梯性的强化练习,培养学生分析问题、解决问题的能力。
情感态度与价值观目标:通过对两角和与差的三角恒等变换特点的研究,培养学生主动探索、勇于发现的求索精神;使学生逐步养成细心观察、认真分析、及时总结的好习惯。
[教学重难点]教学重点:两角和、差正弦和正切公式的推导过程及运用;教学难点:两角和与差正弦、余弦和正切公式的灵活运用.[教学过程]一.新课引入创设情境引入课题:想一想:cos15?=由上一节所学的两角差的余弦公式:cos()cos cos sin sin αβαβαβ-=+,同学们很容易想到:那这节课我们就来学习两角和与差的正弦、余弦、正切的公式: 二.、讲授新课 探索新知一 两角和的余弦公式思考:由cos()cos cos sin sin αβαβαβ-=+,如何求cos()?αβ-=分析:由于加法与减法互为逆运算,()αβαβ+=--,结合两角差的余弦公式及诱导公式,将上式中以代得cos[()]cos cos()sin sin cos()cos cos sin sin ()ααβαβαααββββ=--=-+--=+1、上述公式就是两角和的余弦公式,记作()cαβ+。
由两角和的余弦公式:()cαβ+,我们现在完成课前的想一想:26cos15cos(4530)cos 45cos 30sin 45sin 304+=-=+=cos75=cos(3045)?+=cos75?=cos(α+β)=cos αcos β-sin αsin β探索新知二思考:前面我们学习了两角和与差的余弦,请同学们猜想一下:会不会有两角和与差的正弦公式呢如果有,又该如何推导呢在第一章中,我们学习了三角函数的诱导公式,同学们是否还记得如何实现由余弦到正弦的转化呢cos()sin 2παα-=结合()c αβ+与()cαβ-,我们可以得到cos[()]cos[()]cos()cos sin()sin 22sin )2(2ππππαβαβααβββα=-++=--=-+-sin cos sin cos αββα=+2、上述公式就是两角和的正弦公式,记作()sαβ+。
3.1.2 两角和与差的正弦、余弦、正切公式[知识探究]1.两角和的余弦公式cos(α+β)= ,简记为C (α+β).思考1: C (α±β)公式有什么共同特征? (余弦在前,正弦在后,符号改变)2.两角和与差的正弦公式S (α+β):sin(α+β)= ;S (α-β):sin(α-β)= .思考2: S (α±β)有何特征?(异名乘,符号同)拓展提升:辅角公式(1)asin x+bcos x=ϕ)(其中tan ϕ=b a,ϕ为辅助角); ϕ)(其中tan ϕ=a b,ϕ为辅助角). 3.两角和与差的正切公式T (α+β):tan(α+β)= tan tan 1tan tan αβαβ+-;T (α-β):tan(α-β)= tan tan 1tan tan αβαβ-+. 思考3:使用T (α±β)的条件是什么?(公式T (α±β)只有在α≠π2+k 1π,β≠π2+k 2π,α±β≠π2+k 3π(k 1,k 2,k 3∈Z )时才成立,否则就不成立,这是由正切函数的定义域所决定的) 题型一 三角函数式的化简求值【例1】 (1)cos 105°;(2)sin 14°cos 16°+sin 76°cos 74°;(3)sin π12π12; (4)1tan 751tan 75+-. 名师导引:(1)将105°转化为两个特殊角的和或差,直接利用公式求解.(2)先利用诱导公式统一角度再逆用两角和的正弦公式 求解.(3)提取2后将12,逆用公式求解. (4)注意“1”的转化,逆用两角和的正切公式求解.解:(1)原式=cos(60°+45°)=cos 60°cos 45°-sin 60°sin 45°=12×22= (2)原式=sin 14°cos 16°+sin(90°-14°)cos(90°-16°)=sin 14°cos 16°+cos 14°sin 16°=sin(14°+16°)=sin 30°=12.(3)法一 原式=2(12sin π12cos π12) =2(sin π6sin π12-cos π6cos π12)=-2cos (π6+π12)=-2cos π4法二 原式=2(12sin π12π12) =2(cos π3sin π12-sin π3cos π12)=2sin (π12-π3)=-2sin π4 (4)原式=tan 45tan 751tan 45tan 75+-=tan(45°+75°)=tan 120°.题后反思 三角函数式的化简与求值主要是诱导公式、同角三角函数基本关系、两角和差的正余弦、正切公式的正用、逆用和变形用,观察式子结构特点选取合适公式是解题的关键.转化过程中注意“1”与“tan π4”、“”与“tan π3”、“ 12”与“cos π3”等特殊数与特殊角的函数值之间的转化. 跟踪训练11:(1)求sin(θ+75°)+cos(θ+45°)cos(θ+15°)的值;(2)(2014遵义四中期末)求tan 20°+tan 40°tan 20° tan 40°的值.解:(1)设α=θ+15°,则原式=sin(α+60°)+cos(α+30°α=(12sin αα)+cos α-12sin α)α =0.(2)原式=tan 60°(1-tan 20° tan 40°)+° tan 40°.题型二 三角函数的条件求值【例2】 已知π2<β<α<34π,cos(α-β)= 1213,sin(α+β)=- 35,求cos 2α的值. 名师导引:(1)寻找角的关系2α=(α+β)+(α-β);(2)借助同角三角函数关系及两角和的余弦公式求解.解:∵π2<β<α<34π,∴-34π<-β<-π2, ∴0<α-β<π4,π<α+β<32π,∴sin(α-β)=513,cos(α+β)=-45. ∴cos 2α=cos[(α-β)+(α+β)]=cos(α-β)cos(α+β)-sin(α-β)sin(α+β) =1213×(-45)-513×(-35)=-3365, 即cos 2α=-3365. 题后反思 (1)解决三角函数条件求值问题的关键是寻找已知角与所求角之间的关系,恰当地拆角凑角、合理地选用公式.(2)常见角的变换有α=(α+β)-β、α=β-(β-α)、2α=(α+β)+(α-β)等.跟踪训练21:(2014洛阳期末)已知tan (π4+α)=2,tan(α-β)= 12,α∈(0,π4),β∈(-π4,0). (1)求tan α的值;(2)求212sin cos cos ααα+的值; (3)求2α-β的值.解:(1)tan (π4+α)=1tan 1tan αα+-=2,得tan α=13; (2)212sin cos cos ααα+=222sin cos 2sin cos cos ααααα++ =2tan 12tan 1αα++=23; (3)因为tan(2α-β)=tan[α+(α-β)]=tan tan()1tan tan()ααβααβ+---=1, 又α∈(0,π4),β∈(-π4,0),得2α-β∈(0, 3π4),所以2α-β=π4. 题型三 辅角公式的应用【例3】 当函数≤x<2π)取得最大值时,x= .解析:函数为(x-π3), 当0≤x<2π时,-π3≤x-π3<5π3, 所以当y 取得最大值时,x-π3=π2,所以x=5π6. 答案:5π6题后反思 辅角公式ϕ)(或asin x+bcos x=ϕ))可以将形如 asin x+bcos x(a,b 不同时为零)的三角函数式写成一个角的三角函数式.这样有利于三角函数式的化简求值,更有助于研究三角函数的性质.跟踪训练31:函数f(x)=sin x-cos (x+π6)的值域为( B )(A)[-2,2](C)[-1,1] ] 解析:f(x)=sin x-cos (x+π6)12sin x=32sin (x-π6),所以函数f(x)的值域为,].故选B.【自主练习】1. 已知sin(α+β)=12,sin(α-β)=13,求tan tan αβ的值. 解:∵sin(α+β)=12,∴sin αcos β+cos αsin β=12.①∵sin(α-β)=1 3 ,∴sin αcos β-cos αsin β=13.②由①,②解得sin αcos β=512, cos αsin β=112,∴tantanαβ=sin coscos sinαβαβ=512112=5.2.已知α,β都是锐角,且cos αsin β=12,求α-β的值.解:法一由α,β都是锐角及cos αβ=12,得sin αβ.所以sin(α-β)=sin αcos β-cos αsin β.又由α,β都是锐角,即0<α<π2,0<β<π2,所以-π2<α-β<π2.所以α-β=π4 .法二由α,β都是锐角及cos αβ=12,得sin αβ.cos(α-β)=cos αcos β+sin αsin β1 2,3.(2014清远期末)化简:sin 21°cos 81°-cos 21° sin 81°等于( D )(A)12 (B)-12解析:原式=sin(21°-81°)=-sin 60°故选D. 4.已知α是锐角,sin α=35,则cos (π4+α)等于( B )(D) 解析:因为α是锐角,sin α=35, 所以cos α=45,所以cos (π4+α)×45×35.故选B. 5.sin 255°= .解析:sin 255°=-sin 75°=-sin(45°+30°)=-答案: 6.1tan12tan 72tan12tan 72--= .解析:1tan12tan 72tan12tan 72+-=-()1tan 7212-=-答案:5.已知α+β=45°,求(1+tan α)·(1+tan β)的值. 解: (1+tan α)·(1+tan β )=1+tan αtan β+tan α+tan β=1+tan αtan β+tan(α+β)(1-tan αtan β)=2。
§3.1.2两角和与差的正弦、余弦、正切公式教案教学目标:1.知识与技能目标①用代换法推导cos(a + P),用转化法推导sin (a ± P)、tan (a ± P).②让学生初步学会公式的简单应用和公式的逆用等基本技能.③通过公式的灵活运用,培养学生的转化思想和变换能力2. 过程与方法目标学生在理解、掌握两角差的余弦公式的基础上,进一步推导两角和的余弦、两角和与差的正弦和正切公式,让学生亲自体会三角恒等变换特点的过程,理解推导过程,掌握其应用3. 情感态度、价值观目标①通过学习、观察、对比体会公式的线形美,对称美②通过教师的启发诱导,培养学生不怕困难,勇于探索勇于创新的求知精神二、教学重、难点教学重点:两角和与差的正弦、正切公式的推导过程及运用;教学难点:两角和与差的正弦、余弦和正切公式的灵活运用三.教学方法及用具:教学方法:诱导式、启发式教学、讲练相结合法教学用具:多媒体四、教学过程:1. 复习导入:同学们先回顾一下两角差的余弦公式: cos(a - P ) = cos ot COS P + sin a sin P .由公式cos(a - P)出发,你能推导出两角和与差的三角函数的其他公式吗?2. 讲授新课:思考:(1). COS(a + P ) = ?cos(a + P戶cos A —(-P )],再利用两角差的余弦公式得出cos(a + P )=cos[a -(—P M = cosa cos(-P )+sin^ sin(-P )=co护cosP -sin^ sin P于是,我们得到了两角和的余弦公式,简记作C(a祁cos(G + P) =coso cosP -sin a sin P(2).问题:上面我们得到了两角和与差的余弦公式,那么如何得到两角和与差的正弦公式呢?即思考sin a = cos ?探究1、让学生动手完成两角和与差正弦公式.sin fa + P \=cos 竖+ P 3= cos〔住一a 】+ P l = cos仁_a losP +sin 倍一a I sin P' 'I2■ J h2丿」I2丿I2丿=sin a cos P 中cosot sinP .sin (ot - P ) = sin 包 +( —P )] = sin a cos( —P )+cos a sin (-P )=sin a cos P —cosot sin P探究2、让学生观察认识两角和与差正弦公式的特征,并思考两角和与差正切公式.(学生动手) 门sin(a + P)sin a cos P+cos。
3. 1.2 两角和与差的正弦、余弦、正切公式教学过程1、提出问题①还记得两角差的余弦公式吗?请写出。
②在公式C(α-β)中,角β是任意角,请思考角α-β中β换成角-β是否可以?此时观察角α+β与α-(-β)之间的联系,如何利用公式C(α-β)来推导cos(α+β)=?我们称以上等式为两角和的余弦公式,记作C(α+β).③分析观察C(α+β)的结构有何特征?④在公式C(α-β)、C(α+β)的基础上能否推导sin(α+β)=?sin(α-β)=?结论2、S(α+β)、S(α-β).⑤公式S(α-β)、S(α+β)的结构特征如何?⑥对比分析公式C(α-β)、C(α+β)、S(α-β)、S(α+β),能否推导出tan(α-β)=?tan(α+β)=?结论3、由此推得两角和、差的正切公式,简记为T(α-β)、T(α+β).⑦分析观察公式T (α-β)、T (α+β)的结构特征如何?我们把前面六个公式分类比较可得C (α+β)、S (α+β)、T (α+β)叫和角公式;S (α-β)、C (α-β)、T (α-β)叫差角公式.归纳总结以上六个公式的推导过程,得出以下逻辑联系图.通过逻辑联系图,深刻理解它们之间的内在联系,借以理解并灵活运用这些公式.同时应注意:不仅要掌握这些公式的正用,还要注意它们的逆用及变形用.如两角和与差的正切公式的变形式2、应用示例例1 已知sinα=53-,α是第四象限角,求sin(4π-α),cos(4π+α),tan(4π-α)的值.练习:课本课后练习1、2、3、4、题例2 利用和差角公式计算下列各式的值.(1)sin72°cos42°-cos72°sin42°;(2)cos20°cos70°-sin20°sin70°;(3)15tan 115tan 1-+练习:课本课后练习5、6、7、题例3 求证:cosα+3sinα=2sin(6π+α).(两种方法)练习:化简下列各式:(1)3sinx+cosx;(2)2cosx-6sinx.3、课堂小结通过本节课的学习,要熟练掌握运用两角和与差的正弦、余弦、正切公式解决三角函数式的化简、求值、恒等证明等问题,灵活进行角的变换和公式的正用、逆用、变形用等.推导并理解公式asinx+bcosx=22b a sin(x+φ),运用它来解决三角函数求值域、最值、周期、单调区间等问题.4、作业布置习题3.1 A 组7、13(1) (3) (5) (7) (9)。