第五章 分子生物学研究法-酶工具
- 格式:ppt
- 大小:5.47 MB
- 文档页数:37
工具酶的名词解释工具酶(enzyme)是一类在生物体内起着催化反应作用的蛋白质分子。
它们广泛存在于人类和其他生物体中,参与了许多生物化学反应,如代谢过程、细胞分裂以及信号转导等。
工具酶以其高效催化、高度特异性和可逆性的特点而备受关注。
一、工具酶的基本结构和功能工具酶通常由氨基酸链组成,它们的功能部分是由特定的氨基酸序列决定的。
不同的氨基酸序列会导致工具酶具有不同的功能和特性。
工具酶具有酶活性中心,也称为活性位点,它是催化反应发生的地方。
酶活性中心通常由几个氨基酸残基组成,这些残基在反应中扮演特定的角色。
例如,存在于酶活性中心的催化三明治模型(catalytic triad)分别由赖氨酸、组氨酸和丝氨酸残基组成,它们通过电子变迁和氢键来催化反应的进行。
工具酶的功能是通过与底物结合并催化底物转化为产物来实现的。
工具酶与底物之间的结合是高度特异的,这种特异性保证了催化反应的效率和准确性。
工具酶可以通过调整底物的构象或降低活化能来促进反应的进行。
二、工具酶的种类和应用工具酶根据其催化反应的类型可以分为多个类别,如氧化还原酶、转移酶、水解酶和连接酶等。
每个类别的工具酶在不同的反应中发挥着不同的作用。
氧化还原酶(oxidoreductase)催化氧化还原反应,如细胞呼吸和光合作用中的反应。
转移酶(transferase)催化底物中的某些基团转移到另一分子上。
水解酶(hydrolase)催化水解反应,例如消化系统中的酶。
连接酶(ligase)催化两个分子的连接反应等等。
工具酶的应用非常广泛。
在生物技术和医药领域,工具酶常用于生物合成和药物开发中。
例如,工具酶可以用于产生大量的特定蛋白质、合成某些药物或者用于药物代谢学研究。
此外,工具酶还可以被用作制造工业用途中的化学品或生物燃料。
三、工具酶的调控和调节工具酶的活性可以通过多种因素调控和调节。
其中最常见的方式是基因表达调控和化学修饰。
基因表达调控是指工具酶基因的转录和翻译的调控。
第五章分子生物学的研究方法(上)西南大学生命科学学院09级XX(仅代表个人观点)1,哪些重要的科学发现和实验推动了DNA重组技术的产生和发展?答:1,确定遗传信息的携带者是DNA而不是蛋白质;2,DNA的双螺旋结构模型和半保留复制机制的提出;3,中心法则,操纵子学说的提出和密码子的破译;4,重组工具酶的发现;5,运载体重组质粒的发现。
2,如何理解PCR扩增的原理和过程。
答:原理:DNA在高温时也可以发生变性解链,当温度降低后又可以复性成为双链。
因此,通过温度变化控制DNA的变性和复性,并设计引物做启动子,加入DNA聚合酶、dNTP就可以完成特定基因的体外复制。
过程:1,变性,将DNA在临近沸点的温度下加热使变性,双链打开;2,退火,引物与模版的相结合;3,链的延伸,DNA合成。
3,简述定量PCR的原理和过程。
答:实时定量PCR反应在带透明盖的塑料小管中进行,激发光可以直接头孤傲管盖,使其中的荧光探针被激发。
一逛探针事先混合在PCR反应液中,只有与DNA 结合之后,才能被激发发出荧光。
随着新和成DNA片段的增加,结合到DNA上的荧光探针,即被激发产生的荧光增加。
4,基因组DNA文库和cDNA文库在构建原理和用途上的主要区别是什么?答:基因组DNA是把某种生物的基因组DNA切成适当大小,分别与载体结合,导入微生物细胞形成克隆。
应用:主要用于基因组作图、测序和克隆序列的对比。
cDNA文库是以mRNA为模版反转录而成的序列,与适当的载体(常用噬菌体或质粒载体)连接后转化受体菌,则每个细菌含有一段cDNA,并能繁殖扩增。
应用:筛选目的基因、大规模测序、金银芯片杂交等功能基因组学的研究。
5,基因克隆的方法主要有哪几种?简述各种方法的作用和用途。
答:1,RACE技术,用于在已知cDNA序列的基础上克隆5’端和3’端缺失的序列;2,应用cDNA差示分析法克隆基因,在没有任何探针的情况下,通过降低cDNA群体复杂性和更换cDAN两端接头的方法特异性的扩增目的基因片段。
分子生物学第五章分子生物学研究法(上)——DNA、RNA及蛋白质操作技术第三节RNA操作技术第四节SNP的理论与应用第五节基因克隆技术第六节蛋白质组与蛋白质组学技术夏玉琼2013-10-10目录RNA操作技术cDNA文库的构建基因文库的筛选SNP的理论与应用基因克隆技术蛋白质与蛋白质组学技术分子生物学 夏玉琼 西安电子科技大学cDNA文库的构建切割位点用四碱基特异性的限制性内切酶部分消化DNA 片段,有的仍有切割位点质粒DNA将DNA 克隆进质粒DNA细菌克隆每个细菌都带有不同片段的DNA细菌转化分子生物学 夏玉琼 西安电子科技大学cDNA文库的构建cDNA的长度0.5-8 kb载体:质粒载体和噬菌体类载体完整的cDNA文库包含大于5*105的独立克隆分子生物学 夏玉琼 西安电子科技大学目录RNA操作技术cDNA文库的构建基因文库的筛选SNP的理论与应用基因克隆技术蛋白质与蛋白质组学技术分子生物学 夏玉琼 西安电子科技大学基因文库的筛选含义通过某种特殊方法从基因文库中鉴定出含有所需重组DNA分子的特定克隆的过程筛选方法核酸杂交法PCR筛选法免疫筛选法分子生物学 夏玉琼 西安电子科技大学核酸杂交法培养基上的菌落盖上硝酸纤维素膜移去硝酸纤维素膜裂解、中和去除细菌蛋白DNA 印迹32P 标记探针杂交放射自显影图像挑出阳性克隆保存母板分子生物学 夏玉琼 西安电子科技大学PCR筛选法需获得基因特异性引物将整个基因文库保存在多孔培养板上用设计好的基因探针对每个孔PCR筛选,挑出阳性的孔对阳性的孔再稀释到次级多孔板中PCR筛选重复稀释重复筛选直到与目的基因对应的单个克隆分子生物学 夏玉琼 西安电子科技大学免疫筛选法文库铺于E.coli 形成噬菌斑转移到硝酸纤维素膜吸收λ噬菌体中表达的外源蛋白保存原板,加入一抗筛选膜上的噬菌斑印迹洗去未结合的抗体加入酶偶联的二抗加底物显色从保存板上挑出阳性噬菌斑一抗:第一抗体,识别目标蛋白二抗:抗体的抗体,能增强信号,增加该方法的灵活性分子生物学 夏玉琼 西安电子科技大学目录RNA操作技术SNP的理论与应用SNP概述SNP的检测技术SNP的应用基因克隆技术蛋白质与蛋白质组学技术分子生物学 夏玉琼 西安电子科技大学SNP概述single nucleotide polymorphism,pronounced “snips”单核苷酸多态性基因组DNA序列中由于单个核苷酸的突变而引起的多态性,发生频率1%或更高例如:某些人的染色体上的某个位置为A,而另外一些人的同样位置是T,染色体DNA同一位置上的每个碱基类型叫做一个等位位点继RFLP和SSR之后的第三代遗传标记遗传标记:在遗传分析上用作标记的基因分子生物学 夏玉琼 西安电子科技大学第一代遗传标记:RFLPRFLP标记是发展最早的DNA标记技术。
分子克隆中常用的四种工具酶及其应用分子克隆是利用分子生物学技术对目标DNA进行扩增及克隆的过程。
在分子克隆的过程中,常常需要使用许多酶类工具来完成不同的任务。
以下介绍了分子克隆过程中最常用的四种酶类工具及其应用。
1. 限制性内切酶限制性内切酶(Restriction endonuclease)又称限制酶,是一类可特异性切割DNA特定序列的酶。
它可以在DNA的特定位置切割成不同的碎片,而不会破坏DNA的结构。
因此,限制酶被广泛应用于DNA的纯化、分析和重组等领域。
在分子克隆中,限制酶通常用于切割DNA的特定序列,以获得所需的DNA片段。
同时,也可以用于制备载体DNA的端部修饰,方便插入外来DNA片段。
此外,限制酶还可以用于分析DNA序列的变异和同源性等特征。
2. DNA连接酶DNA连接酶(DNA ligase)是一种催化DNA连结软帽酶,用于连接具有互补末端的DNA片段。
连接酶广泛应用于DNA重组、引物连接、克隆和测序等领域。
在分子克隆中,DNA连接酶通常使用于将外来DNA片段连接到载体 DNA 上。
此外,为了克隆具有完整DNA序列的目标基因,连接酶还可以用于连接PCR扩增出来的目标DNA序列。
3. PCR酶聚合酶链反应(Polymerase chain reaction, PCR)是一种快速、有效、敏感的DNA扩增技术。
在PCR过程中,通过PCR酶催化下的DNA扩增反应,能够在很短的时间内扩增目标DNA的数量。
在分子克隆中,PCR酶通常用于扩增目标DNA片段。
利用PCR技术,可以选择性增加目标DNA的数量并在容易处理的基本DNA片段之间产生特定的限制酶切断部位,为后续分子克隆实验提供方便。
4. 接头酶接头酶(T4 DNA ligase)是一种针对DNA单链断裂或缺口进行修复和连接的酶。
在分子克隆中,接头酶主要用于将外来DNA片段和载体DNA粘到一起。
在分子克隆的过程中,外来DNA片段和载体DNA之间通常存在一些不兼容的末端或过于短的重叠部分。
分子生物学第五章作业1、哪些重要的科学发现和实验推动了DNA重组技术的产生及发展?答:近半个世纪来,分子生物学主要取得了三大成就:第一,20世纪40年代确定了遗传信息的携带者,即基因的分子载体是DNA而不是蛋白质,解决了遗传的物质基础问题;第二,50年代提示了DNA分子的双螺旋结构模型和半保留复制机制,解决了基因的自我复制和世代交替问题;第三,50年代末至60年代,相继提出了“中心法则”和操纵子学说,成功地破译了遗传密码,充分认识了遗传信息的流动和表达。
但事实上,DNA分子体外切割与连接技术及核苷酸序列分析技术的进步直接推动了重组DNA技术的产生和发展。
其中,限制性内切核酸酶和DNA连接酶等工具酶的发现和应用是现代生物工程技术史上最重要的事件。
DNA重组技术的产生及发展过程中比较重要的科学发现和实验如下:1957年A.Kornberg从大肠杆菌中发现了DNA聚合酶I。
1965年S. W. Holley完成了酵母丙氨酸tRNA的全序列测定;科学家证明细菌的抗药性通常由"质粒"DNA所决定。
1967年年世界上有五个实验室几乎同时宣布发现了DNA连接酶。
1970 年H.O.Smith,K.W.Wilcox和T.J.Kelley分离了第一种限制性核酸内切酶。
H.M.Temin和D.Baltimore从RNA肿瘤病毒中发现反转录酶。
1972-1973 年H.Boyer,P.Berg等人发展了DNA重组技术,于72年获得第一个重组DNA分子,73年完成第一例细菌基因克隆。
1978 年首次在大肠杆菌中生产由人工合成基因表达的人脑激素和人胰岛素。
1981 年R. D. Palmiter和R. L. Brinster获得转基因小鼠;A. C. Spradling和G. M. Rubin得到转基因果蝇。
1982 年美、英批准使用第一例基因工程药物--胰岛素;Sanger等人完成了入噬菌体48,502bp全序列测定。
第五、六章分子生物学研究方法练习题1一、【单项选择题】1.一般的限制性核酸内切酶II作用的特点不包括A.在对称序列处切开DNAB.DNA两链的切点常不在同一位点C.酶切后产生的DNA片段多半具有粘性末端D. DNA两链的切点常在同一位点,E.酶辨认的碱基一般为4-6个4.下列关于建立cDNA文库的叙述哪项是错误的A.从特定组织或细胞中提取mRNAB.将特定细胞的DNA用限制性核酸内切酶切割后,克隆到噬菌体或质粒中,C.用逆转录酶合成mRNA的对应单股DNAD.用DNA聚合酶,以单股DNA为模板合成双链DNA5.限制性核酸内切酶的通常识别序列是A.粘性末端B.RNA聚合酶附着点C.回文对称序列,D.多聚腺苷酸E.甲基化的“帽”结构9.基因工程的操作程序可简单地概括为A.载体和目的基因的分离、提纯与鉴定B.分、切、连、转、筛,C.将重组体导入宿主细胞,筛选出含目的基因的菌株D.将载体和目的基因接合成重组体E.限制性核酸内切酶的应用11.常用质粒有以下特征A.是线性双链DNAB.插入片段的容量比λ噬菌体DNA大C.含有抗生素抗性基因,D.含有同一限制性核酸内切酶的多个切口E.不随细菌繁殖而进行自我复制14.表达人类蛋白质的最理想的细胞体系是A.大肠杆菌表达体系B.原核表达体系C.酵母表达体系D.昆虫E.哺乳类细胞表达体系,18.在分子生物学上“重组DNA技术”又称为A.酶工程B.蛋白质工程C.细胞工程D.发酵工程E.分子克隆技术22.基因组代表一个细胞或生物的A.部分遗传信息B.整套遗传信息,C.可转录基因D.非转录基因E.可表达基因25.在已知序列信息的情况下,获取目的基因的最方便方法是A.化学合成法B.基因组文库法C.cDNA文库法D.PCRE.差异显示法27.PCR主要的酶是A.DNA连接酶B.反转录酶C.末端转移酶D.碱性磷酸酶E. Taq DNA聚合酶28.重组DNA技术中实现目的基因与载体DNA拼接的酶A.DNA聚合酶B.RNA聚合酶C.DNA连接酶D.RNA连接酶E.限制性核酸内切酶30.最常用的筛选转化细菌是否含重组质粒的方法是A.营养互补筛选B.抗药性筛选,C.免疫化学筛选D.PCR筛选E.分子杂交筛选33.用于重组DNA的限制性核酸内切酶,识别核苷酸序列的A.正超螺旋结构B.负超螺旋结构C.α-螺旋结构D.回文结构,E.锌指结构58、基因治疗是指A.对有基因缺陷的细胞进行修复,从而使其恢复正常,达到治疗疾病的目的B.把健康的外源基因导入到有基因缺陷的细胞中,达到治疗疾病的目的C.运用人工诱变的方法,使有基因缺陷的细胞发生基因突变恢复正常D.运用基因工程技术,把有缺陷的基因切除,达到治疗疾病的目的93.PCR实验的特异性主要取决于A.DNA聚合酶的种类B.反应体系中模板DNA的量C.引物序列的结构和长度D.四种dNTP的浓度E.循环周期的次数94.基因剔除(knock out)的方法主要被用来研究A.基因的结构B.基因的功能C.基因的表达D.基因的调控E.基因的突变95.反义核酸作用主要是A.封闭DNA B.封闭RNAC.降解DNA D.降解DNA E.封闭核糖体的功能105. 酵母单杂交技术是分析【】的实验系统。