语音信号PCM译码器的设计
- 格式:doc
- 大小:495.50 KB
- 文档页数:17
目录摘要 (I)Abstract (II)第1章绪论 (1)第2章总体电路设计思路与原理 (2)2.1 PCM编码原理介绍 (2)2.2 时分复用原理介绍 (5)第3章各单元电路的设计 (7)3.1定时器电路的设计 (7)3.2 PCM编译码电路的设计 (9)3.3 复接电路 (12)3.4 语音处理电路 (13)3.5 系统总电路图 (14)第4章整机系统的systemview仿真 (16)4.1 信号源的组成 (16)4.2 PCM编码器子系统模块 (17)4.3 PCM分接译码模块 (19)4.4 总通信系统的仿真 (21)第5章整个系统的实验箱调试 (24)结束语 (27)参考文献 (28)致谢 (29)2路语音全双工PCM通信系统设计制作摘要:语音编码将模拟话音信号变为数字信号的过程,是数字通信中的一项重要技术。
本课题将介绍一个2路语音全双工PCM的通信系统,两路语音中任何一方都能向对方发出信息或接受对方发过来的信息,完成全双工通信,并且采用PCM编码技术。
对于语音编译码部分将采用芯片TP3057,TP3057是A律PCM编译码集成电路。
整个电路也就是一个两路语音的时分复用通信系统。
关键词:全双工;PCM编译码;时分复用The Design and Manufacture of Two Routs Speech Full-dulplex PCM Communication System Abstract:Speech coding will analog voice signal into a digital signal process, the digital communication is one of the most important technology。
In this topic we will introduce a communicating system, which can send or receive information between bothsides, to accomplish the full-duplex mode communication,and using the technology of PCM codec.For the part of encoding and decoding we will use the TP3057 chip.TP3057 is an intergrated circuit chip of using A encoding law codec.For the whole system we can see it as a two-path time division multiplexing communicating system.Keywords:full-dulplex; PCM codec; time division multiplexing;第1章绪论随着现代通信技术的发展,为了提高通信系统信道的利用率,话音信号的传输往往采用多路复用通信的方式。
脉冲编码调制(PCM)系统设计与仿真摘要: SystemView 仿真软件可以实现多层次的通信系统仿真。
脉冲编码调制(PCM)是现代语音通信中数字化的重要编码方式。
利用SystemView 实现脉冲编码调制(PCM)仿真,可以为硬件电路实现提供理论依据。
通过仿真展示了PCM编码实现的设计思路及具体过程,并加以进行分析。
关键词: PCM 编译码1、引言随着电子技术和计算机技术的发展,仿真技术得到了广泛的应用。
基于信号的用于通信系统的动态仿真软件SystemView具有强大的功能,可以满足从底层到高层不同层次的设计、分析使用,并且提供了嵌入式的模块分析方法,形成多层系统,使系统设计更加简洁明了,便于完成复杂系统的设计。
SystemView具有良好的交互界面,通过分析窗口和示波器模拟等方法,提供了一个可视的仿真过程,不仅在工程上得到应用,在教学领域也得到认可,尤其在信号分析、通信系统等领域。
其可以实现复杂的模拟、数字及数模混合电路及各种速率系统,并提供了内容丰富的基本库和专业库。
本文主要阐述了如何利用SystemView实现脉冲编码调制(PCM)。
系统的实现通过模块分层实现,模块主要由PCM编码模块、PCM译码模块、及逻辑时钟控制信号构成。
通过仿真设计电路,分析电路仿真结果,为最终硬件实现提供理论依据。
2、系统介绍PCM即脉冲编码调制,在通信系统中完成将语音信号数字化功能。
PCM的实现主要包括三个步骤完成:抽样、量化、编码。
分别完成时间上离散、幅度上离散、及量化信号的二进制表示。
根据CCITT的建议,为改善小信号量化性能,采用压扩非均匀量化,有两种建议方式,分别为A律和μ律方式,我国采用了A律方式,由于A律压缩实现复杂,常使用13 折线法编码,采用非均匀量化PCM编码示意图见图1。
图1 PCM 原理框图下面将介绍PCM 编码中抽样、量化及编码的原理: (a) 抽样所谓抽样,就是对模拟信号进行周期性扫描,把时间上连续的信号变成时间上离散的信号。
PCM编译码器一.实验原理抽样定理在通信系统、信息传输理论方面占有十分重要的地位。
抽样过程是模拟信号数字化的第一步,抽样性能的优劣关系到通信设备整个系统的性能指标。
利用抽样脉冲把一个连续信号变为离散时间样值的过程称为抽样,抽样后的信号称为脉冲调幅(PAM)信号。
抽样定理指出,一个频带受限信号m(t),如果它的最高频率为fh,则可以唯一地由频率等于或大于2fh的样值序列所决定。
在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。
并且,从抽样信号中可以无失真地恢复出原始信号。
通常将语音信号通过一个3400 Hz低通滤波器(或通过一个300~3400Hz 的带通滤波器),限制语音信号的最高频率为3400Hz,这样可以用频率大于或等于6800 Hz的样值序列来表示。
实际上,设计实现的滤波器特性不可能是理想的,对限制最高频率为3400Hz 的语音信号,通常采用8KHz抽样频率。
这样可以留出一定的防卫带(1200Hz)。
当抽样频率fs 低于2倍语音信号的最高频率fh,就会出现频谱混迭现象,产生混迭噪声,影响恢复出的话音质量。
在抽样定理实验中,采用标准的8KHz抽样频率,并用函数信号发生器产生一个频率为fh 的信号来代替实际语音信号。
通过改变函数信号发生器的频率fh,观察抽样序列和低通滤波器的输出信号,检验抽样定理的正确性。
PCM编译码模块将来自用户接口模块的模拟信号进行PCM编译码,该模块采用MC145540集成电路完成PCM编译码功能。
该器件具有多种工作模式和功能,工作前通过显示控制模块将其配置成直接PCM模式(直接将PCM码进行打包传输),使其具有以下功能:1、对来自接口模块发支路的模拟信号进行PCM编码输出。
2、将输入的PCM码字进行译码(即通话对方的PCM码字),并将译码之后的模拟信号送入用户接口模块。
PCM编译码器模块电路与ADPCM编译码器模块电路完全一样,由语音编译码集成电路U502(MC145540)、运放U501(TL082)、晶振U503(20.48MHz)及相应的跳线开关、电位器组成。
-24-实验四 PCM 编译码器系统一. 实验目的1. 了解语音编码的工作原理,验证PCM 编译码原理。
2. 熟悉PCM 抽样时钟、编码数据和输入/输出时钟之间的关系。
3. 了解PCM 专用大规模集成电路的工作原理和应用。
4. 熟悉语音数字化技术的主要指标及测量方法。
二. 实验原理1. 脉冲编码调制(PCM)是将模拟语音信号变换成数字信号的编码方式,其过程如图4.1所示:图4.1 PCM 原理图2. 本实验系统中PCM 模块电路组成框图如图4.2:图4.2 PCM模块电路组成框图ADPCM编译码模块有两种不同模式PCM模式和ADPCM模式。
本实验是在PCM 模式下进行的。
如图4.2知,此模块由收、发两条支路组成。
在发送支路上,发送信号经运放U501A(TL082)放大后进入U502(MC145540集成电路)进行PCM编码,编码主时钟为BCLK(256kHz),编码输出为DT_ADPCM1(FSX为编码输出的帧脉冲信号),编码后的信号送入后续模块处理。
在接收支路,来自对方的PCM编码信号,在接收帧脉冲FSX和编码主时钟为BCLK主时钟的作用下送入U502(MC145540)译码,译码之后的模拟信号经运放U501B放大输出,送到用户1接口模块。
U503是20.48MHz晶体振荡器,供MC145540内部信号处理使用。
ADPCM1模块各跳线开关功能如下:1. 跳线开关K501:用于选择正常的发送话音信号还是测试信号。
当K501置于1_2(N: 左端)时,选择来自用户接口单元的话音信号;当K501置于2_3(T:右端)时,选择测试信号,。
测试信号受连续控制模块中跳线器K001控制:K001设置在2_3(右端),测试信号来自J005输入信号;K001设置在1_2(左端),测试信号来自实验箱自身产生的1kHz信号。
2. 跳线器K502:用于设置发通道的信号电平,当K502置于1_2(N:左端)时,选择缺省的电平设置;当K502置于2_3(T:右端)时,将通过调整电位器W501设置发通道的信号电平。
pcm编译码器实验报告PCM编码器实验报告摘要:本实验旨在通过使用PCM编码器来对模拟信号进行数字化编码,以便在数字通信系统中进行传输和处理。
实验结果表明,PCM编码器能够有效地将模拟信号转换为数字信号,并且在一定程度上保持了信号的原始信息。
本实验为数字通信系统的设计和优化提供了重要的参考和实践基础。
引言:随着数字通信技术的不断发展,PCM编码器作为一种重要的数字信号处理技术,被广泛应用于语音通信、数据传输、音频存储等领域。
PCM编码器能够将模拟信号转换为数字信号,从而实现信号的数字化处理和传输。
本实验旨在通过对PCM编码器的实验研究,探讨其在数字通信系统中的应用和性能表现。
实验目的:1. 了解PCM编码器的基本原理和工作过程;2. 掌握PCM编码器的实验操作方法;3. 分析PCM编码器在数字通信系统中的应用和性能特点。
实验原理:PCM编码器是一种基于脉冲编码调制(PCM)原理的数字信号处理设备,其工作原理是将模拟信号进行采样、量化和编码,最终输出数字信号。
在PCM编码器中,采样率和量化位数是影响编码质量的重要参数,采样率越高、量化位数越大,编码精度越高。
实验过程:1. 连接实验设备,调试参数;2. 输入模拟信号,观察编码输出;3. 调整采样率和量化位数,比较编码效果;4. 记录实验数据,分析结果。
实验结果:通过实验观察和数据分析,我们发现在一定范围内,增加采样率和量化位数可以提高PCM编码器的编码精度,但是也会增加系统的复杂度和成本。
另外,我们还发现在一定程度上,PCM编码器能够有效地保持原始信号的信息,但是在高频信号和动态范围较大的信号上,编码效果会有所下降。
结论:本实验通过对PCM编码器的实验研究,深入理解了其工作原理和性能特点,为数字通信系统的设计和优化提供了重要的参考。
未来的研究方向包括进一步优化编码器的算法和结构,提高编码精度和系统性能。
同时,还可以探索PCM编码器在不同应用场景下的性能表现,为其在实际工程中的应用提供更多的参考和指导。
PCM编译码器的仿真设计摘要随着通信事业的发展,特别是电子器件、集成电路、脉冲技术的发展,脉冲编码通信(PCM)得到了广泛的发展与应用。
PCM是一种一组二进制数字代码来代替连续信号的抽样值,从而实现数字通信的方式。
由于这种通信方式抗干扰能力强,易于加密,易于集成化小型化,因此它已成为数字通信网与综合业务数字网中的主要传输方式。
本设计分别基于MATLAB和FPGA完成了PCM的编译码过程,整个系统包含有A 律13折线编码、PCM线路编码如HDB3码及PCM组帧(复用)过程,以及对应的13折线译码、线路译码及解复用过程的各个模块。
能够完整的实现PCM的编译器的整个过程。
关键词:PCM MATLAB FPGA线路编译码复用Design and Simulation of the PCMIncoding and DecodingAbstractWith the development of communication technology, especially the development of electronic components, integrated circuit, pulse technology, pulse code communication (PCM) has widely development and application. PCM is a set of binary digital code instead of a continuous signal sampling value, so as to realize the digital communication. Because of this communication mode and stronganti-interference ability, easy encryption, easy integration of small, so it has become the main mode of transmission of digital communication network and integrated services digital network.The design of MATLAB and FPGA were completed based on encoding and decoding process of PCM, the whole system includes the A Law 13 l ine coding, PCM line code such as HDB3 code and PCM framing (multiplexing) process, and the decoding of 13 line, line corresponding decoding and demultiplexing process each module. Can realize the whole process of PCM compiler completeKeywords:PCM ;FPGA ;MATLAB ;Line coding ;multiplexing目录1 引言 (1)1.1 设计的背景及意义 (1)1.2 PCM编译码系统的发展历史及研究现状 (1)1.3 PCM通信系统原理 (2)1.4 方案选择 (4)1.4.1 MATLAB软件仿真 (4)1.4.2 VHDL硬件编程 (5)2 MATLAB软件设计 (7)2.1总体结构框图 (7)2.2正弦信号产生模块 (8)2.3 A律13折线的编码译码 (8)2.3.1 编码模块及仿真 (10)2.3.2 译码模块及仿真 (11)2.4复用模块 (12)2.5 HDB3编译码模块 (13)2.5.1 HDB3编码模块 (14)2.5.2 HDB3译码模块 (17)3 VHDL硬件编程设计 (18)3.1 Quartus II软件设计结构 (18)3.2 A率13折线编解码模块 (18)3.2.1 A率13折线编码模块 (19)3.2.2 A率13折线译码模块 (19)3.3复用解复用模块 (20)3.3.1时分复用模块 (21)3.3.2时分解复用模块 (22)3.4 HDB3编译码模块 (23)3.4.1 HDB3编码模块 (23)3.4.2 HDB3译码模块 (30)4 总结 (33)谢辞 (34)参考文献 (35)附录 (36)1 引言1.1 设计的背景及意义随着科学技术的不断发展,数字通信在日常生活中到处可见,在数字通信中编解码器的应用更是很广泛。
实验一 PCM编译码实验一、实验目的1. 掌握PCM编译码原理。
2. 掌握PCM基带信号的形成过程及分接过程。
3. 掌握语音信号PCM编译码系统的动态范围和频率特性的定义及测量方法。
二、实验仪器1. 双踪示波器一台2. 通信原理Ⅵ型实验箱一台3. M3:PCM与ADPCM编译码模块和M6数字信号源模块4. 麦克风和扬声器一套三、基本原理1. 点到点PCM多路电话通信原理脉冲编码调制(PCM)技术与增量调制(ΔM)技术已经在数字通信系统中得到广泛应用。
当信道噪声比较小时一般用PCM,否则一般用ΔM。
目前速率在155MB以下的准同步数字系列(PDH)中,国际上存在A律和μ律两种PCM编译码标准系列,在155MB以上的同步数字系列(SDH)中,将这两个系列统一起来,在同一个等级上两个系列的码速率相同。
而ΔM在国际上无统一标准,但它在通信环境比较恶劣时显示了巨大的优越性。
点到点PCM多路电话通信原理可用图11-1表示。
对于基带通信系统,广义信道包括传输媒质、收滤波器、发滤波器等。
对于频带系统,广义信道包括传输媒质、调制器、解调器、发滤波器、收滤波器等。
图11-1 点到点PCM多路电话通信原理框图本实验模块可以传输两路话音信号。
采用MC145503编译器,它包括了图11-1中的收、发低通滤波器及PCM编译码器。
编码器输入信号可以是本实验系统内部产生的正弦信号,也可以是外部信号源的正弦信号或电话信号。
本实验模块中不含电话机和混合电路,广义信道是理想的,即将复接器输出的PCM信号直接送给分接器。
2. PCM编译码模块原理本模块的原理方框图及电路图如图11-2及图11-3所示。
图11-2 PCM编译码原理方框图该模块上有以下测试点和输入点:∙ BS PCM基群时钟信号(位同步信号)测试点∙ SL0 PCM基群第0个时隙同步信号∙ SLA 信号A的抽样信号及时隙同步信号测试点∙ SLB 信号B的抽样信号及时隙同步信号测试点∙ SRB 信号B译码输出信号测试点∙ STA 输入到编码器A的信号测试点∙ SRA 信号A译码输出信号测试点∙ STB 输入到编码器B的信号测试点∙ PCM_OUT PCM基群信号输出点∙ PCM_IN PCM基群信号输入点∙ PCM A OUT 信号A编码结果输出点(不经过复接器)∙ PCM B OUT 信号B编码结果输出点(不经过复接器)∙ PCM A IN 信号A编码结果输入点(不经过复接器)∙ PCM B IN 信号B编码结果输入点(不经过复接器)本模块上有S2这个拨码开关,用来选择SLB信号为时隙同步信号SL1、SL3、SL5、SL6中的任一个。
PCM编码器设计PCM(脉冲编码调制)编码器是一种将模拟信号转换为数字信号的设备。
它用于音频和视频编码中,可以将连续时间的模拟信号转换为离散时间的数字信号,以便进行存储、传输和处理。
1.采样频率选择:选择适当的采样频率来采集原始模拟信号。
常用的采样频率有44.1kHz、48kHz和96kHz等。
选择适当的采样频率可以平衡信号的质量和文件的大小。
2.量化位数选择:选择适当的量化位数来描述采样信号的离散级别。
通常使用8位、16位或24位量化位数。
较高的量化位数可以提高信号的动态范围和信噪比,但需要更多的存储空间和传输带宽。
3. 量化器设计:采用适当的算法和电路设计一个精确的量化器,将连续模拟信号映射到离散级别。
一个常用的量化算法是线性二进制量化(linear binary quantization),它将输入信号划分为离散的级别,并将其映射到用二进制表示的编码值。
4. 压缩编码设计:设计一个有效的编码器,将量化后的信号进行进一步的压缩。
常用的压缩编码算法有Huffman编码和Lempel-Ziv编码等。
这些算法根据信号的统计特性和出现概率来对信号进行编码,以减少编码后的数据量。
5.错误纠正设计:为了增加PCM数据的可靠性,在编码过程中可以添加纠错码,以便在传输或存储过程中,能够检测和纠正部分错误。
常用的错误纠正编码包括海明码和循环冗余校验码(CRC)等。
6.附加功能设计:可以根据具体需求添加一些附加功能,如音频增强、降噪、立体声编码等。
这些功能可以提高音频质量,增加用户体验。
7.性能评估和优化:设计完成后,需要对PCM编码器的性能进行评估和优化。
包括信号质量评估、压缩率评估和编码速度评估等。
同时可以根据评估结果对设计进行优化,以改进性能。
总的来说,设计一个PCM编码器需要考虑采样频率、量化位数、量化器设计、压缩编码设计、错误纠正设计、附加功能设计、性能评估和优化等因素。
通过合理的设计和优化,可以实现高质量的PCM编码器,提高音频和视频编码的效率和质量。
pcm编译码器实验报告PCM编码器实验报告引言在现代通信领域中,数字信号处理技术扮演着至关重要的角色。
PCM编码器作为一种数字信号处理技术的应用,被广泛应用于音频和语音通信系统中。
本文将介绍PCM编码器的原理、实验过程和结果,并对其性能进行评估和分析。
一、PCM编码器的原理PCM编码器(Pulse Code Modulation Encoder)是一种将模拟信号转换为数字信号的技术。
其基本原理是将连续的模拟信号离散化,然后将每个采样值用二进制数表示。
PCM编码器由采样、量化和编码三个步骤组成。
1. 采样采样是将连续的模拟信号在时间上进行离散化的过程。
在实验中,我们使用了一个采样频率为Fs的采样器对模拟信号进行采样。
采样频率决定了信号在时间轴上的离散程度,过低的采样频率会导致信号失真,而过高的采样频率则会浪费计算资源。
2. 量化量化是将连续的采样值映射为离散的量化级别的过程。
在实验中,我们使用了一个分辨率为N的量化器对采样值进行量化。
分辨率决定了量化级别的数量,过低的分辨率会导致信息丢失,而过高的分辨率则会增加编码的复杂性。
3. 编码编码是将量化后的离散值用二进制数表示的过程。
在实验中,我们使用了一种线性编码的方法,将每个量化级别映射为一个二进制码字。
编码后的二进制数可以通过数字信号传输或存储。
二、实验过程为了验证PCM编码器的性能,我们设计了一套实验方案,包括信号生成、PCM 编码器实现和性能评估三个步骤。
1. 信号生成我们选择了一个简单的音频信号作为实验输入信号。
通过声卡输入设备,我们将音频信号输入到计算机中。
在计算机上,我们使用MATLAB软件对音频信号进行处理,包括采样频率和量化分辨率的设置。
2. PCM编码器实现为了实现PCM编码器,我们使用MATLAB编程语言编写了一段代码。
该代码根据采样和量化的参数,对输入信号进行采样、量化和编码,最终输出PCM编码的二进制数据。
3. 性能评估为了评估PCM编码器的性能,我们使用了两个指标:信噪比(SNR)和失真度。
PCM编译码的实验报告篇一:实验十一:PCM编译码实验报告实验报告哈尔滨工程大学教务处制实验十一PCM编译码实验一、实验目的1.掌握PCM编译码原理。
2.掌握PCM基带信号的形成过程及分接过程。
3.掌握语音信号PCM编译码系统的动态范围和频率特性的定义及测量方法。
二、实验仪器1.双踪示波器一台2.通信原理Ⅵ型实验箱一台3. M3:PCM与ADPCM编译码模块和M6数字信号源模块4.麦克风和扬声器一套三、实验步骤1.实验连线关闭系统电源,进行如下连接:非集群方式2.熟悉PCM编译码模块,开关K1接通SL1,打开电源开关。
3.用示波器观察STA、STB,将其幅度调至2V。
4.用示波器观察PCM编码输出信号。
当采用非集群方式时:测量A通道时:将示波器CH1接SLA(示滤波器扫描周期不超过SLA的周期,以便观察到一个完整的帧信号),CH2接PCMAOUT,观察编码后的数据与时隙同步信号的关系。
测量B通道时:将示波器CH1接SLB,(示滤波器扫描周期不超过SLB的周期,以便观察到一个完整的帧信号),CH2接PCMBOUT,观察编码后的数据与时隙同步信号的关系。
当采用集群方式时:将示波器CH1接SL0,(示滤波器扫描周期不超过SL0的周期,以便观察到一个完整的帧信号),CH2分别接SLA、PCM A OUT、SLB、PCM B OUT以及PCM_OUT,观察编码后的数据所处时隙位置与时隙同步信号的关系以及PCM信号的帧结构(注意:本实验的帧结构中有29个时隙是空时隙,SL0、SLA及SLB的脉冲宽度等于一个时隙宽度)。
开关S2分别接通SL1、SL2、SL3、SL4,观察PCM基群帧结构的变化情况。
5.用示波器观察PCM译码输出信号示波器的CH1接STA,CH2接SRA,观察这两个信号波形是否相同(有相位差)。
示波器的CH1接STB,CH2接SRB,观察这两个信号波形是否相同(有相位差)。
6.用示波器定性观察PCM编译码器的动态范围。
语音信号PCM译码器的设计蒋海东(陕西理工学院物理与电信工程学院通信工程专业1202班,陕西汉中 723003)指导教师:熊国庆[摘要]在科学技术高速发展的今天,通信原理技术已广泛运用于制造业、农业、交通、航空航天等众多部门,极大的提高了社会劳动生产率,改善了人们的劳动环境,丰富和提高了人民的生活水平。
在今天的社会生活中,自动化装置已经无所不在,为人类文明进步做出了重要的贡献。
通信原理系统的课程设计是检验我们学过知识扎实程度的好机会,也让我们的知识体系更加系统,更加完善。
在不断学习新知识的基础上得到了动手能力的训练,启发创新思维及独立解决实际问题的能力,提高设计、装配、调试能力。
[关键词]PCM;编译码器;simulink;脉冲;系统Design of The PCM Decoder about Audio SignalJiang Haidong(Grade 2012,Class 2,Major of Communication Engineering,School of Physics and Telecommunication Engineering of Shaanxi University of Technology,Hanzhong 723003,Shaanxi)Tutor: Xiong GuoqingAbstract:This century,the science and technology develope rapidly,and the technology of communication theory has been widely used in manufachturing industry,agriculture,transportation,aerospace and other departments,which greatly improves the labor productivity changes people’s working environment better,and enhance people’s living standard.In our social life today ,automation device has been seen and used in any places,and it made an important contribution to the progress of human civilization.For us,it’s a good opportunity to test what and how much we have learned by doing the systematic curriculum design of communication theory,besides,it also can improve and complete knowledge system.By doing the curriculum design,we got the ability training of hand working,innovative thingking and deal with problems by ourselves meanwhile it improves our other abilities,such as design,fabrication and debugging as well as we learnt the new knowledge.Key words:pcm;codec;simulink;pulse;system目录1引言 (1)1.1 设计的背景及意义 (1)1.2 PCM编译码系统的发展历史及研究现状 (1)1.3 PCM通信系统原理 (1)1.3.1 抽样 (2)1.3.2 量化 (2)1.3.3 编码 (3)2 MATLAB程序设计 (4)2.1 MATLAB的特点 (4)2.2 MATLAB编译码源程序的设计及运行结果 (4)2.2.1 MATLAB编译码源程序 (4)2.2.2 运行结果 (7)3 基于simulink的PCM编码和解码的仿真 (7)3.1 simulink模块图 (7)3.2 仿真框图中各部分的简介 (8)3.3各部分参数设置 (9)3.4 示波器的显示波形 (10)4.误差产生原因分析 (11)结束语 (11)参考文献 (12)1引言1.1 设计的背景及意义随着科学技术的不断发展,数字通信在日常生活中到处可见,在数字通信中编解码器的应用更是很广泛。
编解码器经常用在视频会议和流媒体等应用中,通常主要还是用在广电行业,作前端应用。
编解码器是在同一装置中,由工作于相反传输方向的编码器和解码器构成的组合体。
在PCM通信系统中模拟信号与编码数字信号的相互转换是以重要环节,它是由编解码器来完成。
采用不同编码方式、压扩特性、编码位数会直接影响其传输质量,决定其量化噪声。
脉冲编码调制是把模拟信号变成数字信号的一种调制方式,其最大的特征是把连续的输入信号变换为时间域和振幅域上都离散的量,然后再把它变换为二进制代码进行传输。
脉冲编码调制的原理是由采样、量化、编码三个步骤构成。
其功能是完成模-数转换,实现连续消息数字化[1]。
利用PCM技术,从而完整的将编译码器的整个功能实现出来。
本设计是分别通过MATLAB来是实现PCM系统的仿真,通过仿真来查看PCM整个编译码的过程,更加清晰全面的了解PCM系统的原理和信号的传输过程。
通过学习PCM系统的原理和信号传输的过程来掌握模拟通信和数字通信系统的信息传输的基本原理和分析方法,能够懂得通信系统的基本原理和构成。
了解有关通信系统中的技术指标及改善系统性能的一些基本技术措施。
为我们全面系统的了解信号传输过程提供理论依据。
1.2 PCM编译码系统的发展历史及研究现状PCM技术是英国人A.里弗斯提出来的,后来的数字移动通信技术则运用的就是PCM技术。
室内电话网中PCM技术的使用使音频电缆芯线的传输容量大大提高了。
70年代的中后期,PCM技术又成功的应用于各种中、大容量传输系统。
随着电子信息产业的迅速发展,通信技术运用的范围越来越广泛,其中,市话中继传输和大容量干线传输以及数字程控交换机以及用户话机中都采用了PCM技术。
80年代初,脉码调制已用于市话中继传输和大容量干线传输以及数字程控交换机,并在用户话机中采用。
如今脉冲调制可以向用户提供多种业务,既可以提供从2M到155M速率的数字数据专线业务,也可以提供话音、图象传送、远程教学等其他业务。
特别适用于对数据传输速率要求较高,需要更高带宽的用户使用。
如今的PCM技术越来越成熟,并且已经应用到了各个方面。
其中有PCM做低速数据接入设备,还有利用PCM技术实现埋地管道防腐层状况检测系统。
在2011年09月30日,在北京时代全芯科技有限公司在与美国全芯科技公司(BAMC)及其合作方IBM团队的共同努力下,第一批基于相变存储器的产品芯片已经设计完成,成为中国第一批高密度相变存储器芯片。
这种芯片就是应用有PCM技术。
1.3 PCM通信系统原理脉冲编码调制在通信系统中完成将语音信号数字化功能。
是一种对模拟信号数字化的取样技术,将模拟信号变换为数字信号的编码方式,特别是对于音频信号。
PCM 对信号每秒钟取样 8000 次;每次取样为8个位,总共64kbps。
PCM的实现主要包括三个步骤完成:抽样、量化、编码。
分别完成时间上离散、幅度上离散、及量化信号的二进制表示。
根据CCITT的建议,为改善小信号量化性能,采用压扩非均匀量化,有两种建议方式,分别为A律和律方式,本设计采用了A律方式。
由于A律压缩实现复杂,常使用13折线法编码,采用非均匀量化PCM编码示意图如图1.1所示。
话音输入低通滤波瞬时压缩抽样量化编码信道再生解码解调瞬时扩张低通滤波话音输出图1.1 PCM 原理图1.3.1 抽样所谓抽样,就是对模拟信号进行周期性扫描,把时间上连续的信号变成时间上离散的信号。
该模拟信号经过抽样后还应当包含原信号中所有信息,也就是说能无失真的恢复原模拟信号。
它的抽样速率的下限是由抽样定理确定的。
1.3.2 量化从数学上来看,量化就是把一个连续幅度值的无限数集合映射成一个离散幅度值的有限数集合。
如图1.2所示,量化器Q 输出L 个量化值k y ,k=1,2,3,…,L 。
k y 常称为重建电平或量化电平。
当量化器输入信号幅度x 落在k x 与1+k x 之间时,量化器输出电平为k y 。
这个量化过程可以表达为:{}1(),1,2,3,,k k k y Q x Q x x x y k L +==<≤== 这里k x 称为分层电平或判决阈值。
通常k k k x x -=∆+1称为量化间隔。
图1.2 模拟信号的量化模拟信号的量化分为均匀量化和非均匀量化。
由于均匀量化存在的主要缺点是:无论抽样值大小如何,量化噪声的均方根值都固定不变。
因此,当信号()m t 较小时,则信号量化噪声功率比也就很小,这样,对于弱信号时的量化信噪比就难以达到给定的要求。
通常,把满足信噪比要求的输入信号取值范围定义为动态范围,可见,均匀量化时的信号动态范围将受到较大的限制。
为了克服这个缺点,实际中,往往采用非均匀量化。
非均匀量化是根据信号的不同区间来确定量化间隔的。
对于信号取值小的区间,其量化间隔v ∆也小;反之,量化间隔就大。
它与均匀量化相比,有两个突出的优点。
首先,当输入量化器的信号具有非均匀分布的概率密度(实际中常常是这样)时,非均匀量化器的输出端可以得到较高的平均信号量化噪声功率比;其次,非均匀量化时,量化噪声功率的均方根值基本上与信号抽样值成比例。
因此量化噪声对大、小信号的影响大致相同,即改善了小信号时的量化信噪比。
实际中,非均匀量化的实际方法通常是将抽样值通过压缩再进行均匀量化。
通常使用的压缩器中,大多采用对数式压缩。
广泛采用的两种对数压缩律是μ压缩律和A 压缩律。
美国采用μ压缩律,我国和欧洲各国均采用A 压缩律,因此,PCM 编码方式采用的也是A 压缩律。
所谓A 压缩律也就是压缩器具有如下特性的压缩律:A X A Ax y 10,ln 1≤<+=11,ln 1ln 1<≤++=X A A Ax yA 律压扩特性是连续曲线,A 值不同压扩特性亦不同,在电路上实现这样的函数规律是相当复杂的。
实际中,往往都采用近似于A 律函数规律的13折线(A=87.6)的压扩特性。
这样,它基本上保持了连续压扩特性曲线的优点,又便于用数字电路实现,本设计中所用到的PCM 编码正是采用这种压扩特性来进行编码的。