二次函数的单调性专题
- 格式:doc
- 大小:241.00 KB
- 文档页数:5
高三数学函数的单调性和最值典型例题解析1.由二次函数的值域和对数函数的单调性,求得()f x 的最小值,解不等式112log 48a a ⎛⎫≥+ ⎪⎝⎭,可得所求范围. 【详解】(1)由2040x a a x ->⎧⎨->⎩可得24a x a <<,则()f x 的定义域为()2,4a a ,()log (2)log (4)log (2)(4)a a a f x x a a x x a a x =-+-=--22log (3)a x a a ⎡⎤=--+⎣⎦,当1a >时,()f x 的增区间为()2,3a a ,减区间为()3,4a a .证明:设()22()3g x x a a =--+,()g x 的增区间为(),3a -∞,减区间为()3,a +∞,当1a >时,设1223a x x a <<<,可得()()12g x g x <,()()12log log []a a g x g x <⎡⎤⎣⎦,即()()12f x f x <,可得()f x 在()2,3a a 递增;设1234a x x a <<<,可得()()12g x g x >,()()12log log []a a g x g x >⎡⎤⎣⎦, 即()()12f x f x >,可得()f x 在()3,4a a 递减.(2)由01a <<,()2223x a a a --+≤,可得2()log 2a f x a ≥=,所以112log 48a a ⎛⎫≥+ ⎪⎝⎭,即为211048a a --≤,解得102a <≤,即a 的取值范围是10,2⎛⎤⎥⎝⎦.2. 已知定义域为R 的函数12()12xxf x -=+. (1)试判断函数12()12xxf x -=+在R 上的单调性,并用函数单调性的定义证明;(2)若对于任意t ∈R ,不等式22(2)()0f t t f t k -+-<恒成立,求实数k 的取值范围. 【答案】(1)函数()f x 在R 上单调递减,证明见解析;(2)1,2⎛⎫-∞- ⎪⎝⎭.【详解】(1)函数12()12xx f x -=+在R 上单调递减.证明如下:任取12,x x ∈R ,且12x x <,122112*********(22)()()1212(12)(12)x x x x x x x x f x f x ----=-=++++,因为12x x <,所以1222x x <,1120x +>,2120x +>,即12()()f x f x >,故函数12()12xxf x -=+在R 上单调递减. (2)因为1221()()1221x x x x f x f x -----===-++,故12()12xxf x -=+为奇函数,所以222(2)()()f t t f t k f k t -<--=-, 由(1)知,函数()f x 在R 上单调递减,故222t t k t ->-,即2220t t k -->对于任意t ∈R 恒成立,所以222k t t <-,令()222g t t t =-,则()min k g t <,因为()22111222222g t t t t ⎛⎫=-=--≥- ⎪⎝⎭,所以()min 12g t =-,所以12k <-,即实数k 的取值范围是1,2⎛⎫-∞- ⎪⎝⎭.3.下列函数中是偶函数,且在区间(0,1)上单调递增的是() A .22y x =-B .2y x=C .1||||y x x =+D .2||x y x =【答案】AD 【详解】A ,因为()()()2222f x x x f x -=--=-=,22y x =-是偶函数,在区间(0,1)上为增函数,符合题意;B ,因为()()22x x f x f x =--=--=,2y x=是奇函数,且在区间(0,1)上为减函数,不符合题意; C ,因为()()11||||||||f x x x f x x x -=-+=+=-,1||(0)||y x x x =+≠是偶函数,当(0,1)x ∈时,1y x x=+单调递减,不符合题意;D ,因为()()22||||x x f x f x x x -===-,2(0)||x y x x =≠是偶函数,且在区间(0,1)上为增函数,符合题意. 故选:AD4.定义在[1,1]-上的奇函数()f x ,对任意,0m n ≠时,恒有()()0f m f n m n+>+.(1)比较1()2f 与1()3f 大小;(2)判断()f x 在[1,1]-上的单调性,并用定义证明;(3)若810a x -+>对满足不等式11()(2)024f x f x -+-<的任意x 恒成立,求a 的取值范围. 【答案】(1)11()()23f f >;(2)函数()f x 在[1,1]-上为单调递增函数,证明见解析;(3)4a >. 【解析】试题解析:(1)利用作差法,即可比较1()2f 与1()3f 大小;(2)利用单调性定义证明步骤,即可得出结论;(3)先确定x 的范围,再分离参数求最值,即可求a 的取值范围.试题解析:(1)第一步,由()()0f m f n m n+>+得出031213121>⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛f f :∵11()023+-≠,031213121>⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛f f , ∵03121>⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛f f , 第二步,由奇偶性得出结论: ∵11()()23f f >--∵11()()23f f >. (2)第一步,取值、作差: 任取12[1,1]x x ∈-,且12x x <,21212121212121()()()()()()()()()f x f x f x f x f x f x x x x x x x x x -+--=-=--+-.第二步,判断符号:∵2121()()0()f x f x x x +->+-,210x x ->,∵21()()0f x f x ->,第三步,下结论:∵函数()f x 在[1,1]-上为单调递增函数. (3)4a >.考点:函数奇偶性与单调性的综合问题. 5.已知函数()21xf x x =+. (1)判断并证明函数()f x 的奇偶性;(2)判断当()1,1x ∈-时函数()f x 的单调性,并用定义证明; (3)若()f x 定义域为()1,1-,解不等式()()210f x f x -+<. 【答案】(1)奇函数(2)增函数(3)1{|0}3x x <<【解析】试题解析:(1)判断与证明函数的奇偶性,首先要确定函数的定义域是否关于原点对称,再判断f(-x)与f(x)的关系,如果对定义域上的任意x ,都满足f(-x)=f(x)就是偶函数,如果f(-x)=-f(x)就是奇函数,否则是非奇非偶函数。
二次函数单调性问题一、 定区间,定对称轴1. 说明函数242-+-=x x y 在区间]3,0[的单调性及最值. 2. 求函数4)43(22-+++-=x a a x y 在区间]1,3[-的单调性及最值. 二、 定区间,动对称轴3. 已知函数3)24(2-++=x a x y 在区间]3,1[单调,求a 的取值范围. 4.已知函数 4)22(2+++=x a ax y 在区间]4,2[上单调递增,求a 的取值范围. 5.求函数222++-=x ax y 在]1,2[-∈x 上的最大值.三、定对称轴,动区间6.已知22)(2++=x x x f ,当],2[a a x -∈时,讨论该函数的单调性.7.已知2()23f x x x =-+,当[1]()x t t t ∈+∈R ,时,求()f x 的最大值.四、 动区间,动对称轴8. 已知函数4)13(2+--=x a x y ,讨论函数在区间]1,[+a a 的单调性.9. 已知函数22y x ax =-,[]4,x a a ∈--+,求函数的最大值()h a . 五、 逆向型(是指已知二次函数在某区间上的最值,求函数或区间中参数的取值)10. 已知函数2()21f x ax ax =++在区间[3,2]-上的最大值为4,求实数a 的值.11. 二次函数1)12()(2+-+=x a ax x f 在区间3,22⎡⎤-⎢⎥⎣⎦上的最大值为3,求实数a 的值. 求函数值域(最值)的方法:1.配方法----二次函数(二次函数在给出区间上的最值有两类:一是求闭区间[,]m n 上的最值;二是求区间定(动),对称轴动(定)的最值问题。
求二次函数的最值问题,勿忘数形结合,注意“两看”:一看开口方向;二看对称轴与所给区间的相对位置关系),求函数225,[1,2]y x x x =-+∈-的值域2.换元法――通过换元把一个较复杂的函数变为简单易求值域的函数,其函数特征是函数解析式含有根式或三角函数公式模型1、21y x =+的值域为_____2、4y x =+的值域为____;函数x x y 21-+=的值域3.单调性法――利用一次函数,反比例函数,指数函数,对数函数等函数的单调性 。
《二次函数的单调性—动轴定区间专题》微反思广州市华师附中番禺学校郭欣二次函数的单调性问题是贯穿了整个高中数学学习中的问题,而动轴定区间的专题是二次函数的单调性的问题中一个典型的考点。
它主要考察学生的数形结合、分类讨论的思维,而这部分知识点是高中学生的数学学习中最薄弱的环节,因此本人选择了这个考点来作为一个专题来制作微课,希望能够起到辅助课堂教学和让学生自学的作用,让学生能够更好地掌握这种专题的解决方法。
本人在教学设计上选择了人教版普通高中课程标准实验教材必修一P44复习参考题A组第9题作为本次微课教学的例题,同时本人也制作了一个PPT动画课件,通过数形结合,并从运动的观点来揭示在这道例题中所蕴含的数量关系和知识点,让学生能够更直观地接受本节课例的学习。
而本人也对这种题型的求解做了一个比较细致的小结,同时本人也附上了相应的变式练习,在条件、题目的问法上进行改变,让学生在解决这一类问题时能够更灵活,更游刃有余。
最后本人设置了一到思维拓展训练,设置的目的是承上启下,本节课的习题是二次函数动轴定区间类型,本人设计了这个问题,是想让学生思维由动轴定区间的类型过渡到定轴动区间的类型,为后续的教学作好铺垫。
通过此次的微课教学,本人的收获甚多,以下从几个方面来讲述:①微课的教学更灵活,不受时间和空间的限制,让学生能够随时随地进行学习和复习。
②微课的针对性强,以本节课为例,这节课的专题就是解决有关带有字母系数的二次函数的单调性问题,让学生能够在学习中有的放矢,学习更得心应手。
③制作数学的学习微课,可以更有效地提高学生在课内外的数学学习效率。
本节课需要改进的地方:①语速需要注意,同时语言稍显生硬。
②在动画制作方面,可以采用多种软件制作交互式课件来教学,让自己的教学更生动、活泼一点。
以上就是我对本节微课的总结和反思,一堂微课就像一场电影,老师既是编剧又是导演,要制作一堂高效的数学微课,要从多方面去考虑该如何抓住观众的心,这就需要我们不断地推敲和思考,务求提高自己的教学效率,以到达更好的教学效果!。
二次函数的单调性分析二次函数是指形如 y = ax^2 + bx + c (其中a≠0)的函数,它是一个关于x的二次多项式函数。
在这篇文章中,我们将重点讨论二次函数的单调性分析。
一、二次函数的基本性质1. a的正负决定开口方向当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。
2. 顶点坐标在二次函数的图像中,顶点是其中最高或最低点的坐标。
顶点的横坐标可以通过公式 x = -b/(2a) 计算得出,纵坐标可以通过将横坐标代入函数中计算得出。
3. 对称轴二次函数的图像存在对称轴,对称轴是通过顶点的垂直直线。
对称轴的方程可以通过公式 x = -b/(2a) 得到。
二、二次函数的单调性判断方法要判断二次函数的单调性,我们需要考虑两种情况:当二次函数开口向上和开口向下。
1. 当二次函数开口向上时(a>0)由于二次函数是一个抛物线形状的图像,开口向上的二次函数在对称轴的左侧是递减的,在对称轴的右侧是递增的。
因此,该二次函数在对称轴的左侧是单调递减的,在对称轴的右侧是单调递增的。
2. 当二次函数开口向下时(a<0)对于开口向下的二次函数,情况与开口向上时相反。
在对称轴的左侧是递增的,在对称轴的右侧是递减的。
因此,该二次函数在对称轴的左侧是单调递增的,在对称轴的右侧是单调递减的。
三、实例分析为了更好地理解二次函数的单调性分析,我们来看两个具体的例子。
示例1:考虑函数 y = 2x^2 + 3x - 1 。
首先,我们可以看出a的值为2,因此二次函数开口向上。
根据公式 x = -b/(2a) ,我们可以计算出对称轴的横坐标为 x = -3/4 。
对称轴左侧的一点 A:取 x = -4,计算 y = 2(-4)^2 + 3(-4) - 1 = 17对称轴右侧的一点 B:取 x = -2,计算 y = 2(-2)^2 + 3(-2) - 1 = 1根据计算结果,我们可以得知:对于 x < -3/4 ,函数 y = 2x^2 + 3x - 1 单调递减;对于 x > -3/4 ,函数 y = 2x^2 + 3x - 1 单调递增。
二次函数专题训练1——对称性与增减性1、抛物线y =a(x +1)2+2的一部分如图所示,该抛物线在y 轴右侧部分与x 轴交点的坐标是( ) (A)(21,0) (B)(1,0) (C)(2,0) (D)(3,0)2、抛物线y =ax 2+2ax +a 2+2的一部分如图所示,那么该抛物线在y 轴右侧与x 轴交点的坐标是( ) A .(0.5,0) B .(1,0)C .(2,0)D .(3,0)3、已知关于x 的方程ax 2+bx +c =3的一个根为x 1=2,且二次函数y 轴直线是x =2,则抛物线的顶点坐标是( )A .(2,-3 )B .(2,1)C .(2,3)D .(3,2)4、已知函数y =-12x 2-3x -52,设自变量的值分别为x 1,x 2,x 3,且-3<x 1<x 2<x 3,则对应的函数值的大小关系是( )A .y 3>y 2>y 1B .y 1>y 3>y 2C .y 2<y 3<y 1D .y 3<y 2<y 15、从y =x 2的图象可看出,当-3≤x ≤-1时,y 的取值范围是( ) A 、y ≤0或y ≥9 B 、0≤y ≤9 C 、0≤y ≤1 D 、1≤y ≤96、若二次函数y =ax 2+c ,当x 取x 1,x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值为( )(A)a +c (B)a -c (C)-c (D)c7、下列四个函数:①y =2x ;②y =-2x;③y =3-2x ;④y =2x 2+x(x≥0),其中,在自变量x 的允许取值范围内,y 随x 增大而增大的函数的个数为( ) A. 1 B. 2 C. 3 D. 48、已知二次函数y =ax 2+bx +c 的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于x 的一元二次方程ax 2+bx +c =0的两个根分别是x 1=1.3和 x 2=( )A.-1.3B.-2.3C.-0.3D.-3.39、已知函数y =3x 2-6x +k(k 为常数)的图象经过点A(0.85,y 1),B(1.1,y 2),C(2,y 3),则有( )(A)y 1<y 2<y 3 (B)y 1>y 2>y 3 (C)y 3>y 1>y 2 (D)y 1>y 3>y 2x y –1–2–3O10、如图,抛物线y =ax 2+bx +c(a >0)的对称轴是直线x =1,且经过点P(3,0),则a -b +c 的值为( )A. 0B. -1C. 1D. 211、已知抛物线y =ax 2+bx +c 经过点A(-2,7),B(6,7),C(3,-8),则该抛物线上纵坐标为-8的另一点的坐标是_________12、已知二次函数y =ax 2+bx +c ,其中a,b,c 满足a +b +c =0和9a -3b +c =0,则该二次函数图象的对称轴是直线13、一元二次方程ax 2+bx +c =0 (a ≠0)的两根为x 1,x 2,且x 1+x 2=4,点A(3,-8)在抛物线y =ax 2+bx +c 上,则点A 关于抛物线的对称轴对称的点的坐标为14、当-2﹤x ﹤2时,下列函数中,函数值随自变量增大而增大的是 (只填写序号)①y=2x ;②y =2-x ;③y =-k x;④y =x 2+6x +8。
二次函数的增减性及最值的典型试题一.选择题1.函数y=-2χ2-8x+m的图象上有两点A(x1,y1),B(x2,y2),若-2VXlVX2,则( )A.y1<y2B.y1>y2C.y1=y2D.v、、y2的大小不确定2.已知二次函数y=aχ2-2ax+1(a<0)图象上三点A(-1,y1),B(2,y2)C(4,y3),则力、V2、丫3的大小关系为( )A.yι<y2<y3B.y2<yι<y3C.y1<y3<y2D.y3<yι<y23.已知(-1,yι),(-2,y2),(-4,y3)是抛物线y=-2χ2-8x+m上的点,则( )A.y,<y2<y3B.y3<y2<y,C.y3<yι<y2D∙y2<y3<yι4.若点M(-2,y1),N(-1,y2),P(8,y3)在抛物线尸一1/2A2+2X上,则下列结论正确的是()A.y,<y2<y3B.y2<y,<y3C.y3<yι<y2D.yι<y3<y25.设A(-2,yι),B(1,y2),C(2,y3)是抛物线y=-(x+1)2+3上的三点,则力,V2,丫3的大小关系为( )A.yι>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y,>y2:6.)A.y,<y2B.y1>y2C.y,≥y2D.y t≤y27.若点A(m,y,),B(m+1,y2)都在二次函数y=ax?+4ax+2(a>O)的图象上,且y,<y2,则m的取值范围是( )A.m>-5/2B.m≥-2C.m<-1D.m≤-38.若二次函数y=aχ2+bx+c(a≠O)的图象上有两点,坐标分别为(x∣,y,),(x2,y2),其中x∣VX2,yy2VO,则下列判断正确的是( )A.a<OB.a>OC.方程aχ2+bx+c=O必有一根X。
函数与导数04 函数 二次函数及其性质一、具体目标:1.掌握二次函数的图象与性质,2.会求二次函数的最值(值域)、单调区间. 二、知识概述:二次函数1.一元二次方程的相关知识:20(0)ax bx c a ++=≠根的判别式: ;判别式与根的关系:________________________; 求根公式:_____________________;韦达定理:____________________.ac b 42-=∆;⎪⎩⎪⎨⎧∈<∆==∆≠>∆φx x x x x ,0,0,02121;aac b b x242-±-=;⎪⎪⎩⎪⎪⎨⎧=-=+a c x x a b x x 2121 2.二次函数的相关知识: 2(0)y ax bx c a =++≠定义域:________________________; 值域:________________________; 对称轴方程:____________________; 顶点坐标:____________________; 与y 轴的交点坐标:______________. 二次函数的顶点式:______________.二次函数的零点式:__________________;与x 轴的交点坐标:_______________________;定义域:R ; 值域:),44[,02+∞->abac a ;]44,(,02ab ac a --∞< 【考点讲解】对称轴方程:ab x 2-=; 顶点坐标:)44,2(2a b ac a b --; 与y 轴的交点坐标:),0(c .二次函数的顶点式:h k x a y +-=2)(.二次函数的零点式:))((21x x x x a y --=;与x 轴的交点坐标:)0,24(2aacb b -±-; 3.二次函数2(0)y ax bx c a =++≠的单调性:当0a >时,单调增区间是___________;单调减区间是__________. 当0a <时,单调增区间是___________;单调减区间是__________.0>a 时),2(+∞-a b ;)2,(a b --∞.0<a 时)2,(a b --∞;),2(+∞-ab4.二次函数2(0)y ax bx c a =++≠在某一闭区间上的最值: 首先确定二次函数的顶点:_______________ ①若顶点的横坐标在给定的区间上,则:0a >时,在顶点处取得最____值,为_______,在离对称轴较远的端点取得最____值. 0a <时,在顶点处取得最____值,为_______,在离对称轴较远的端点取得最____值.②若顶点的横坐标不在给定的区间上,则:0a >时,最___值在离对称轴较近的端点处取得,最___值在离对称轴较远的端点处取得. 0a <时,最___值在离对称轴较近的端点处取得,最___值在离对称轴较远的端点处取得.)44,2(2a b ac a b --;①小,a b ac 442-,大;大,ab ac 442-,小 ②小 大 大 小5.考点探析:从近几年的高考试题来看,二次函数图像的应用与其最值问题是高考的热点,题型多以小题或大题中关键的一步的形式出现,主要考查二次函数与一元二次方程及一元二次不等式三者的综合应用.高考对幂函数,只需掌握简单幂函数的图象与性质.6.温馨提示:(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论;(2)二次函数的单调性问题则主要依据二次函数图象的对称轴进行分析讨论求解. 7.根据已知条件确定二次函数解析式,一般用待定系数法,选择规律如下: (1)已知三个点的坐标,可选用一般式;(2)已知顶点坐标、对称轴、最大或最小值,可选用顶点式; (3)已知抛物线与x 轴的两交点坐标,可选用两点式. 【常见题型】1.二次函数的解析式:(1)已知二次函数的图象经过三点错误!未找到引用源。
专题3 函数的单调性【知识回顾】1.函数在区间上增加(减少)的定义2.单调区间、单调性和单调函数的概念 (1)函数的单调区间如果y =f (x )在区间A 上是增加的或是减少的,那么称A 为单调区间.在单调区间上,如果函数是增加的,那么它的图像是上升的;如果函数是减少的,那么它的图像是下降的.(2)函数的单调性如果函数y =f (x )在定义域的某个子集上是增加的或减少的,那么就称函数y =f (x )在这个子集上具有单调性.(3)单调函数如果函数y =f (x )在整个定义域内是增加的或是减少的,我们分别称这个函数为增函数或减函数,统称为单调函数.【典例应用】类型一 用定义判断或证明函数的单调性【例1】 证明函数f (x )=x +1x 在(0,1)上为减函数.[思路探究] 在(0,1)上任取x 1,x 2且x 1<x 2,通过作差比较法证明f (x 1)>f (x 2). [解] 任取x 1,x 2∈(0,1),且x 1<x 2, 则f (x 2)-f (x 1)=⎝ ⎛⎭⎪⎫x 2+1x 2-⎝ ⎛⎭⎪⎫x 1+1x 1 =(x 2-x 1)(x 1x 2-1)x 1x 2,由0<x 1<x 2<1,得x 2-x 1>0,x 1x 2-1<0,x 1x 2>0, 所以,f (x 2)-f (x 1)<0, 于是f (x 2)<f (x 1).根据减函数的定义知,f (x )在(0,1)上为减函数.练习:对于例1中的函数,证明其在区间(1,+∞)内是增函数.[证明] 任取x 1,x 2∈(1,+∞),且x 1<x 2,则 f (x 2)-f (x 1)=⎝ ⎛⎭⎪⎫x 2+1x 2-⎝ ⎛⎭⎪⎫x 1+1x 1=(x 2-x 1)(x 1x 2-1)x 1x 2,由x 2>x 1>1,得x 2-x 1>0,x 1x 2-1>0,x 1x 2>0, 所以f (x 2)-f (x 1)>0, 于是f (x 2)>f (x 1),根据增函数的定义知,f (x )在(1,+∞)上是增函数. 类型二 已知函数的单调性求参数的取值范围【例2】 已知函数f (x )=x 2+2(a -1)x +1在区间(-∞,4]上单调递减,求实数a 的取值范围.[思路探究] 求出f (x )的单调递减区间,利用集合之间的关系求解. [解] ∵f (x )=[x +(a -1)]2-(a -1)2+1. ∴f (x )的单调递减区间是(-∞,1-a ]. 又f (x )在区间(-∞,4]上单调递减, 则(-∞,4]⊆(-∞,1-a ], ∴1-a ≥4,解得a ≤-3.练习1.设函数f (x )=(1-2a )x +1是R 上的增函数,则有( ) A .a <12 B .a >12 C .a <-12D .a >-12A [依题意,1-2a >0,解得a <12.]2.已知函数f (x )=⎩⎪⎨⎪⎧-x 2-ax -5,x ≤1ax ,x >1是R 上的增函数,则a 的取值范围是________.-3≤a ≤-2 [依题意,⎩⎪⎨⎪⎧-a2≥1,a <0,-12-a ×1-5≤a1,类型三 利用单调性求函数的最大(小)值【例3】 求函数f (x )=2x +1x +1在区间[1,3]上的最大值与最小值.[思路探究] 先判断函数f (x )在区间[1,3]上的单调性,再利用单调性求最值. [解] f (x )=2x +1x +1=2(x +1)-1x +1=2+-1x +1.其图像如下:由上图知,f (x )在区间[1,3]上递增, 所以,f (x )max =f (3)=2+-13+1=74; f (x )min =f (1)=2+-11+1=32. 练习 求函数f (x )=xx -1在区间[2,5]上的最值. [解] f (x )=x x -1=(x -1)+1x -1=1+1x -1.其图像如下:由上图知,f(x)在[2,5]上递减,所以,f(x)max=f(2)=2;f(x)min=f(5)=5 4.【等级过关练】1.函数f(x)的部分图像如图所示,则此函数在[-2,2]上的最小值、最大值分别是()A.-1,3B.0,2C.-1,2 D.3,2C[当x∈[-2,2]时,由题图可知,x=-2时,f(x)的最小值为f(-2)=-1;x=1时,f(x)的最大值为2.故选C.]2.下列函数中,在区间(0,2)上为增函数的是()A.y=3-x B.y=x2+1C.y=1x D.y=-|x+1|B[y=3-x,y=1x,y=-|x+1|在(0,2)上都是减函数,只有y=x2+1在(0,2)上是增函数.]3.已知函数y=ax和y=-bx在(0,+∞)上都是减函数,则函数f(x)=bx+a在R上是()A.减函数且f(0)<0 B.增函数且f(0)<0 C.减函数且f(0)>0 D.增函数且f(0)>0A[因为y=ax和y=-bx在(0,+∞)上都是减函数,所以a <0,b <0,f (x )=bx +a 为减函数且f (0)=a <0,故选A.] 4.设函数f (x )在(-∞,+∞)上为减函数,则( ) A .f (a )>f (2a ) B .f (a 2)<f (a ) C .f (a 2+a )<f (a )D .f (a 2+1)<f (a )D [因为a 2+1-a =⎝ ⎛⎭⎪⎫a -122+34≥34,所以a 2+1>a ,又f (x )在(-∞,+∞)上为减函数,所以f (a 2+1)<f (a ).] 5.已知函数f (x )是R 上的增函数,A (0,-1),B (3,1)是其图像上的两点,那么|f (x +1)|<1的解集是( )A .(1,4)B .(-1,2)C .(-∞,1)∪(4,+∞)D .(-∞,-1)∪(2,+∞) B [因为|f (x +1)|<1,所以-1<f (x +1)<1,由题意知,0<x +1<3, 所以-1<x <2.]6.设函数f (x )满足:对任意的x 1,x 2∈R 都有(x 1-x 2)·[f (x 1)-f (x 2)]>0,则f (-3)与f (-π)的大小关系是________.f (-3)>f (-π) [由(x 1-x 2)[f (x 1)-f (x 2)]>0, 可知函数f (x )为增函数,又因为-3>-π, 所以f (-3)>f (-π).]7.对a ,b ∈R ,记max{a ,b }=⎩⎨⎧a ,a ≥b ,b ,a <b ,函数f (x )=max{x +1,3-x }(x ∈R )的最小值是________.2 [函数f (x )的图像如图(实线部分),故f (x )的最小值为2.]8.若函数y =kx +1在区间[1,3]上的最大值为4,则k =________.1 [当k >0时,y =kx +1是增函数,所以,3k +1=4,k =1; 当k =0时,不合题意;当k <0时,y =kx +1是减函数,所以,k +1=4,k =3(舍去). 综上得,k =1.]9.用定义证明函数f (x )=1x是减函数. [证明] f (x )的定义域是(0,+∞),任取x 1,x 2∈(0,+∞),且x 1<x 2,则 f (x 2)-f (x 1)=1x 2-1x 1=x 1-x 2x 1x 2=x 1-x 2(x 1+x 2)x 1x 2,由x 2>x 1>0,得x 1-x 2<0,x 1+x 2>0,x 1x 2>0, 所以,f (x 2)-f (x 1)<0, 于是f (x 2)<f (x 1).根据减函数的定义知,f (x )是减函数. 10.判断函数f (x )=x -2x +1(x ≥0)的单调性,并求出值域. [解] f (x )=x -2x +1=x +1-3x +1=1-3x +1,设0≤x 1<x 2,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫1-3x 1+1-⎝ ⎛⎭⎪⎫1-3x 2+1=3x 2+1-3x 1+1=3(x 1-x 2)(x 1+1)(x 2+1),因为0≤x 1<x 2,所以x 1-x 2<0,x 1+1>0,x 2+1>0,于是f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),故函数f (x )=x -2x +1在[0,+∞)上为增函数.f (x )min =f (0)=-2,无最大值. 画出函数的大致图像,如图所示,知函数f (x )=x -2x +1(x ≥0)的值域为[-2,1). 专题4 二次函数的图像【知识回顾】1.函数y =x 2与函数y =ax 2(a ≠0)的图像间的关系二次函数y =ax 2(a ≠0)的图像可由y =x 2的图像各点的横坐标不变,纵坐标变为原来的a 倍得到.其中a 决定了图像的开口方向和在同一直角坐标系中的开口大小. |a |越大,开口越小.2.函数y =ax 2(a ≠0)与函数y =a (x +h )2+k (a ≠0)的图像 y =ax 2――――――――――――→h >0向左平移h 个单位h <0,向右平移|h |个单位y =a (x +h )2――――――――――――→k >0,向上平移k 个单位k <0,向下平移|k |个单位y =a (x +h )2+k .【典例应用】类型一 二次函数图像间的变换【例1】 若把函数y =x 2-6x +6图像的横坐标缩小到原来的12倍,得到图像C 1,再把C 1的纵坐标扩大到原来的2倍,得到图像为C 2,试写出图像C 2的解析式.[解] y =x 2-6x +6―――――――→横坐标缩小到原来的12倍y =(2x )2-12x +6=4x 2-12x +6――――――→纵坐标扩大到原来的2倍y 2=4x 2-12x +6,即y =8x 2-24x +12.所以图像C 2的解析式为y =8x 2-24x +12.练习 二次函数y =x 2+bx +c 的图像向左平移2个单位长度,再向上平移3个单位长度,得到二次函数y =x 2-2x +1的图像,则b =________,c =________.-6 6 [二次函数y =x 2+bx +c 的图像向左平移2个单位长度,再向上平移3个单位长度,得到的函数为y =(x +2)2+b (x +2)+c +3.整理得,y =x 2+(b +4)x +7+2b +c , 又y =x 2-2x +1, 则⎩⎨⎧b +4=-2,7+2b +c =1, 解得⎩⎨⎧b =-6,c =6,∴b =-6,c =6.]类型二 求二次函数的解析式【例2】 已知二次函数的图像的顶点坐标是(1,-3),且过点P (2,0),求这个函数的解析式.[思路探究] 已知二次函数的图像的顶点(1,-3),可设其解析式为y =a (x -1)2-3,再利用其图像过点(2,0)求a .[解] 因为二次函数的图像的顶点坐标是(1,-3), 所以,可设其解析式为y =a (x -1)2-3. 又其图像过点P (2,0), 则a (2-1)2-3=0, 解得a =3.所以,这个函数的解析式为y =3(x -1)2-3.练习1.已知二次函数的图像与x 轴的交点为A (-1,0)和B (1,0),且与y 轴的交点为(0,-1),求这个函数的解析式.[解] 因为二次函数的图像与x 轴的交点为A (-1,0)和B (1,0), 所以,可设其解析式为y =a (x -1)(x +1). 又其图像与y 轴的交点为(0,-1), 则a (0-1)(0+1)=-1, 解得a =1.所以,这个函数的解析式为y =(x -1)(x +1)=x 2-1.2.已知二次函数的图像过点A (1,1),B (0,2),C (3,5),求这个函数的解析式. [解] 设这个函数的解析式y =ax 2+bx +c (a ≠0),依题意,得⎩⎨⎧ a +b +c =1,c =2,9a +3b +c =5,∴⎩⎨⎧a =1,b =-2,c =2,所以,这个函数的解析式为y =x 2-2x +2. 类型三 二次函数图像的应用【例3】 求函数f (x )=x |x -1|的单调区间.[思路探究] 画出函数f (x )的图像,通过观察函数的图像求其单调区间. [解] f (x )=x |x -1|=⎩⎨⎧x 2-x ,x ≥1,-x 2+x ,x <1.其图像如下:观察图像,得f (x )的递增区间是⎝ ⎛⎦⎥⎤-∞,12,[1,+∞).递减区间是⎝ ⎛⎭⎪⎫12,1.练习:如图是二次函数y =ax 2+bx +c 图像的一部分,图像过点A (-3,0),对称轴为直线x =-1,给出下面四个结论:①b 2>4ac ;②2a -b =1;③a -b +c =0;④5a <b . 其中正确的序号是________.①④ [由该函数图像与x 轴交于两点,得b 2>4ac .①正确;因为对称轴为直线x=-1,所以-b2a=-1,即2a-b=0.②错误;结合图像,当x=-1时,y>0,即a-b+c>0,③错误;因为图像开口向下,所以,a<0,所以5a<2a=b.④正确.]【等级过关练】1.用配方法将函数y=12x2-2x+1写成y=a(x-h)2+k的形式是()A.y=12(x-2)2-1B.y=12(x-1)2-1C.y=12(x-2)2-3 D.y=12(x-1)2-3A[y=12x2-2x+1=12(x2-4x+4)-1=12(x-2)2-1.]2.已知函数y=ax2+bx+c的图像如图,则此函数的解析式可能为()A.y=12x2-12x-3B.y=12x2-12x+3C.y=-12x2+12x-3D.y=-12x2-12x+3A[由图像可知,抛物线开口向上,a>0,顶点的横坐标为x=-b2a>0,故b<0,图像与y轴交于负半轴,故c<0.]3.已知二次函数y=ax2+bx+c的图像的顶点坐标为(2,-1),与y轴交点坐标为(0,11),则()A.a=1,b=-4,c=-11B.a=3,b=12,c=11C.a=3,b=-6,c=11D.a=3,b=-12,c=11D [由题意c =11,-b 2a =2,44a -b 24a =-1,所以a =3,b =-12.]4.将抛物线y =2(x -4)2-1如何平移可得到抛物线y =2x 2( )A .向右平移4个单位长度,再向上平移1个单位长度B .向左平移4个单位长度,再向下平移1个单位长度C .向左平移4个单位长度,再向上平移1个单位长度D .向右平移4个单位长度,再向下平移1个单位长度C [抛物线y =2(x -4)2-1的顶点是(4,-1),抛物线y =2x 2的顶点是(0,0),图像平移时,把点(4,-1)平移至(0,0).故选C.]5.函数y =ax +1与y =ax 2+bx +1(a ≠0)的图像可能是( )C [当a >0时,y =ax 2+bx +1开口向上,y =ax +1递增且过(0,1)点,D 不符合,C 符合要求.当a <0时,y =ax 2+bx +1开口向下,y =ax +1递减且过(0,1)点,A 、B 不符合,故选C.]6.若函数f (x )=ax 2+2x -4的图像位于x 轴下方,则a 的取值范围是________.a <-14 [依题意,⎩⎨⎧a <0,Δ=4+16a <0,解得a <-14.] 7.如果一条抛物线的形状与y =13x 2+2的图像形状相同,且顶点坐标为(4,-2),则它的解析式是________.y =±13(x -4)2-2 [依题意,二次项系数为±13,又顶点为(4,-2),故其解析式为y =±13(x -4)2-2.]8.把函数y =x 2+m 的图像向下平移2个单位长度,得到函数y =x 2-1的图像,则实数m =________.1 [依题意,m -2=-1,解得m =1.]9.通过配方,把二次函数由一般式化成顶点式,并写出对称轴方程与顶点坐标.[解] 设y =ax 2+bx +c (a ≠0),则y =a ⎝ ⎛⎭⎪⎫x 2+b a x +c =a ⎣⎢⎡⎦⎥⎤x 2+b a x +⎝ ⎛⎭⎪⎫b 2a 2-⎝ ⎛⎭⎪⎫b 2a 2+c =a ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +b 2a 2-b 24a 2+c =a ⎝ ⎛⎭⎪⎫x +b 2a 2+4ac -b 24a , 其对称轴方程为x =-b 2a ,顶点坐标为⎝ ⎛⎭⎪⎫-b 2a,4ac -b 24a . 10.由函数y =2(x -1)2+1的图像通过怎样的变换可以得到函数y =x 2的图像?[解] y =2(x -1)2+1――――――――――→向左平移1个单位长度y =2x 2+1――→向下平移1个单位长度y =2x 2――――――――――→横坐标不变纵坐标变为原来的12倍y =x 2.。
学 员 辅 导 教 案
学生姓名: 授课时间 2016 年8月23日 (星期二) 科目:数学
二次函数单调性专题
一. 教学内容:
高考复习:二次函数的基本性质
二. 考纲要求:
(1)理解二次函数函数的单调性、最大(小)值及其几何意义;结合具体函数,了解函数奇偶性的含义。
(2)会运用二次函数函数图象理解和研究函数的性质。
三. 命题方向及典例探究
二次函数的性质与图像
1、二次函数的概念:形如)0(2≠++=a c bx ax y 的函数叫做二次函数.其定义域是R 。
2、二次函数的解析式:
一般式:)0()(2
≠++=a c bx ax x f ;
顶点式:)0()()(2
≠+-=a k h x a x f ,),(k h 是二次函数的顶点坐标;
两根式:)0)()(()(21≠--=a x x x x a x f ,21,x x 是二次函数与x 轴的两个交点的横坐标。
3、二次函数的性质与图像
二次函数)0(2
≠++=a c bx ax y
图像
0>a
0<a
定义域
R
值域
对称轴
顶点坐标
奇偶性
是偶函数0)c(a bx ax y 02≠++=⇔=b
)
,44[2
+∞-∈a
b a
c y ]
44,(2
a
b a
c y --∞∈)44,2(2a
b a
c a b --a
b x 2-
=
单调性
)2,(a
b
x -
-∞∈是减函数,),2(+∞-
∈a b
x 是增函数 )2,(a
b
x --∞∈是增函数,),2(+∞-
∈a
b
x 是减函数 最值
a b
x 2-=时,a b ac y 442min -=
a
b
x 2-=时,a b ac y 442max -=
考题简析
题型一:轴定、区间定。
A 、定义域为全体实数:
1、求下列函数的单调区间及值域
(1)()f x =x 2+8x+3; (2)()f x =5x 2-4x-3;
(3)()f x =
12
x 2
-5x+1; (4)()f x =-2x 2+x-1
2、变式训练:求下列函数的单调区间及值域
①142+-=x x y ; ②;142+-=x x y
B 、定义域为有界区间:
1、已知二次函数()f x =x 2-2x+3,。