克拉默法则
- 格式:pdf
- 大小:34.26 KB
- 文档页数:3
第4讲_克拉默法则克拉默法则,又称克拉默法则(Cramer's Rule),是线性代数中一种求解线性方程组的方法。
它是基于行列式的性质推导而来的,可以通过求解方程组的系数矩阵的行列式和一系列的余子式来求解方程组的解。
设线性方程组为:a1x+b1y+c1z=d1a2x+b2y+c2z=d2a3x+b3y+c3z=d3对应的系数矩阵为:A=,a1b1c1a2b2ca3b3c假设A的行列式,A,≠0,即A可逆。
克拉默法则的步骤如下:1.求出系数矩阵A的行列式,A。
2.将线性方程组中的常数项d替换成对应的常量向量i,并构成矩阵Ai,其中Ai的第i列替换为常量向量。
3.求出Ai的行列式,Ai。
4.解方程组的解向量为:x=,Ai,/,Ay=,Ai,/,Az=,Ai,/,A克拉默法则的优点是求解方便,特别适用于方程组的规模较小的情况。
然而,它的缺点是计算量较大,需要求系数矩阵和每个常量向量的行列式,不适用于大规模的方程组求解。
以下是一个数值例子来说明克拉默法则的应用:假设有方程组:2x+y-z=14x-6y=-2-2x+7y+2z=3我们可以转换为系数矩阵和常数向量的形式:A=,21-14-6-27d=,1-首先,计算系数矩阵A的行列式,A。
A,=2(-6)(2)+1(0)(-2)+(-1)(4)(7)=-12+0-28=-40然后,分别计算对应常量向量的行列式。
A1,=1(-6)(2)+1(0)(-2)+(-1)(-2)(7)=12+0+14=26A2,=2(0)(2)+1(4)(-2)+(-1)(-2)(7)=0-8+14=6A3,=2(-6)(-2)+1(4)(7)+(-1)(-2)(0)=24+28+0=52最后,根据克拉默法则的公式,我们可以得出解向量:x=,A1,/,A,=26/-40=-0.65y=,A2,/,A,=6/-40=-0.15z=,A3,/,A,=52/-40=-1.3因此,方程组的解为x=-0.65,y=-0.15,z=-1.3总结来说,克拉默法则是一种通过求解行列式的方法来求解线性方程组的解的方法。
克拉默法则原理范文克拉默法则是高等数学中一种计算线性方程组解的方法,由法国数学家克拉默于18世纪末提出。
克拉默法则的原理基于行列式的性质,通过计算各个未知数所对应的行列式的值,从而得到线性方程组的解。
下面将详细介绍克拉默法则的原理。
假设有一个包含n个线性方程和n个未知数的线性方程组:a₁₁x₁+a₁₂x₂+...+a₁ₙxₙ=b₁a₂₁x₁+a₂₂x₂+...+a₂ₙxₙ=b₂...aₙ₁x₁+aₙ₂x₂+...+aₙₙxₙ=bₙ其中aₙₙ是方程组中的系数,xₙ是未知数,bₙ是常数项。
根据克拉默法则,可以计算出方程组解的过程如下:首先,我们需要计算出方程组的系数行列式,记作D,即:D=,a₁₁a₁₂...a₁ₙa₂₁a₂₂...a₂..aₙ₁aₙ₂...aₙ然后,我们依次计算出将方程组中的第k个系数列替换为常数项列所得到的行列式,记作Dₙ,即:Dₙ=,a₁₁a₁₂...b₁...a₁ₙa₂₁a₂₂...b₂...a₂..aₙ₁aₙ₂...bₙ...aₙ最后,方程组的解可以表示为:xₙ=Dₙ/D,其中k=1,2,...,n1.行列式的乘法性质:如果把一个行列式的其中一列乘以同一个数k,得到的结果行列式等于原行列式乘以k。
2.行列式的加法性质:如果把一个行列式的其中一列的各个数分别乘以一些数,得到的结果行列式等于原行列式的各列与这些数的乘积的和。
3.行列式的行互换性质:如果行列式的两行交换位置,行列式变号。
4.行列式的零行性质:如果行列式的其中一行全为0,则行列式等于0。
由于行列式的计算比较繁琐,所以克拉默法则一般在求解小规模的线性方程组时使用,而不适用于大规模线性方程组的求解。
此外,如果方程组的系数行列式D等于0,则克拉默法则无法得到解。
克拉默法则的优点是简单易懂,计算方法也相对直观。
但它的缺点也是很明显的,由于每次求解时都需要计算n+1个行列式,所以当n较大时,计算量很大,效率低下。
因此,在实际应用中,一般使用其他更高效的方法来求解线性方程组,如高斯消元法、LU分解法等。
§7 克拉默(Cramer)法则现在应用行列式解决线性方程组的问题.在这里只考虑方程个数与未知量个数相等的情形.定理4 如果线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212*********,, (1) 的系数矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a a a a a a a a A 212222111211(2) 的行列式0||≠=A d那么线性方程组(1)有解,并且解是唯一的,解可以通过系数表为dd x d dx d d x n n ===,,,2211 , (3) 其中j d 是把矩阵A 中第j 列换成常数项n b b b ,,,21 所成的矩阵的行列式,即.,,2,1,1,1,121,221,22111,111,111n j a a b a a a a b a a a a b a a d nnj n nj n n n j j n j j j==+-+-+- (4)定理中包含着三个结论:1)方程组有解;2)解是唯一的;3)解由公式(3)给出.这三个结论是有联系的,因此证明的步骤是:1. 把),,,(21dd d d d d n 代入方程组,验证它确是解. 2. 假如方程组有解,证明它的解必由公式(3)给出. 定理4通常称为克拉默法则. 例1 解方程组⎪⎪⎩⎪⎪⎨⎧=+-+-=+-=--=+-+.0674,522,963,85243214324214321x x x x x x x x x x x x x x应该注意,定理4所讨论的只是系数矩阵的行列式不为零的方程组,它只能应用于这种方程组;至于方程组的系数行列式为零的情形,将在下一章的一般情形中一并讨论.常数项全为零的线性方程组称为齐次线性方程组.显然齐次方程组总是有解的,因为)0,,0,0( 就是一个解,它称为零解.对于齐次线性方程组,我们关心的问题常常是,它除了零解以外,还有没有其它解,或者说,它有没有非零解.对于方程个数与未知量个数相同的齐次线性方程组,应用克拉默法则就有定理5 如果齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++0,0,0221122221211212111n nn n n nn n n x a x a x a x a x a x a x a x a x a (10) 的系数矩阵的行列式0||≠A ,那么它只有零解.换句话说,如果方程组(10)有非零解,那么必有0||=A .例2 求λ在什么条件下,方程组⎩⎨⎧=+=+0,02121x x x x λλ 有非零解.克拉默法则的意义主要在于它给出了解与系数的明显关系,这一点在以后许多问题的讨论中是重要的.但是用克拉默法则进行计算是不方便的,因为按这一法则解一个n 个未知量n 个方程的线性方程组就要计算1+n 个n 级行列式,这个计算量是很大的.。
carmer法则
克莱姆法则(Cramer's Rule)是线性代数中一个关于求解线性方程组的定理,也称作克拉默法则。
这个法则是由瑞士数学家克莱姆(Gabriel Cramer)在他的《线性代数分析导言》中于1750年发表的。
不过值得注意的是,尽管克莱姆是首位发表这个法则的数学家,但莱布尼兹和马克劳林等数学家在此之前也已经知晓这个法则。
克莱姆法则的核心内容是:对于一个有n个方程和n个未知数的线性方程组,如果其系数行列式不等于零,那么方程组有唯一解,且每一个未知数的解可以由对应的行列式求得。
具体来说,每一个未知数的解等于常数项替换该未知数系数后所得到的行列式与原系数行列式之商。
然而,克莱姆法则并不总是计算线性方程组最有效的方法。
实际上,当方程组的规模(即未知数的数量)增加时,使用克莱姆法则进行计算会变得非常低效。
因为计算每一个未知数的解都需要计算n个n阶行列式,而计算一个n阶行列式的时间复杂度是O(n!),这使得克莱姆法则对于大规模线性方程组的求解并不实用。
此外,克莱姆法则还存在数值稳定性的问题。
即使对于规模较小的线性方程组,由于计算过程中涉及大量的乘法和除法运算,可能会导致数值误差的累积,从而影响解的精度。
总的来说,克莱姆法则虽然在线性代数中具有重要的理论意义,但在实际应用中,我们通常会选择更高效、更稳定的算法来求解线性方程组。