第四章 周期信号频域分析
- 格式:ppt
- 大小:1014.00 KB
- 文档页数:64
周期信号频域分析(3-5)连续时间周期信号的傅立叶综合任何满足狄里赫利条件的周期信号,可以表示成式(3-1)或(3-5)的和式形式,式(3-1)或(3-5)成为连续时间周期信号(CTFS)综合公式。
一般说来,傅立叶级数系数有无限个非零值,即任何具有有限个间断点的周期信号都一定有一个无限项非零系数的傅立叶级数表示。
但对于数值计算来说,这是无法实现的。
在实际应用中,可以用有限项傅立叶级数求和来逼近。
即:(3-7)当值取得较大时,上式就是原周期信号的一个很好近似。
式(3-7)常称做的截断傅立叶级数表示。
MATLAB的符号积分函数int()可以用来求解连续时间周期信号的截断傅立叶级数及傅立叶表示。
求积函数int()的具体使用格式如下:a.intf=int(f,v); 给出符号表达式f对指定变量v的(不带积分常数)不定积分;b.intf=int(f,v,a,b); 给出符号表达式f对指定变量v的定积分;1、利用MATLAB实现周期信号的傅立叶级数分解与综合(1)利用MATLAB求解周期矩形脉冲傅立叶级数,并绘制出各次谐波叠加的傅立叶综合波形图。
周期矩形脉冲为,式中。
采用三角形式傅立叶级数分解与综合形式,用式(3-2)~(3-4)求出傅立叶级数分解系数,运用MATLAB的符号运算功能,用式(3-7)实现信号的综合,谐波的阶数。
(a)实现流程利用MATLAB实现上述分析过程的流程如下:∙编写子函数x=time_fun_x(t),用符号表达式表示出周期信号在第一个周期内的符号表达式,并赋值返回给符号变量x;∙编写子函数y=time_fun_e(t),求出该周期信号在绘图区间内的信号样值,并赋值给返回变量y;∙编写求解信号傅立叶系数及绘制合成波形图的通用CTFShchsym.m,该函数流程如下:1.调用函数time_fun_x(t),获取周期信号的符号表达式;2.求出信号的傅立叶系数;3.求出各次谐波;4.绘制各次谐波叠加波形图;5.调用函数time_fun_e(t),绘制原信号波形图。
第四章周期信号频域分析信号分析是现代通信、电子、控制等领域中非常重要的一个方向。
在信号分析中,频域分析是一种非常常用和有效的手段。
本章将介绍周期信号的频域分析方法。
周期信号是指在时间轴上按照一定规律重复出现的信号。
周期信号可以表示为周期函数的形式,即y(t+T)=y(t),其中T为信号的周期。
在频域分析中,我们希望能够将周期信号分解为一系列的频率组成的谐波分量,从而得到信号在不同频率上的能量分布情况。
常用的周期信号频域分析方法有傅里叶级数分析和离散傅里叶变换分析两种。
傅里叶级数分析是将一个周期信号表示为一系列谐波分量的和的形式。
假设一个周期信号f(t)的周期为T,可以将其分解为如下的傅里叶级数形式:f(t) = a0 + Σ(an * cos(n * ω0 * t) + bn * sin(n * ω0 * t))其中,a0表示信号的直流分量,an和bn分别表示信号在频率为n * ω0的正弦函数和余弦函数上的系数,n为谐波次数。
离散傅里叶变换分析是将一个有限长的离散时间信号表示为一系列复数形式的谐波分量的和,常用的离散傅里叶变换分析方法是快速傅里叶变换(FFT)。
假设一个有N个采样点的离散时间信号为x(n),其离散傅里叶变换为X(k),则有:X(k)=Σ(x(n)*e^(-j*2π*k*n/N))其中,k表示谐波次数,n为采样点的序号,N为采样点的总数。
傅里叶级数分析和离散傅里叶变换分析都可以用于分析周期信号的频域特性。
通过这些方法,我们可以得到周期信号在不同频率上的谐波分量的能量大小,从而了解信号的频谱特性。
在实际应用中,频域分析常用于信号处理、滤波、频率识别、通信系统设计等各个领域。
比如,在通信系统中,我们可以通过频域分析方法来实现信号的调制解调、滤波、信道均衡等操作。
在音频处理中,我们可以通过频域分析来进行音频变调、音频合成等操作。
总结起来,周期信号的频域分析可以帮助我们了解信号在不同频率上的分布情况,从而实现信号处理、频率识别等功能。