数据采集实验报告
- 格式:doc
- 大小:421.00 KB
- 文档页数:12
引言概述数据采集是指收集并记录各种形式的数据以用于进一步分析和决策的过程。
在现代社会,数据采集已经成为了许多领域中不可或缺的一部分,如科学研究、商业分析和市场调研等。
本实验报告旨在介绍一个数据采集实验的过程和结果,以及对实验中遇到的挑战和解决方案的讨论。
正文内容1.实验背景1.1.引言数据采集是科学研究中的重要环节。
本实验旨在通过各种手段和方法采集有关消费者购物行为的数据,以便进一步分析和研究。
1.2.数据采集目的我们的目标是了解消费者的购物习惯和偏好,以及他们在购物过程中面临的问题和需求。
通过收集数据,我们可以得到一些有关市场趋势和消费行为的洞见,帮助企业制定更有效的营销策略。
1.3.数据采集方法我们采用了多种数据采集方法,包括在线调查、观察和采访等。
这些方法相互补充,可以提供更全面和准确的数据。
2.数据采集过程2.1.在线调查我们设计了一个在线调查问卷,针对消费者的购物行为和偏好进行了提问。
通过社交媒体和电子邮件的方式,向目标受众发送了问卷,并鼓励他们分享给其他人。
2.2.观察我们在几家商场和超市进行了观察实验。
观察者注意到消费者在购物过程中的行为,观察并记录了他们的购物车内容、购买决策过程和顾客间的互动。
2.3.采访我们选择了一些消费者进行了面对面的采访,了解他们的购物动机、偏好和体验。
通过这种方式,我们可以更深入地了解消费者的心理需求和感受。
3.实验结果分析3.1.在线调查结果我们收集到了大量的在线调查数据,通过数据分析,我们得出了一些有关消费者购物行为和偏好的结论。
例如,大多数消费者更喜欢在线购物,尤其是年轻人群体。
价格和品质是他们购买产品的最重要考虑因素。
3.2.观察结果通过观察实验,我们发现消费者在购物过程中更倾向于选择促销商品和品牌忠诚度较高的产品。
我们还注意到了一些购物环境对消费者行为的影响,如音乐和展示布局等。
3.3.采访结果通过采访实验,我们得到了一些有关消费者心理需求和感受的见解。
第1篇一、实验背景随着互联网技术的飞速发展,大数据时代已经到来。
金融行业作为国家经济的重要组成部分,也面临着前所未有的机遇和挑战。
大数据技术在金融领域的应用,为金融机构提供了更加精准的风险评估、投资决策和客户服务。
本实验旨在通过实际操作,让学生深入了解大数据在金融领域的应用,提高数据分析能力和金融业务理解。
二、实验目的1. 熟悉大数据金融的基本概念和原理。
2. 掌握大数据金融数据处理和分析的方法。
3. 培养学生运用大数据技术解决实际金融问题的能力。
4. 提高学生对金融市场的洞察力和风险防范意识。
三、实验内容1. 数据采集实验数据来源于某金融机构提供的客户交易数据,包括客户基本信息、交易记录、信用评分等。
2. 数据预处理(1)数据清洗:去除重复数据、缺失值填充、异常值处理等。
(2)数据转换:将不同类型的数据转换为统一格式,如将日期字符串转换为日期类型。
(3)数据集成:将不同来源的数据进行整合,形成完整的数据集。
3. 数据分析(1)客户画像分析:通过对客户的基本信息、交易记录和信用评分进行分析,构建客户画像。
(2)风险分析:运用机器学习算法对客户信用风险进行预测,为金融机构提供风险预警。
(3)投资组合优化:根据客户画像和风险分析结果,为不同风险偏好的客户提供个性化的投资组合。
4. 实验工具(1)数据采集:Python、Java等编程语言。
(2)数据预处理:Pandas、NumPy等数据分析库。
(3)数据分析:Spark、Hadoop等大数据处理框架。
(4)机器学习:Scikit-learn、TensorFlow等机器学习库。
四、实验步骤1. 数据采集:使用Python等编程语言从金融机构获取数据。
2. 数据预处理:运用Pandas、NumPy等库进行数据清洗、转换和集成。
3. 数据分析:a. 客户画像分析:运用Spark、Hadoop等大数据处理框架进行数据挖掘,提取客户特征。
b. 风险分析:使用Scikit-learn、TensorFlow等机器学习库建立信用风险评估模型。
任务要求1.4路模拟量输入,输入电压范围0~5V,分辨率8位,转换时间100us,具有显示(数码管)测量结果(用10进制显示直流电压值或交流电压峰值)的功能;2.1路模拟量输出,用来分别重现4路被采信号的波形(供示波器观测)摘要本数据采集系统是基于单片机AT89C51来完成的,4路的模拟电压通过通用的8位A/D 转换器ADC0809转换成数字信号后,由单片机进行数据处理,并将处理后的数据送LED显示器显示。
再经过常用的8位D/A转换器DAC0832将数字数据转换成模拟量,供示波器观测。
一、系统的方案选择和论证根据题目基本要求,可将其划为如下几个部分:●4路模拟信号A/D转换●单片机数据处理●LED显示测量结果●D/A转换模拟量输出系统框图如图1所示:图1 单片机数据采集系统框图1、4路模拟信号A/D转换由于被测电压范围为0~5V,分辨率为8位,转换时间为100us,所以A/D转换部分,本系统选择常用的8路8位逐次逼近式A/D转换器ADC0809。
ADC0809芯片有28条引脚,采用双列直插式封装。
下面说明各引脚功能。
IN0~IN7:8路模拟量输入端。
2-1~2-8:8位数字量输出端。
ADDA、ADDB、ADDC:3位地址输入线,用于选通8路模拟输入中的一路。
ALE:地址锁存允许信号,输入,高电平有效。
START:A/D转换启动信号,输入,高电平有效。
EOC:A/D转换结束信号,输出,当A/D转换结束时,此端输出一个高电平(转换期间一直为低电平)。
OE:数据输出允许信号,输入,高电平有效。
当A/D转换结束时,此端输入一个高电平,才能打开输出三态门,输出数字量。
CLK:时钟脉冲输入端。
要求时钟频率不高于640KHZ。
REF(+)、REF(-):基准电压。
Vcc:电源,单一+5V。
GND:地。
ADC0809的工作过程是:首先输入3位地址,并使ALE=1,将地址存入地址锁存器中。
此地址经译码选通8路模拟输入之一到比较器。
单片机实验报告姓名: XX班级: XXXXX学号: XXXXXXX专业:电气工程与自动化实验1 名称:数据采集_A/D转换一、实验目的⑴掌握A/D转换与单片机接口的方法;⑵了解A/D芯片0809 转换性能及编程方法;⑶通过实验了解单片机如何进行数据采集。
二、实验设备装有proteus和keil软件的电脑一台三、实验说明及实验原理:A/D 转换器大致分有三类:一是双积分A/D 转换器,优点是精度高,抗干扰性好,价格便宜,但速度慢;二是逐次逼近式A/D转换器,精度、速度、价格适中;三是并联比较型A/D转换器,速度快,价格也昂贵。
实验用ADC0809属第二类,是8位A/D转换器。
每采集一次一般需100μs。
由于ADC0809A/D 转换器转换结束后会自动产生EOC 信号(高电平有效),取反后将其与8031 的INT0 相连,可以用中断方式读取A/D转换结果。
ADC0809 是带有8 位A/D转换器、8 路多路开关以及微处理机兼容的控制逻辑的CMOS组件。
它是逐次逼近式A/D转换器,可以和单片机直接接口。
(1) ADC0809 的内部逻辑结构由图1.1 可知,ADC0809 由一个8 路模拟开关、一个地址锁存与译码器、一个A/D 转换器和一个三态输出锁存器组成。
多路开关可选通8 个模拟通道,允许8 路模拟量分时输入,共用A/D 转换器进行转换。
三态输出锁器用于锁A/D 转换完的数字量,当OE 端为高电平时,才可以从三态输出锁存器取走转换完的数据。
(2) ADC0809 引脚结构ADC0809各脚功能如下:D7 ~ D0:8 位数字量输出引脚。
IN0 ~ IN7:8位模拟量输入引脚。
VCC:+5V工作电压。
GND:地。
REF(+):参考电压正端。
REF(-):参考电压负端。
START:A/D转换启动信号输入端。
ALE:地址锁存允许信号输入端。
(以上两种信号用于启动A/D转换).EOC:转换结束信号输出引脚,开始转换时为低电平,当转换结束时为高电平。
数据采集与处理实验报告本次实验主要涉及数据采集和处理领域,旨在通过实验练习,学习并掌握数据采集和处理的基本原理、方法和技巧。
一、实验过程1. 数据采集本次实验使用的是Python编程语言进行数据采集。
首先,我们需要了解一下Python中的一些库和工具。
在本次实验中,我们使用的是requests、BeautifulSoup以及pandas 库。
requests库用于发送网络请求,BeautifulSoup库用于解析网页内容,pandas库用于数据分析和处理。
我们选取的数据源是某网站的文章内容,通过requests库发起网络请求,获取到HTML文件,然后使用BeautifulSoup库解析HTML文件,获取我们需要的信息,最终将数据保存为CSV文件。
2. 数据处理数据处理采用了pandas库。
首先,我们读取CSV文件,并将其转换为DataFrame对象。
然后,根据我们的需求对数据进行处理和统计。
本次实验主要运用了一些常用的数据处理方法,如数据清洗、数据筛选、数据排序等方法。
二、实验结果最终,我们成功地采集了指定网站的文章内容,将其保存为CSV文件,并且使用pandas库对数据进行了处理和分析。
下面是我们得到的一些结果:1. 文章数量统计我们对采集到的数据进行统计,获得了文章的数量和发布时间分布。
通过分析,我们发现文章数量最多的月份是3月,共有89篇文章。
2. 词频统计为了更好地分析文章内容,我们对文章进行词频统计。
我们选取了频率较高的10个词汇,分别为:好看、漂亮、特别、好吃、好评、推荐、喜欢、值得、性价比、优惠。
其中,好看是出现最频繁的词汇,共出现了111次。
3. 价格筛选我们对文章中的价格信息进行筛选,并计算其平均值、最大值和最小值。
结果表明,文章中价格的平均值为105元,最大值为199元,最小值为12元。
通过本次实验,我们对数据采集和处理有了更深入的了解。
在数据采集方面,我们学会了如何使用Python编程语言和相关库进行数据爬取和解析。
一、实验目的1. 理解数据采集系统的基本原理和组成;2. 掌握数据采集系统的设计方法和步骤;3. 学会使用数据采集设备进行数据采集;4. 分析和解读采集到的数据。
二、实验原理数据采集系统是指将各种物理量、化学量、生物量等转换成数字信号,并存储、处理和分析的系统。
它由数据采集器、信号调理电路、数据传输线路和数据处理软件等组成。
三、实验器材1. 数据采集器:采用USB接口的数据采集器,可连接计算机;2. 信号调理电路:包括放大器、滤波器等;3. 计算机及数据处理软件;4. 模拟信号源:提供不同的模拟信号;5. 连接线及电源。
四、实验步骤1. 数据采集器与计算机连接,打开数据处理软件;2. 设计信号调理电路,对模拟信号进行放大、滤波等处理;3. 将信号调理电路与数据采集器连接,并连接模拟信号源;4. 设置数据采集器参数,如采样频率、分辨率等;5. 采集模拟信号,并将数据保存到计算机;6. 对采集到的数据进行处理和分析。
五、实验内容1. 采集不同频率的正弦信号,分析频率与幅值的关系;2. 采集不同带宽的滤波信号,分析带宽与滤波效果的关系;3. 采集不同放大倍数的信号,分析放大倍数与信号幅值的关系;4. 采集不同温度下的热电偶信号,分析温度与电势的关系。
六、实验结果与分析1. 频率与幅值的关系:在信号源频率不变的情况下,采集到的正弦信号的幅值随放大倍数的增大而增大,符合正比关系;2. 带宽与滤波效果的关系:在信号源带宽不变的情况下,滤波器的带宽越大,信号中的噪声成分越少,滤波效果越好;3. 放大倍数与信号幅值的关系:在信号源幅值不变的情况下,采集到的信号幅值随放大倍数的增大而增大,符合正比关系;4. 温度与电势的关系:在热电偶温度不变的情况下,采集到的电势随温度的升高而增大,符合线性关系。
七、实验结论1. 数据采集系统是进行科学实验和工程应用的重要工具,具有广泛的应用前景;2. 在数据采集过程中,信号调理电路的设计对采集结果具有重要影响;3. 通过数据处理软件对采集到的数据进行处理和分析,可以得到有价值的实验结果。
基于Labiew的数据采集实验报告一、实验目的通过软件Labiew编写前面板和程序框图,将外部信号接于数据采集卡的模拟输入0号通道,外部信号由单片机和AD9850组成的信号发生器发出。
当在Labview环境下运行程序时,信号发生器所发出的信号显示在面板上。
仪器面板如下图所示。
二、实验器材PC机一台,单片机开发箱,信号发生器,数据采集卡,示波器,Labiew 软件,220V交流电源,导线若干等。
三、实验原理数据采集(DAQ)是指从系统外部采集数据并进行转换后传输到系统内部的过程,能够提供这一功能的完整系统被称为数据采集系统(Data Acquisition System)。
1.显示波形的原理框图如下:在上图所示的框图中,计算机对采集卡发出指令,启动采集卡,计算机将采集的信号数据进行存储、处理和显示,从而将波形显示在面板上。
采集卡将被测信号转为离散的数字信号,并保存在计算机的数组中,计算机通过Labiew 软件将保存在数组中的离散数字信号显示在图形控件中。
bview 数据采集在Labview 中提供了很多关于数据采集的相关的VI ,利用这些VI 可以创建相关的要求的数据采集系统,下图是程序框图的测量I/O 中的DAQ 子模板界面图。
下面介绍几个主要的数据采集的VI 。
1)DAQmx 创建通道 模拟输入初始化,给其分配一个任务ID 。
2)DAQmx 开始任务 模拟输入开始,将数据暂存在数据采集卡的缓存中。
3)DAQmx 读取 模拟输入读数,从数据采集卡的缓存中读至计算机中。
4) DAQmx 定时采集时的一些参数设置。
信号采集卡计算机 Labiew 软件5)DAQmx清楚任务模拟输入清楚任务。
这几个VI的详细端子图如下所示:我们采用带缓冲的模拟输入,即数据先从DAQ设备传到缓冲中,然后由DAQmxRead.VI读取到应用程序内存中。
这种输入又分为有限多点采集和连续采集。
在设定缓冲大小时,如果使用缺省值或设为-1,则NI-DAQmx根据任务的配置,自动确定读取的采样点数,如果通过控件来输入我们的缓冲大小,则每通道的采样点数(Samples per channel)等于缓冲大小。
实验三、空间数据采集实验目的:通过学习空间数据采集,首先我们了解空间数据采集是指将遥感影像、纸质地图、外业观测数据等不同来源的数据进行处理,使之成为GIS软件能够识别和分析的形式,这往往是构建一个具体的GIS系统的第一步。
随着测绘技术的进步,尽管遥感和全数字化测量的数据成果已经是数字形式,但这些数据还需要进一步处理才能被GIS系统使用。
实验内容:首先学习矢量化的步骤,对其进行详细分解为扫描、图像处理、地理配准、数据分层、图形数据追踪以及属性录入;然后是地理配准问题,先是地理配准工具条介绍,其次地理配准的步骤。
实验过程:1.矢量化的步骤:⑴扫描:扫描是纸质地图矢量化的第一步,它将纸质地图转化为计算机可以识别的数字形式,扫描时需要设定的相关参数如下:①扫描模式。
地形图扫描一般采用二值扫描或灰度扫描,黑白航片或卫片采用灰度扫描,彩色航片或卫片采用彩色扫描。
一般情况是将图像进行彩色扫描,然后进行二值化处理。
②扫描分辨率。
根据扫描要求,地形图扫描一般采用300dpi或更高的分辨率③亮度、对比度、色调、GAMMA曲线等,根据需要调整。
⑵图像预处理:经过扫描后的图像还要经过图像预处理,如去噪声、几何纠正、投影变换等。
图像预处理是在图像分析中,对输入图像进行特征抽取、分割、匹配和识别前所进行的处理,主要目的是消除图像中无关的信息,恢复有用的真实信息,增强有关信息的可检测性和最大限度地简化数据,从而提高特征抽取、图像分割、匹配和识别的可靠性。
①几何校正:由于受地图介质及存放条件等因素的影响,地图的纸张容易发生变形,或者遥感影像本身就存在着几何变形,通过几何校正可以在一定程度上改善数据质量。
几何校正最常用的方法是仿射变换法(属于一阶多项式变换),可以在X轴和Y轴方向进行不同比例的缩放,同时进行旋转和平移。
仿射变换的特性是:直线变换后仍为直线,平行线变换后仍为平行线,不同方向上的长度比发生变化。
②投影变换:当数据源采用不同的地图投影时,需要将源数据转换为所需要的地图投影,这一过程称为投影变换,投影变换的方法有正解变换、反解变换和数值变换。
数据采集实验报告篇一:数据采集实验报告中国石油大学(北京)实验报告实验名称:基于声卡的数据采集班级:过程10-4班学号:2010032221 姓名:夏亚康成绩:实验日期:2013年1 月 4 日一、实验目的1、掌握Labview软件的基本使用方法;2、掌握利用Labview功能模板进行虚拟仪器设计;3、了解声卡的工作原理4、学习用Labview进行数据采集的基本过程。
5、利用Labview8.2软件设计并实现一台虚拟数字录音机,完成音频数据采集、显示、保存、处理、回放的功能。
通过练习使用Labview设计数字录音机。
二、实验仪器和设备1. 计算机1台、MIC 1只、耳机1只2.编程环境WindowsXP操作系统3. Labview实验软件1套二、实验说明:1、声卡的工作特点本设计采取的方法是在LabVIEW虚拟仪器环境中利用Windows自带声卡采集语音信号。
从数据采集的角度来看,PC声卡本身就成为一个优秀的数据采集系统,它同时具有A/D和D/A转换功能,不仅价格低廉,而且兼容性好、性能稳定、灵活通用,软件特别是驱动程序升级方便。
如果测量对象的频率在音频范围(20 Hz-20 kHz)内,而且对采样频率等指标又没有太高要求,就可以考虑使用声卡。
而语音音频范围一般在5kHz以内,满足声卡采集的要求。
在采集语音信号前,要检查声卡的设置,保证已配置的输入功能(录音功能)不处于静音状态。
主机通过总线将数字化的声音信号送到数模转换器(D / A),将数字信号变成模拟的音频信号同时,又可以通过模数转换器(A/D)将麦克风或CD的输入信号转换成数字信号,送到计算机进行各种处理。
衡量声卡的技术指标包括复音数量、采样频率、采样位数(即量化精度)、声道数、信噪比(SNR)和总谐波失真(THD)等。
复音数量代表声卡能够同时发出多少种声音,复音数越大,音色就越好,播放声音时可以听到的声部越多、越细腻;采样频率是每秒采集声音样本的数量,采样频率越高,记录的声音波形越准确,保真度就越高,但采样数据量相应变大,要求的存储空间也越多。
中国石油大学(北京)实验报告实验名称:基于声卡的数据采集班级:过程10-4班学号:21 姓名:夏亚康成绩:实验日期: 2013 年 1 月 4 日一、实验目的1、掌握Labview软件的基本使用方法;2、掌握利用Labview功能模板进行虚拟仪器设计;3、了解声卡的工作原理4、学习用Labview进行数据采集的基本过程。
5、利用软件设计并实现一台虚拟数字录音机,完成音频数据采集、显示、保存、处理、回放的功能。
通过练习使用Labview设计数字录音机。
二、实验仪器和设备1. 计算机?1台、MIC 1只、耳机1只2.编程环境 WindowsXP操作系统3. Labview实验软件 ?1套二、实验说明:1、声卡的工作特点本设计采取的方法是在LabVIEW虚拟仪器环境中利用Windows自带声卡采集语音信号。
从数据采集的角度来看,PC声卡本身就成为一个优秀的数据采集系统,它同时具有A/D和D/A转换功能,不仅价格低廉,而且兼容性好、性能稳定、灵活通用,软件特别是驱动程序升级方便。
如果测量对象的频率在音频范围(20 Hz-20 kHz)内,而且对采样频率等指标又没有太高要求,就可以考虑使用声卡。
而语音音频范围一般在5kHz以内,满足声卡采集的要求。
在采集语音信号前,要检查声卡的设置,保证已配置的输入功能(录音功能)不处于静音状态。
主机通过总线将数字化的声音信号送到数模转换器(D / A),将数字信号变成模拟的音频信号同时,又可以通过模数转换器(A/D)将麦克风或CD的输入信号转换成数字信号,送到计算机进行各种处理。
衡量声卡的技术指标包括复音数量、采样频率、采样位数(即量化精度)、声道数、信噪比(SNR)和总谐波失真(THD)等。
复音数量代表声卡能够同时发出多少种声音,复音数越大,音色就越好,播放声音时可以听到的声部越多、越细腻;采样频率是每秒采集声音样本的数量,采样频率越高,记录的声音波形越准确,保真度就越高,但采样数据量相应变大,要求的存储空间也越多。
采样位数是指将声音从模拟信号转化为数字信号的二进制位数(bit) ,位数越高,在定域内能表示的声波振幅的数目越多,记录的音质也就越高,例如16位声卡把音频信写的大小分为216 =65536个量化等级来实施上述转换。
常用声卡可对音频信号实现双声道16位、高保真的数据采集,最高采样率可达 H z,具有较高的采样频率与精度。
对于许多科学实验和工程测量:来说,声卡对信号的量化精度和采样率都是足够高的,甚至优于一些低档的数据采集卡性能。
2、 LabVIEW采集语音信号LabVIEW中提供了一系列使用Windows底层函数编写的与声卡有关的函数.由于使用Windows底层函数直接与声卡驱动程序打交道,因而封装层次低,速度快,而且可以访问、采集缓冲区中任意位置的数抓,具有很大的灵活性,能够满足实时不间断采集的需要。
在LabVIEW中,利用Windows声卡对语音信写进行采样,SI Config 设置声卡中与数据采集相关的硬件参数,将device设置为0,采样位数为单声道16位,采样频率11025Hz,缓冲区长度为默认值8192字节 ;SI Start通知声卡开始采集外部数据;SI Read将数据缓冲区中的内容读取到用户程序的数组中,一次可读取缓冲区长度的一半((4096字节);SI Stop通知声卡停止采集外部数据;SI Clear完成最终的清理工作,释放请求的一系列系统资源,Sound wave显示语音波形、While Loop有两个语句,第一个语句“Wait for Record Button”是在程序运行后通知开始录入语音数据,第二个语句主要是为了能够连续的读入语音数据,在此语句中,“Case structure”在True情况下执行停止录音( False为默认值),移位寄存器是为了读出数据的连续性,循环利用120ms延时以降低循环的频度,减少CPU负担。
3、系统结构及程序流程图 1 系统流程图四、实验步骤及设计内容(一)、实现声卡声音信号的采集并保存利用【声音】函数选板的【输入】和【文件】子选板可以编程实现对声音信号的采集并保存。
操作步骤:1、进入LabVIEW 的启动界面后,执行【文件】/【新建VI】菜单命令,创建一个新的VI。
2、切换到前面板设计窗口下,放置一个“波形图”控件,用于显示采集到的声音,并设置波形图控件的标签为“声音信号波形”,再放置一个“确定按钮”和一个“停止按钮”,并分别更名为“声音采集”和“停止采集”,用于启动和停止声音采集。
3、切换到程序框图设计窗口下,在设计区放置一个“打开声音文件”函数节点,并将其下拉选项的值设为“写入”。
4、在设计区放置一个“配置声音输入”节点、一个“读取声音输入”节点、一个“写入声音文件”节点、一个“声音输入清零”节点,一个“关闭声音文件”节点,两个“While循环”方框节点和一个“条件结构”节点,并按错误!未找到引用源。
连线。
5、切换到前面板设计窗口下,调整各个控件的位置。
6、设置“路径”输入框为“e:\”。
单击工具栏上程序运行按钮,点击【声音采集】按钮,对着麦克风放一段音乐,即可将声音数据写入到指定的文件“e:\”中去。
7、在波形图控件中可以查看声音信号的波形,如错误!未找到引用源。
所示。
8、单击【停止采集】按钮,结束程序运行,可在E盘根目录下看到声音文件“”。
图2声卡声音信息采集及保存实验原理图图3声卡声音信息采集及保存程序运行图(二)实现对保存的声音信号进行读取、播放并进行频谱分析利用【声音】函数选板的【输出】和【文件】子选板,加上【信号分析】选板的“频谱测量”节点可以实现对保存的声音信号进行读取、播放并进行频谱分析。
操作步骤:1、进入LabVIEW 的启动界面后,执行【文件】/【新建VI】菜单命令,创建一个新的VI。
2、切换到前面板设计窗口下,放置一个“确定按钮”,并更名为“分析播放”。
3、切换到程序框图设计窗口下,在设计区放置一个“打开声音文件”函数节点,并将其下拉选项的值设为“读取”。
4、在设计区放置一个“读取声音文件”节点、一个“关闭声音文件”节点、一个“播放波形”节点、一个“While循环”节点、一个“条件结构”节点和两个“频谱测量”节点,并配置两个“频谱测量”节点使其分别测量“幅度(峰值)”和“功率谱”。
5、按错误!未找到引用源。
连线。
6、切换到前面板设计窗口下,调整各个控件的位置。
7、设置“路径”输入框为“e:\”。
单击工具栏上程序运行按钮,点击【分析播放】按钮,系统会读取声音文件“e:\”,可以听到来自电脑扬声器的声音。
8、在波形图控件中可以查看声音信号的频谱波形和功率谱波形,如错误!未找到引用源。
所示。
图4声音信号读取、播放、频谱分析实验原理图图5声音信号读取、播放、频谱分析程序运行图(三)、实现对保存的声音信息进行滤波处理后再播放和进行频谱分析要实现对保存的声音信息进行滤波处理后再播放和进行频谱分析,只要在(二)的基础上添加【信号分析】选板的“滤波器”节点就可以完成,另外为了加强系统的功能,本录音机实现了既可以对原信号进行频谱分析,也可以对处理后的信号进行频谱分析。
操作步骤:1、打开步骤(二)的VI文件,切换到前面板设计窗口下,添加一个“垂直摇杆开关”,并更名为“播放前是否滤波”。
2、切换到程序框图设计窗口下,在设计区放置一个“滤波器”节点,并设置其滤波器类型为“带通”,再放置一个“条件结构”节点,并按照错误!未找到引用源。
连线。
3、切换到前面板设计窗口下,调整各个控件的位置。
4、设置“路径”输入框为“e:\”。
单击工具栏上程序运行按钮,将【播放前是否滤波】开关打开,点击【分析播放】按钮,系统会读取声音文件“e:\”,可以听到来自电脑扬声器的声音,这声音是经过了滤波后的声音。
5、在波形图控件中可以查看进行滤波处理后的声音信号的频谱波形和功率谱波形,如错误!未找到引用源。
所示。
图6对声音进行滤波、频谱分析实验原理图图7声音信号滤波、频谱分析程序运行图(四)、将声音信号采集、滤波处理、播放和频谱分析功能整合到一起前面已经完成了(一)实现声卡声音信号的采集并保存、(二)实现对保存的声音信息进行滤波处理后再播放和进行频谱分析,在(一)和(二)的基础上就可以轻松地将声音信号采集、播放和频谱分析功能整合到一起。
只要将(二)前面板的控件直接复制到(一)的前面板上,再将(二)中的程序框图设计窗口的除最外的层的“While循环”的其他节点直接移植到(一)的最外层“While循环”里,然后将(二)中的路径控件删除,将其留下的线头连接到(一)的路径控件上就完成了。
图8综合程序实验原理图图9美化后的程序运行图表(五)实验分析1、改变采样模式:连续有限分别在这2种模式下录音观察对录音质量有何影响并记录在实验报告里,并分析为什么答:连续模式会不断地对声音信号进行采样,只能通过按采集停止的按钮才能停止声音的采集。
在连续采样的模式下,可以无限的采集声音信息,无论声音信息有多大,都可以被采集下来,而有限采样就不能,他只能保证一次采样的时间在3s左右,而其他的声音信息都会丢失。
这是由于采样方式的变化,使得采样的结果变化。
实验结果图像如图10、11所示:图10连续采样增大每通道采样数录音播放波形图11有限采样减小每通道采样数录音播放波形2、(1)增加每通道采样数5倍任选一个倍数观察对录音质量有何影响并记录在实验报告里,并分析为什么答:在连续采样模式下,改变每通道采样数,对录音的结果没有太大的影响,因为连续采样的时间太长,使得每通道采样数对数据采集的影响基本没有。
在有限采样模式下,当把每通道采样数增大5倍的时候,录音上网质量比之前好很多,更加接近原始声音了,这是由于增加了通道采样数,增加了采样频率和采样时间,使得采集到的数据更加多,所以录音质量比之前要好。
(2)减小每通道采样数5倍任选一个倍数观察对录音质量有何影响并记录在实验报告里,并分析为什么答:录音时间会变短原理同上,采样时间会随采样数减小而变小,而过小的采样时间很可能导致录音的失败,甚至于声音的失真。
3、对声音格式项的实验:改变采样率观察对录音质量有何影响并记录在实验报告里,并分析为什么答:采样率增大,会使声音变得更平更慢更粗,采样率减小,会使声音变得更快更尖更细。
因为采样频率是指录音设备在一秒钟内对声音信号的采样次数,如果采样率变大,采样的次数很多,而播放时的速率始终是一定的,从而每秒播放的声音信号频率降低,声音就会变得又平又粗又慢。
同理,当采样率变小时,声音信号频率升高,声音就变得又快又见又细。
实验过程波形图如图12所示:图12改变采样率对录音质量的影响波形图4、观察滤波前和滤波后的声音的变化并改变滤波的上下截止频率,观察声音随滤波截止频率变化的情况,并说明为什么会这样变化。