大物(2)期末复习..
- 格式:doc
- 大小:310.62 KB
- 文档页数:12
02级大学物理(上册)期末试题一、选择题:1、一光滑的内表面半径为10cm 的半球形碗,以匀角速度ω绕其对称轴OC 旋转。
已知放在碗内表面上的一个小球 P 相对碗静止,其位置高于碗底4cm ,则碗旋转的角速度约为:2、一质点作匀速率圆周运动时,A )它的动量不变,对圆心的角动量也不变。
B )它的动量不变,对圆心的角动量不断变化。
C )它的动量不断变化,对圆心的角动量不变。
D )它的动量不断变化,对圆心的角动量也不断变化。
3、两质量分别为m 1 、m 2的小球,用一倔强系数为k 的轻弹簧相连,放在水平光滑桌面上,今以等值反向的力分别作用于两小球时,若以两小球和弹簧为系统,则系统的A )动量守恒,机械能守恒。
B )动量守恒,机械能不守恒。
C )动量不守恒,机械能守恒。
D )动量不守恒,机械能不守恒。
4、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,射来两个质量相同,速度大小相同,方向相反的子弹,子弹射入圆盘并留在盘内,则子弹射入后的瞬间,圆盘的角速度:A )增大。
B )不变。
C )减小。
D )不能确定。
5、下列各图所示的速率分布曲线,哪一图中的两条曲线能是同一温度下氮气和氦气的分子速率分布曲线6、一定量的理想气体,经历某过程后,它的温度升高了。
则根据热力学定律可以断定: ① 理想气体系统在此过程中吸了热。
② 在此过程中外界对理想气体系统作了功。
③ 理想气体系统的内能增加了。
④ 理想气体系统既从外界吸了热,又对外作了功。
A ) ① ③B ) ② ③C ) ③D ) ③ ④E ) ④7、用余弦函数描述一简谐振子的振动。
若其速度~ 时间关系曲线如图,则振动的初相位为:( ) 6/5)3/2)2/)3/)6/)πππππE D C B A 8、沿着相反方向传播的两列相干波,其波动方程为:)/(2cos 和)/(2cos 21λνπλνπx t A y x t A y +=-= 叠加后形成的驻波中,波节的位置坐标为:9、波长的单色光垂直照射到宽度a 的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一接受屏。
大学物理期末备考要点一、力学1. 牛顿运动定律a. 第一定律:惯性定律b. 第二定律:力的大小与加速度的关系c. 第三定律:作用力与反作用力2. 动能与动量a. 动能定理b. 质点系的动量定理c. 动量守恒定律3. 万有引力与重力a. 万有引力定律b. 重力加速度c. 重力势能d. 行星运动4. 平衡与静力学a. 平衡条件b. 杠杆原理c. 原则与应用5. 力学中的摩擦a. 特点与原因b. 静摩擦力与滑动摩擦力c. 摩擦力的计算与应用二、热学1. 热与温度a. 热量的传递方式b. 温标与温度转换2. 热力学第一定律a. 能量守恒定律b. 内能变化与热交换c. 等容、等压、等温过程3. 热力学第二定律a. 热机与卡诺定理b. 极限温度与热机效率c. 热力学不可逆性4. 热力学第三定律a. 绝对零度的定义与测量b. 熵及其性质c. 热力学函数及其应用5. 气体状态方程a. 状态方程的表示与转换b. 理想气体状态方程c. 一般气体状态方程三、电磁学1. 静电学a. 电荷与电场b. 电场强度c. 高斯定理d. 电势与电势能e. 电容与电容器2. 电流与电阻a. 电流的定义与测量b. 电阻与电阻器c. 欧姆定律d. 串、并联电路3. 磁场与电磁感应a. 磁场的产生与性质b. 电流产生的磁场c. 安培环路定理d. 磁感应强度e. 法拉第电磁感应定理4. 电磁波与光学a. 电磁波的性质与传播b. 光的传播与反射c. 光的折射与色散d. 几何光学5. 电磁波谱a. 可见光与光学仪器b. 红外线与微波c. 紫外线与X射线d. γ射线与辐射治疗四、量子物理1. 微观粒子的波粒二象性a. 波粒二象性的实验证据b. 普朗克常数与光子能量c. 德布罗意假设与波长2. 波函数与薛定谔方程a. 波函数的本质与物理意义b. 波函数的概率解释与测量c. 薛定谔方程及其应用3. 稳定原子结构a. 氢原子能级与能量b. 多电子原子的壳层结构c. 系统的波函数与能量4. 分子结构与化学键a. 原子、分子与化学键的关系b. 电子云模型与共价键c. 键的强度与化学键理论5. 核物理与放射性a. 原子核的组成与性质b. 放射性衰变与半衰期c. 核反应与核能的利用五、相对论与宇宙学1. 狭义相对论a. 狭义相对论的基本原理b. 时间与空间的相对性c. 相对论动力学与质能关系2. 广义相对论a. 弯曲时空与引力b. 爱因斯坦场方程c. 引力透镜效应与黑洞3. 宇宙的结构与演化a. 宇宙学原理与宇宙模型b. 宇宙的膨胀与暗能量c. 大爆炸理论与宇宙学红移以上为大学物理期末备考的要点,涵盖了力学、热学、电磁学、量子物理、相对论与宇宙学的基本知识。
大学物理2复习资料大学物理2是物理系及相关专业中的重要课程,它主要涉及电磁学、光学和热学三大方面。
这门课程不仅重要,难度也不小,需要大量的复习资料作为支撑。
本文就来给大家分享一些适合复习大学物理2的资料。
1. 课本大学物理2的课本是我们学习的主要教材,原理深入浅出,内容全面。
建议大家通过阅读课本,对知识点进行理解和记忆,加深对物理概念的理解。
同时,也可以参考课本上的案例和例题,巩固自己的应用能力。
2. 讲义讲义是教授在课上授课时所使用的笔记,一般会对重点知识点进行讲解和解释。
由于讲义是教授精心制作的,因此一些细节和重点都会被深入阐述。
复习时,我们可以通过阅读讲义,巩固自己对知识点的理解,并做好笔记。
同时,也可以针对不懂的问题向教授请教,加深理解。
3. 习题集习题集是我们巩固知识点的重要方式之一。
通过做习题,我们可以深入理解并掌握课本和讲义中的知识点。
在背诵公式的同时,练习能够让我们了解公式的运用,帮助我们更好地解决问题。
建议大家选择习题难度适中的题目,做到掌握基础知识和能力的同时,也可以探索一些难点。
4. 复习资料除了课本、讲义和习题集外,我们还可以通过一些复习资料来巩固知识点。
例如一些复习笔记、学生整理的课堂笔记、老师提供的有关资料等等。
这些资料可能会对我们难以理解的知识点有很大的帮助。
一些基础知识比较薄弱的同学可以先通过相关的资料进行复习,在知识点掌握的基础上再去加深理解。
5. 思维导图对于复杂的知识点,我们可以试着制作一些思维导图,将知识点分门别类地进行整理。
思维导图可以帮助我们对知识点有一个整体的观念,并方便我们找到相关的知识点和公式。
同时,在制作思维导图的过程中,也可以帮助我们加深对知识点的理解,达到熟练掌握的效果。
总的来说,要想复习好大学物理2,就需要充分利用各种复习资料。
在复习中,我们需要注重理解和记忆,同时也需要强化应用能力。
希望本文能够帮助大家更好地复习大学物理2,取得更好的成绩。
大物期末考试题及答案一、选择题(每题2分,共20分)1. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。
以下哪个选项正确描述了这一定律?A. F = maB. F = ma^2C. F = m/aD. F = 1/(ma)答案:A2. 一个物体从静止开始自由下落,其下落距离与时间的关系为:A. s = gtB. s = 1/2 gtC. s = 1/2 g(t^2)D. s = gt^2答案:C3. 根据能量守恒定律,以下哪个选项正确描述了能量守恒?A. 能量可以被创造或消灭B. 能量守恒定律只适用于封闭系统C. 能量可以在不同形式之间转换,但总量保持不变D. 能量守恒定律不适用于微观粒子答案:C4. 以下哪个选项正确描述了动量守恒定律?A. 动量守恒定律只适用于碰撞过程B. 动量守恒定律适用于所有物理过程C. 动量守恒定律只适用于没有外力作用的系统D. 动量守恒定律只适用于宏观物体答案:C5. 以下哪个选项正确描述了波的干涉条件?A. 波源必须相同B. 波源必须不同C. 波的频率必须相同D. 波的振幅必须相同答案:C6. 以下哪个选项正确描述了光的折射现象?A. 光线在不同介质中传播速度会改变B. 光线在不同介质中传播方向不变C. 光线在不同介质中传播速度不变D. 光线在不同介质中传播方向总是改变答案:A7. 根据热力学第一定律,以下哪个选项正确描述了能量的转换?A. ΔE = Q + WB. ΔE = Q - WC. ΔE = Q / WD. ΔE = W / Q答案:B8. 以下哪个选项正确描述了理想气体的状态方程?A. PV = nRTB. PV = nT/RC. PV = RTD. PV = nR答案:A9. 以下哪个选项正确描述了电磁感应现象?A. 变化的磁场可以产生电流B. 电流可以产生磁场C. 磁场可以产生电流D. 电流可以产生变化的磁场答案:A10. 以下哪个选项正确描述了相对论中时间膨胀现象?A. 运动的物体在运动方向上的长度会变长B. 运动的物体在运动方向上的时间会变慢C. 运动的物体在垂直于运动方向上的长度会变短D. 运动的物体在垂直于运动方向上的时间会变慢答案:B二、填空题(每空1分,共10分)11. 牛顿第一定律又称为________定律。
大学物理学专业《大学物理(二)》期末考试试卷附答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、一质点作半径为0.1m的圆周运动,其运动方程为:(SI),则其切向加速度为=_____________。
2、一平行板空气电容器的两极板都是半径为R的圆形导体片,在充电时,板间电场强度的变化率为dE/dt.若略去边缘效应,则两板间的位移电流为__________________。
3、长为、质量为的均质杆可绕通过杆一端的水平光滑固定轴转动,转动惯量为,开始时杆竖直下垂,如图所示。
现有一质量为的子弹以水平速度射入杆上点,并嵌在杆中. ,则子弹射入后瞬间杆的角速度___________。
4、两列简谐波发生干涉的条件是_______________,_______________,_______________。
5、一弹簧振子系统具有1.OJ的振动能量,0.10m的振幅和1.0m/s的最大速率,则弹簧的倔强系数为_______,振子的振动频率为_______。
6、动方程当t=常数时的物理意义是_____________________。
7、花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为,角速度为;然后将两手臂合拢,使其转动惯量变为,则转动角速度变为_______。
8、在主量子数n=2,自旋磁量子数的量子态中,能够填充的最大电子数是______________。
9、一长直导线旁有一长为,宽为的矩形线圈,线圈与导线共面,如图所示. 长直导线通有稳恒电流,则距长直导线为处的点的磁感应强度为___________;线圈与导线的互感系数为___________。
10、一个中空的螺绕环上每厘米绕有20匝导线,当通以电流I=3A时,环中磁场能量密度w =_____________ .()二、名词解释(共6小题,每题2分,共12分)1、能量子:2、受激辐射:3、黑体辐射:4、布郎运动:5、熵增加原理:6、瞬时加速度:三、选择题(共10小题,每题2分,共20分)1、气体在状态变化过程中,可以保持体积不变或保持压强不变,这两种过程()。
11章10-5如题10-5所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以tId d 的变化率增大,求: (1)任一时刻线圈内所通过的磁通量; (2)线圈中的感应电动势. 解: 以向外磁通为正则(1)]ln [ln π2d π2d π2000d a d b a b Il r l r I r l r I ab ba d d m +-+=-=⎰⎰++μμμΦ(2)t Ib a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε10-7 如题10-7图所示,长直导线通以电流I =5A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06m ,宽a =0.04m ,线圈以速度v =0.03m ·s -1垂直于直线平移远离.求:d =0.05m 时线圈中感应电动势的大小和方向.题10-7图解: AB 、CD 运动速度v ϖ方向与磁力线平行,不产生感应电动势. DA 产生电动势⎰==⋅⨯=AD I vb vBb l B v d2d )(01πμεϖϖϖBC 产生电动势)(π2d )(02d a Ivbl B v CB+-=⋅⨯=⎰μεϖϖϖ∴回路中总感应电动势8021106.1)11(π2-⨯=+-=+=ad d Ibv μεεε V 方向沿顺时针.10-9 一矩形导线框以恒定的加速度向右穿过一均匀磁场区,B ϖ的方向如题10-9图所示.取逆时针方向为电流正方向,画出线框中电流与时间的关系(设导线框刚进入磁场区时t =0).解: 如图逆时针为矩形导线框正向,则进入时0d d <Φt,0>ε; 题10-9图(a)题10-9图(b)在磁场中时0d d =tΦ,0=ε; 出场时0d d >tΦ,0<ε,故t I -曲线如题10-9图(b)所示. 题10-10图10-15 一无限长的直导线和一正方形的线圈如题10-15图所示放置(导线与线圈接触处绝缘).求:线圈与导线间的互感系数.解: 设长直电流为I ,其磁场通过正方形线圈的互感磁通为⎰==32300122ln π2d π2a a Iar rIaμμΦ∴ 2ln π2012aI M μΦ==10-16 一矩形线圈长为a =20cm ,宽为b =10cm ,由100匝表面绝缘的导线绕成,放在一无限长导线的旁边且与线圈共面.求:题10-16图中(a)和(b)两种情况下,线圈与长直导线间的互感.解:(a)见题10-16图(a),设长直电流为I ,它产生的磁场通过矩形线圈的磁通为2ln π2d 2πd 020)(12Iar r Ia S B b b S μμΦ⎰⎰==⋅=ϖϖ∴ 6012108.22ln π2-⨯===a N I N M μΦ H (b)∵长直电流磁场通过矩形线圈的磁通012=Φ,见题10-16图(b) ∴ 0=M题10-16图题10-17图13章12-7 在杨氏双缝实验中,双缝间距d =0.20mm ,缝屏间距D =1.0m ,试求: (1)若第二级明条纹离屏中心的距离为6.0mm ,计算此单色光的波长; (2)相邻两明条纹间的距离.解: (1)由λk dDx =明知,λ22.01010.63⨯⨯=, ∴ 3106.0-⨯=λmm oA 6000=(2) 3106.02.010133=⨯⨯⨯==∆-λd D x mm 12-11 白光垂直照射到空气中一厚度为3800 oA 的肥皂膜上,设肥皂膜的折射率为1.33,试问该膜的正面呈现什么颜色?背面呈现什么颜色? 解: 由反射干涉相长公式有λλk ne =+22 ),2,1(⋅⋅⋅=k得 122021612380033.14124-=-⨯⨯=-=k k k ne λ 2=k , 67392=λo A (红色) 3=k , 40433=λ oA (紫色)所以肥皂膜正面呈现紫红色.由透射干涉相长公式 λk ne =2),2,1(⋅⋅⋅=k 所以 kk ne 101082==λ 当2=k 时, λ =5054oA (绿色) 故背面呈现绿色.14章13-13 用橙黄色的平行光垂直照射一宽为a=0.60mm 的单缝,缝后凸透镜的焦距f=40.0cm ,观察屏幕上形成的衍射条纹.若屏上离中央明条纹中心1.40mm 处的P 点为一明条纹;求:(1)入射光的波长;(2)P 点处条纹的级数;(3)从P 点看,对该光波而言,狭缝处的波面可分成几个半波带?解:(1)由于P 点是明纹,故有2)12(sin λϕ+=k a ,⋅⋅⋅=3,2,1k由ϕϕsin tan 105.34004.13≈=⨯==-f x 故3105.3126.0212sin 2-⨯⨯+⨯=+=k k a ϕλ3102.4121-⨯⨯+=k mm 当 3=k ,得60003=λo A4=k ,得47004=λoA(2)若60003=λoA ,则P 点是第3级明纹;若47004=λoA ,则P 点是第4级明纹. (3)由2)12(sin λϕ+=k a 可知,当3=k 时,单缝处的波面可分成712=+k 个半波带; 当4=k 时,单缝处的波面可分成912=+k 个半波带.13-14 用5900=λoA 的钠黄光垂直入射到每毫米有500条刻痕的光栅上,问最多能看到第几级明条纹?解:5001=+b a mm 3100.2-⨯= mm 4100.2-⨯=o A 由λϕk b a =+sin )(知,最多见到的条纹级数m ax k 对应的2πϕ=,所以有39.35900100.24max ≈⨯=+=λba k ,即实际见到的最高级次为3max =k .第五章5-7 质量为kg 10103-⨯的小球与轻弹簧组成的系统,按)SI ()328cos(1.0ππ+=x 的规律作谐振动,求:(1)振动的周期、振幅和初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等? (3)s 52=t 与s 11=t 两个时刻的位相差;解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A 又 πω8.0==A v m 1s m -⋅ 51.2=1s m -⋅2.632==A a m ω2s m -⋅(2) N 63.0==m m a FJ 1016.32122-⨯==m mv E J 1058.1212-⨯===E E E k p当p k E E =时,有p E E 2=, 即)21(212122kA kx ⋅= ∴ m 20222±=±=A x (3) ππωφ32)15(8)(12=-=-=∆t t5-8 一个沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示.如果0=t 时质点的状态分别是:(1)A x -=0;(2)过平衡位置向正向运动; (3)过2Ax =处向负向运动; (4)过2A x -=处向正向运动.试求出相应的初位相,并写出振动方程.解:因为 ⎩⎨⎧-==000sin cos φωφA v A x将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有)2cos(1πππφ+==t T A x)232cos(232πππφ+==t T A x)32cos(33πππφ+==t T A x)452cos(454πππφ+==t T A x5-11 图为两个谐振动的t x -曲线,试分别写出其谐振动方程.题5-11图解:由题4-8图(a),∵0=t 时,s 2,cm 10,,23,0,0000===∴>=T A v x 又πφ 即 1s rad 2-⋅==ππωT故 m )23cos(1.0ππ+=t x a 由题4-8图(b)∵0=t 时,35,0,2000πφ=∴>=v A x01=t 时,22,0,0111ππφ+=∴<=v x又 ππωφ253511=+⨯=∴ πω65=故 m t x b )3565cos(1.0ππ+= 5-16 一质点同时参与两个在同一直线上的简谐振动,振动方程为⎪⎩⎪⎨⎧-=+=m)652cos(3.0m )62cos(4.021ππt x t x 试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程。
练习一 静电场中的导体三、计算题1. 已知某静电场在xy 平面内的电势函数为U =Cx/(x 2+y 2)3/2,其中C 为常数.求(1)x 轴上任意一点,(2)y 轴上任意一点电场强度的大小和方向.解:. E x =-∂U/∂x=-C [1/(x 2+y 2)3/2+x (-3/2)2x /(x 2+y 2)5/2]= (2x 2-y 2)C /(x 2+y 2)5/2E y =-∂U/∂y=-Cx (-3/2)2y /(x 2+y 2)5/2=3Cxy /(x 2+y 2)5/2x 轴上点(y =0) E x =2Cx 2/x 5=2C /x 3 E y =0E =2C i /x 3 y 轴上点(x =0) E x =-Cy 2/y 5=-C /y 3 E y =0E =-C i /y 32.如图,一导体球壳A (内外半径分别为R 2,R 3),同心地罩在一接地导体球B (半径为R 1)上,今给A 球带负电-Q , 求B 球所带电荷Q B 及的A 球的电势U A .静电场中的导体答案解: 2. B 球接地,有 U B =U ∞=0, U A =U BAU A =(-Q+Q B )/(4πε0R 3)U BA =[Q B /(4πε0)](1/R 2-1/R 1)得 Q B =QR 1R 2/( R 1R 2+ R 2R 3- R 1R 3)U A =[Q/(4πε0R 3)][-1+R 1R 2/(R 1R 2+R 2R 3-R 1R 3)]=-Q (R 2-R 1)/[4πε0(R 1R 2+R 2R 3-R 1R 3)]练习二 静电场中的电介质三、计算题1. 如图6.6所示,面积均为S 2的两金属平板A ,B 平行对称放置,间距为d =1mm,今给A , B 两板分别带电 Q 1×10-9C, Q 2×10-9C.忽略边缘效应,求:(1) 两板共四个外表的面电荷密度 σ1, σ2, σ3, σ4;(2) 两板间的电势差V =U A -U B .解:1. 在A 板体内取一点A , B 板体内取一点B ,它们的电场强度是四-Q图5.6Q2σ 2 σ 4个外表的电荷产生的,应为零,有E A =σ1/(2ε0)-σ2/(2ε0)-σ3/(2ε0)-σ4/(2ε0)=0E A =σ1/(2ε0)+σ2/(2ε0)+σ3/(2ε0)-σ4/(2ε0)=0而 S (σ1+σ2)=Q 1 S (σ3+σ4)=Q 2 有 σ1-σ2-σ3-σ4=0σ1+σ2+σ3-σ4=0 σ1+σ2=Q 1/S σ3+σ4=Q 2/S解得 σ1=σ4=(Q 1+Q 2)/(2S ⨯10-8C/m 2σ2=-σ3=(Q 1-Q 2)/(2S ⨯10-8C/m 2两板间的场强 E=σ2/ε0=(Q 1-Q 2)/(2ε0S )V=U A -U B ⎰⋅=BAl E d=Ed=(Q 1-Q 2)d /(2ε0S )=1000V四、证明题1. 如图所示,置于静电场中的一个导体,在静电平衡后,导体外表出现正、负感应电荷.试用静电场的环路定理证明,图中从导体上的正感应电荷出发,终止于同一导体上的负感应电荷的电场线不能存在.解:1.ACB 作环路ACBA ,导体内直线BA 的场强为零,ACB 的电场与环路同向于是有=⋅⎰l E d l+⋅⎰ACBl E d ⎰⋅AB l E d 2=⎰⋅ACBl E d ≠0与静电场的环路定理=⋅⎰l E d l0相违背,故在同一导体上不存在从正感应电荷出发,终止于负感应电荷的电场线.练习三 电容 静电场的能量三、计算题1. 半径为R 1的导体球带电Q ,球外一层半径为R 2相对电容率为εr 的同心均匀介质球壳,其余全部空间为空气.如图所示.求:(1)离球心距离为r 1(r 1<R 1), r 2(R 1<r 1<R 2), r 3(r 1>R 2)处的D 和E ;(2)离球心r 1, r 2, r 3,处的U ;(3)介质球壳内外外表的极化电荷. 解:1. (1)因此电荷与介质均为球对称,电场也球对称,过场点作与金属球同心的球形高斯面,有iSq0d ∑=⋅⎰S D4πr 2D=∑q 0i当r=5cm <R 1, ∑q 0i =0得 D 1=0, E 1=0 当r=15cm(R 1<r <R 1+d ) ∑q 0i =Q=1.0×10-8C 得 D 2=Q /(4πr 2)×10-8C/m 2E 2=Q /(4πε0εr r 2)=7.99×103N/C 当r=25cm(r >R 1+d ) ∑q 0i =Q=1.0×10-8C 得 D 3=Q /(4πr 2)=1.27×10-8C/m 2 E 3=Q /(4πε0r 2)=1.44×104N/C D 和E 的方向沿径向. (2) 当r=5cm <R 1时 U 1=⎰∞⋅rl E d⎰=R rr E d 1⎰++dR Rr E d 2⎰∞++dR r E d 3=Q/(4πε0εr R )-Q/[4πε0εr (R+d )]+Q/[4πε0(R+d )]=540V当r=15cm <R 1时U 2=⎰∞⋅rl E d ⎰+=dR rr E d 2⎰∞++dR r E d 3=Q/(4πε0εr r )-Q/[4πε0εr (R+d )]+Q/[4πε0(R+d )]=480V当r=25cm <R 1时U 3=⎰∞⋅rl E d ⎰∞=rr E d 3=Q/(4πε0r )=360V(3)在介质的内外外表存在极化电荷,P e =ε0χE=ε0(εr -1)E σ'= P e ·nr=R 处, 介质外表法线指向球心σ'=P e ·n =P e cos π=-ε0(εr -1)Eq '=σ'S =-ε0(εr -1) [Q /(4πε0εr R 2)]4πR 2=-(εr -1)Q /εr =-0.8×10-8Cr=R+d 处, 介质外表法线向外σ'=P e ·n =P e cos0=ε0(εr -1)Eq '=σ'S =ε0(εr -1)[Q /(4πε0εr (R+d )2]4π(R +d )2=(εr -1)Q /εr =0.8×10-8C2.两个相距很远可看作孤立的导体球,半径均为10cm ,分别充电至200V 和400V ,然后用一根细导线连接两球,使之到达等电势. 计算变为等势体的过程中,静电力所作的功. 解;2.球形电容器 C =4πε0RQ 1=C 1V 1= 4πε0RV 1 Q 2=C 2V 2= 4πε0RV 2W 0=C 1V 12/2+C 2V 22/2=2πε0R (V 12+V 22)两导体相连后 C =C 1+C 2=8πε0RQ=Q 1+Q 2= C 1V 1+C 2V 2=4πε0R (V 1+V 2)W=Q 2/(2C )= [4πε0R (V 1+V 2)]2/(16πε0R )=πε0R (V 1+V 2)2静电力作功 A=W 0-W=2πε0R (V 12+V 22)-πε0R (V 1+V 2)2=πε0R (V 1-V 2)2=1.11×10-7J练习六 磁感应强度 毕奥—萨伐尔定律三、计算题1. 如图所示, 一宽为2a 的无限长导体薄片, 沿长度方向的电流I 在导体薄片上均匀分布. 求中心轴线OO '上方距导体薄片为a 的磁感强度.解:1.取宽为d x 的无限长电流元d I=I d x/(2a ) d B=μ0d I/(2πr )=μ0I d x/(4πar )d B x =d B cos α=[μ0I d x/(4πar )](a/r ) =μ0I d x/(4πr 2)= μ0I d x/[4π(x 2+a 2)] d B y =d B sin α= μ0Ix d x/[4πa (x 2+a 2)]()⎰⎰-+==aax x a x xI B B 2204d d πμ=[μ0I/(4π)](1/a )arctan(x/a )a a-=μ0I/(8a )()⎰⎰-+==aay y ax a xIx B B 2204d d πμ=[μ0I/(8πa )]ln(x 2+a 2)aa-=02. 如图所示,半径为R 的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈覆盖住半个球面. 设线圈的总匝数为N ,通过线圈的电流为I . 求球心O 的磁感强度.解:2. 取宽为d L 细圆环电流, d I=I d N=I [N/(πR/2)]R d θ =(2IN/π)d θd B=μ0d Ir 2/[2(r 2+x 2)3/2]r=R sin θ x=R cos θd B=μ0NI sin 2θ d θ /(πR )⎰⎰==πππθθμ220d sin d RNI B B=μ0NI/(4R )xr练习七 毕奥—萨伐尔定律(续) 磁场的高斯定理三、计算题S 1和S 2的两个矩形回路, 回路旋转方向如图所示, 两个回路与长直载流导线在同一平面内, 且矩形回路的一边与长直载流导线平行. 求通过两矩形回路的磁通量及通过S 1回路的磁通量与通过S 2回路的磁通量之比.解: 1.取窄条面元d S =b d r , 面元上磁场的大小为 B =μ0I /(2πr ),Φ1=⎰-=aabIbdr r I 2002ln 2cos 2πμππμ Φ2=⎰-=aabI bdr r I 42002ln 2cos 2πμππμ Φ1/Φ2=12. 半径为R 的薄圆盘均匀带电,总电量为Q . 令此盘绕通过盘心且垂直盘面的轴线作匀速转动,角速度为ω,求轴线上距盘心x 处的磁感强度的大小和旋转圆盘的磁矩.解;2. 在圆盘上取细圆环电荷元d Q =σ2πr d r , [σ=Q /(πR 2) ],等效电流元为d I =d Q /T =σ2πr d r/(2π/ω)=σωr d r(1)求磁场, 电流元在中心轴线上激发磁场的方向沿轴线,且与ω同向,大小为 d B=μ0d Ir 2/[2(x 2+r 2)3/2]=μ0σωr 3d r /[2(x 2+r 2)3/2]()()()⎰⎰++=+=RRx rx r r x r rr B 02322222002/32230d 42d σωμσωμ=()()()⎰+++Rx rx r x r23222222d 4σωμ-()()⎰++Rx rx r x 023222220d 4σωμ=⎪⎪⎭⎫⎝⎛+++RRx r x x r 022202202σωμ =⎪⎪⎭⎫ ⎝⎛-++x x R x R R Q 222222220πωμ (2)求磁距. 电流元的磁矩d P m =d IS=σωr d r πr 2=πσωr 2d r⎰=Rm dr r P 03πσω=πσωR 4/4=ωQR 2/4练习八 安培环路定律三、计算题1. 如图所示,一根半径为R 的无限长载流直导体,其中电流I 沿轴向流过,并均匀分布在横截面上. 现在导体上有一半径为R '的圆柱形空腔,其轴与直导体的轴平行,两轴相距为 d . 试求空腔中任意一点的磁感强度.解:1. 此电流可认为是由半径为R 的无限长圆柱电流I 1和一个同电流密度的反方向的半径为R '的无限长圆柱电流I 2组成. I 1=J πR 2 I 2=-J πR '2 J =I/[π (R 2-R '2)] 它们在空腔内产生的磁感强度分别为 B 1=μ0r 1J/2 B 2=μ0r 2J/2B x =B 2sin θ2-B 1sin θ1=(μ0J/2)(r 2sin θ2-r 1sin θ1)=0 B y =B 2cos θ2+B 1cos θ1=(μ0J/2)(r 2cos θ2+r 1cos θ1)=(μ0J/2)d 所以 B = B y = μ0dI/[2π(R 2-R '2)] 方向沿y 轴正向2. 设有两无限大平行载流平面,它们的电流密度均为j ,电流流向相反. 求: (1) 载流平面之间的磁感强度; (2) 两面之外空间的磁感强度.解;2. 两无限大平行载流平面的截面如图.平面电流在空间产生的磁场为 B 1=μ0J /2在平面①的上方向右,在平面①的下方向左;电流②在空间产生的磁场为 B 2=μ0J /2 在平面②的上方向左,在平面②的下方向右.(1) 两无限大电流流在平面之间产生的磁感强度方向都向左,故有 B=B 1+B 2=μ0J (2) 两无限大电流流在平面之外产生的磁感强度方向相反,故有 B=B 1-B 2=0练习九 安培力图I 1 I 2①②1. 一边长a =10cm 的正方形铜导线线圈(铜导线横截面积S mm 2, 铜的密度ρg/cm 3), 放在均匀外磁场中. B 竖直向上, 且B = ⨯10-3T, 线圈中电流为I =10A . 线圈在重力场中 求:(1) 今使线圈平面保持竖直, 则线圈所受的磁力矩为多少. (2) 假假设线圈能以某一条水平边为轴自由摆动,当线圈平衡时,线圈平面与竖直面夹角为多少.解:1. (1) P m =IS=Ia 2 方向垂直线圈平面.线圈平面保持竖直,即P m 与B M m =P m ×BM m =P m B sin(π/2)=Ia 2B=×10-4m ⋅N(2) 平衡即磁力矩与重力矩等值反向 M m =P m B sin(π/2-θ)=Ia 2B cos θ M G = M G 1 + M G 2 + M G 3= mg (a/2)sin θ+ mga sin θ+ mg (a/2)sin θ =2(ρSa )ga sin θ=2ρSa 2g sin θ Ia 2B cos θ=2ρSa 2g sin θ tan θ=IB/(2ρSg )= θ=15︒2. 如图13.5所示,半径为R 的半圆线圈ACD 通有电流I 2, 置于电流为I 1的无限长直线电流的磁场中, 直线电流I 1 恰过半圆的直径, 两导线相互绝缘. 求半圆线圈受到长直线电流I 1的磁力. 解:2.在圆环上取微元 I 2d l = I 2R d θ 该处磁场为B =μ0I 1/(2πR cos θ)I 2d l 与B 垂直,有d F= I 2d lB sin(π/2) d F=μ0I 1I 2d θ/(2πcos θ) d F x =d F cos θ=μ0I 1I 2d θ /(2π) d F y =d F sin θ=μ0I 1I 2sin θd θ /(2πcos θ)⎰-=22102πππθμd I I F x =μ0I 1I 2/2因对称F y =0.故 F =μ0I 1I 2/2 方向向右.练习十 洛仑兹力I图13.5I1. 如图所示,有一无限大平面导体薄板,自下而上均匀通有电流,已知其面电流密度为i(即单位宽度上通有的电流强度)(1) 试求板外空间任一点磁感强度的大小和方向.(2) 有一质量为m,带正电量为q的粒子,以速度v沿平板法线方向向外运动. 假设不计粒子重力.求:(A) 带电粒子最初至少在距板什么位置处才不与大平板碰撞.(B) 需经多长时间,才能回到初始位置..解:1. (1)求磁场.用安培环路定律得B=μ0i/2在面电流右边B的方向指向纸面向里,在面电流左边B的方向沿纸面向外.(2) F=q v×B=m a qvB=ma n=mv2/R带电粒子不与平板相撞的条件是粒子运行的圆形轨迹不与平板相交,即带电粒子最初位置与平板的距离应大于轨道半径.R=mv/qB= 2mv/(μ0iq)t=T=2πR/v= 4πm/(μ0iq)2. 一带电为Q质量为m的粒子在均匀磁场中由静止开始下落,磁场的方向(z轴方向)与重力方向(y轴方向)垂直,求粒子下落距离为y时的速率.并讲清求解方法的理论依据.解:2. 洛伦兹力Q v×B垂直于v,不作功,不改变v的大小;重力作功.依能量守恒有mv2/2=mgy,得v=(2gy)1/2.练习十一磁场中的介质三、计算题1. 一厚度为b的无限大平板中通有一个方向的电流,平板内各点的电导率为γ,电场强度为E,方向如图15.6所示,平板的相对磁导率为μr1,平板两侧充满相对磁导率为μr2的各向同性的均匀磁介质,试求板内外任意点的磁感应强度.解:1. 设场点距中心面为x,因磁场面对称以中心面为对称面过场点取矩形安培环路,有⎰⋅l lH d=ΣI02∆LH=ΣI0(1)介质内,0<x<b/2. ΣI0=2x∆lJ=2x∆lγE,有H=xγE B=μ0μr1H=μ0μr1xγE(2)介质外,|x|>b/2. ΣI0=b∆lJ=b∆lγE,有H=bγE/2B=μ0μr2H=μ0μr2bγE/2i v•图2. 一根同轴电缆线由半径为R 1的长导线和套在它外面的半径为R 2的同轴薄导体圆筒组成,中间充满磁化率为χm 的各向同性均匀非铁磁绝缘介质,如图所示. 传导电流沿导线向上流去, 由圆筒向下流回,电流在截面上均匀分布. 求介质内外外表的磁化电流的大小及方向.解:2. 因磁场柱对称 取同轴的圆形安培环路,有 ⎰⋅ll H d =ΣI 0在介质中(R 1<r <R 2),ΣI 0=I ,有 2πrH = I H = I /(2πr ) 介质内的磁化强度 M =χm H =χm I /(2πr )介质内外表的磁化电流 J SR 1=| M R 1×n R 1|=| M R 1|=χm I /(2πR 1) I SR 1=J SR 1⋅2πR 1=χm I (与I 同向) 介质外外表的磁化电流J SR 2=| M R 2×n R 2|=| M R 2|=χm I /(2πR 2) I SR 2=J SR 2⋅2πR 2=χm I (与I 反向)练习十二 电磁感应定律 动生电动势三、计算题1. 如图所示,长直导线AC 中的电流I 沿导线向上,并以d I /d t = 2 A/s 的变化率均匀增长. 导线附近放一个与之同面的直角三角形线框,其一边与导线平行,位置及线框尺寸如下图. 求此线框中产生的感应电动势的大小和方向.解: 1.d S =y d x =[(a+b -x )l/b ]d xΦm =⎰⋅S d S B=()⎰+-+⋅ba abldxx b a x I πμ20 =()⎥⎦⎤⎢⎣⎡-++b a b a b a b Il ln 20πμ图图图εi =-d Φm /d t=()dtdIa b a ba b b l ⎥⎦⎤⎢⎣⎡++-ln 20πμ =-×10-8V负号表示逆时针2. 一很长的长方形的U 形导轨,与水平面成θ 角,裸导线可在导轨上无摩擦地下滑,导轨位于磁感强度B 垂直向上的均匀磁场中,如图所示. 设导线ab 的质量为m ,电阻为R ,长度为l ,导轨的电阻略去不计, abcd 形成电路. t=0时,v=0. 求:(1) 导线ab 下滑的速度v 与时间t 的函数关系; (2) 导线ab 的最大速度v m .解:2. (1) 导线ab 的动生电动势为εi = ⎰l v×B ·d l=vBl sin(π/2+θ)=vBl cos θI i =εi /R = vBl cos θ/R方向由b 到a . 受安培力方向向右,大小为F =| ⎰l (I i d l×B )|= vB 2l 2cos θ/RF 在导轨上投影沿导轨向上,大小为F '= F cos θ =vB 2l 2cos 2θ/R重力在导轨上投影沿导轨向下,大小为mg sin θmg sin θ -vB 2l 2cos 2θ/R=ma=m d v /d t dt=d v /[g sin θ -vB 2l 2cos 2θ/(mR )]()[]{}⎰-=vmR l vB g dv t 0222cos sin θθ()()()mR t l B e l B mgR v θθθ222cos 2221cos sin --=(2) 导线ab 的最大速度v m =θθ222cos sin l B mgR .练习十三 感生电动势 自感三、计算题1. 在半径为R 的圆柱形空间中存在着均匀磁场B ,B R 的金属棒MN 放在磁场外且与圆柱形均匀磁场相切,切点为金属棒的中点,金属棒与磁场BB 随时间的变化率d B /d t 为大于零的常量.求:棒上感应电动势的大小,并指出哪一个端点的电势高. (分别用对感生电场的积分εi =⎰l E i ·d l 和法拉第电磁感应定律εi =-d Φ/d t 两种方法解). .解:(1) 用对感生电场的积分εi =⎰l E i ·d l 解:在棒MN 上取微元d x (-R<x<R ), 该处感生电场大小为E i =[R 2/(2r )](d B/d t )与棒夹角θ满足tan θ=x/R εi =⎰⋅NMl E i d =⎰NMi x E θcos d=()⎰-⋅RRr R r x t B R 22d d d =⎰-+⋅RR R x x t B R 2232d d d =[R 3(d B/d t )/2](1/R )arctan(x/R )R R-=πR 2(d B/d t )/4因εi =>0,故N 点的电势高. (2) 用法拉第电磁感应定律εi =-d Φ/d t 解: 沿半径作辅助线OM ,ON 组成三角形回路MONM=⎰⋅NMl E i d =⎰⋅-MNl E i dεi=-⎢⎣⎡⋅⎰MNl E i d +⎰⋅OM l E i d +⎥⎦⎤⋅⎰NO l E i d =-(-d ΦmMONM /d t ) =d ΦmMONM /d t而 ΦmMONM =⎰⋅Sd S B =πR 2B/4故 εi =πR 2(d B/d t )/4 N 点的电势高.2. 电量Q 均匀分布在半径为a ,长为L (L >>a )的绝缘薄壁长圆筒外表上,圆筒以角速度ωa ,电阻为R 总匝数为N ω=ω0(1-t/t 0)的规律(ω0,t 0为已知常数)随时间线性地减小,求圆线圈中感应电流的大小和流向.解:2. .等效于螺线管B 内=μ0 nI=μ0 [Q ω /(2π)]/L=μ0 Q ω /(2πL )B 外=0Φ=⎰S B ⋅d S=B πa 2=μ0Q ω a 2 /(2 L ) εi =-d Φ/d t=-[μ0Q a 2 /(2 L )]d ω /d t=μ0ω 0Q a 2 /(2 L t 0)I i =εi /R=μ0ω 0Q a 2 /(2 LR t 0)方向与旋转方向一致.练习十四 自感〔续〕互感 磁场的能量三、计算题1. 两半径为a 的长直导线平行放置,相距为d ,组成同一回路,求其单位长度导线的自感系数L 0.解:1. 取如下图的坐标,设回路有电流为I ,则两导线间磁场方向向里,大小为 0≤r ≤a B 1=μ0Ir/(2πa 2)+ μ0I/[2π(d -r )] a ≤r ≤d -a B 2=μ0I/(2πr )+μ0I/[2π(d -r )] d -a ≤r ≤d B 3=μ0I/(2πr )+ μ0I (d -r )/(2πa 2) 取窄条微元d S=l d r ,由Φm =⎰⋅SS B d 得Φml =⎰aa r Irl 0202d πμ+()⎰-a r d r Il 002d πμ +⎰-ad ar r Il πμ2d 0+()⎰--a d ar d r Il πμ2d 0+⎰-ad ar r Il πμ2d 0+()⎰-a d aa rl r -d I 202d πμ =μ0Il/(4π)+[μ0Il/(2π)]ln[d/(d -a )]+[μ0Il/(2π)]ln[(d -a )/a ] +[μ0Il/(2π)]ln[(d -a )/a ]+[μ0Il/(2π)]ln[d/(d -a )]+μ0Il/(4π)=μ0Il/(2π)+(μ0Il/π)ln(d/a )由L l =Φl /I ,L 0= L l /l=Φl /(Il ).得单位长度导线自感 L 0==μ0l/(2π)+(μ0l/π)ln(d/a )2 内外半径为R 、r 的环形螺旋管截面为长方形,共有N 匝线圈.另有一矩形导线线圈与其套合,如图19.4(1)所示. 其尺寸标在图19.4(2) 所示的截面图中,求其互感系数.解:2. 设环形螺旋管电流为I , 则管内磁场大小为B =μ0NI/(2πρ) r ≤ρ≤RS=h d ρ,由Φm =⎰⋅SS B d 得Φm =⎰RrNIh πρρμ2d 0=μ0NIh ln(R/r )/(2π) M =Φm /I ==μ0Nh ln(R/r )/(2π)(1)。
大学物理期末重点大学物理期末考试是每个物理学生面临的挑战,它对我们对知识的掌握和理解能力进行了全面的考核。
为了帮助同学们更好地复习和备考,本文将重点介绍大学物理期末考试的几个重要知识点。
1.力学力学是物理学的基础,也是大学物理考试中的重点内容。
其中包括牛顿运动定律、动量守恒、动量和动能以及万有引力等概念和定律。
需要重点掌握物体在外力作用下的运动规律、相互作用力的性质以及质点系的动量守恒等基本原理。
2.热学热学是研究物体热现象的学科,也是大学物理考试中的重要内容。
主要包括热力学第一、第二定律、热传导、理想气体状态方程和热功转化等内容。
需要理解热力学基本概念、热平衡、热传导和理想气体的性质等知识点。
3.电磁学电磁学是研究电荷的电场和电流的磁场相互作用的学科,也是大学物理考试的重点之一。
主要包括库仑定律、电场强度、电势、电流、电磁感应和电磁波等内容。
需要熟悉电荷和电场的相互作用、电流的基本概念以及电磁感应和电磁波的特性等知识点。
4.光学光学是研究光的传播和光与物质相互作用的学科,也是大学物理考试的重要内容之一。
主要包括光的反射和折射、光的干涉和衍射、几何光学和光的波粒二象性等内容。
需要理解光的传播规律、光的干涉和衍射现象以及光的波粒二象性等知识。
5.量子力学量子力学是研究微观粒子行为规律的学科,也是大学物理考试的一项重难点内容。
主要包括波粒二象性、不确定性原理、定态和定态方程以及量子力学中的运算等内容。
需要掌握波粒二象性的基本概念、定态方程的求解方法以及量子力学中的数学运算等知识点。
本文对大学物理期末考试的重点知识点进行了简要介绍,希望能帮助同学们更好地复习和备考。
在复习过程中,要注意理解基本概念和原理,并进行大量的习题训练。
同时,也要注重对物理实验的理解和实践,以提高实践能力和实验分析能力。
祝同学们取得好成绩!。
1练习一 静电场中的导体三、计算题1. 已知某静电场在xy 平面内的电势函数为U =Cx/(x 2+y 2)3/2,其中C 为常数.求(1)x 轴上任意一点,(2)y 轴上任意一点电场强度的大小和方向.解:. E x =-∂U/∂x=-C [1/(x 2+y 2)3/2+x (-3/2)2x /(x 2+y 2)5/2]= (2x 2-y 2)C /(x 2+y 2)5/2E y =-∂U/∂y=-Cx (-3/2)2y /(x 2+y 2)5/2=3Cxy /(x 2+y 2)5/2x 轴上点(y =0) E x =2Cx 2/x 5=2C /x 3 E y =0E =2C i /x 3 y 轴上点(x =0) E x =-Cy 2/y 5=-C /y 3 E y =0E =-C i /y 32.如图5.6,一导体球壳A (内外半径分别为R 2,R 3),同心地罩在一接地导体球B (半径为R 1)上,今给A 球带负电-Q , 求B 球所带电荷Q B 及的A 球的电势U A .静电场中的导体答案解: 2. B 球接地,有 U B =U ∞=0, U A =U BAU A =(-Q+Q B )/(4πε0R 3) U BA =[Q B /(4πε0)](1/R 2-1/R 1)得 Q B =QR 1R 2/( R 1R 2+ R 2R 3- R 1R 3)U A =[Q/(4πε0R 3)][-1+R 1R 2/(R 1R 2+R 2R 3-R 1R 3)]=-Q (R 2-R 1)/[4πε0(R 1R 2+R 2R 3-R 1R 3)]练习二 静电场中的电介质三、计算题1. 如图6.6所示,面积均为S =0.1m 2的两金属平板A ,B 平行对称放置,间距为d =1mm,今给A , B 两板分别带电 Q 1=3.54×10-9C, Q 2=1.77×10-9C.忽略边缘效应,求:(1) 两板共四个表面的面电荷密度 σ1, σ2, σ3, σ4;(2) 两板间的电势差V =U A -U B .解:1. 在A 板体内取一点A , B 板体内取一点B ,它们的电场强度是四-Q图5.6Q 图6.62σ 2 σ 42个表面的电荷产生的,应为零,有E A =σ1/(2ε0)-σ2/(2ε0)-σ3/(2ε0)-σ4/(2ε0)=0E A =σ1/(2ε0)+σ2/(2ε0)+σ3/(2ε0)-σ4/(2ε0)=0而 S (σ1+σ2)=Q 1 S (σ3+σ4)=Q 2 有 σ1-σ2-σ3-σ4=0σ1+σ2+σ3-σ4=0 σ1+σ2=Q 1/S σ3+σ4=Q 2/S解得 σ1=σ4=(Q 1+Q 2)/(2S )=2.66⨯10-8C/m 2σ2=-σ3=(Q 1-Q 2)/(2S )=0.89⨯10-8C/m 2 两板间的场强 E=σ2/ε0=(Q 1-Q 2)/(2ε0S )V=U A -U B ⎰⋅=BAl E d=Ed=(Q 1-Q 2)d /(2ε0S )=1000V四、证明题1. 如图6.7所示,置于静电场中的一个导体,在静电平衡后,导体表面出现正、负感应电荷.试用静电场的环路定理证明,图中从导体上的正感应电荷出发,终止于同一导体上的负感应电荷的电场线不能存在.解:1. 设在同一导体上有从正感应电荷出发,终止于负感应电荷的电场线.沿电场线ACB 作环路ACBA ,导体内直线BA 的场强为零,ACB 的电场与环路同向于是有=⋅⎰l E d l+⋅⎰ACBl E d ⎰⋅ABl E d 2=⎰⋅ACBl E d ≠0与静电场的环路定理=⋅⎰l E d l0相违背,故在同一导体上不存在从正感应电荷出发,终止于负感应电荷的电场线.练习三 电容 静电场的能量三、计算题1. 半径为R 1的导体球带电Q ,球外一层半径为R 2相对电容率为εr 的同心均匀介质球壳,其余全部空间为空气.如图7.1所示.求:(1)离球心距离为r 1(r 1<R 1), r 2(R 1<r 1<R 2), r 3(r 1>R 2)处的D 和E ;(2)离球心r 1, r 2, r 3,处的U ;(3)介质球壳内外表面的极化电荷. 解:1. (1)因此电荷与介质均为球对称,电场也球对称,过场点作与图 7.13金属球同心的球形高斯面,有iSq0d ∑=⋅⎰S D4πr 2D=∑q 0i当r=5cm <R 1, ∑q 0i =0得 D 1=0, E 1=0 当r=15cm(R 1<r <R 1+d ) ∑q 0i =Q=1.0×10-8C 得 D 2=Q /(4πr 2)=3.54×10-8C/m 2 E 2=Q /(4πε0εr r 2)=7.99×103N/C 当r=25cm(r >R 1+d ) ∑q 0i =Q=1.0×10-8C 得 D 3=Q /(4πr 2)=1.27×10-8C/m 2 E 3=Q /(4πε0r 2)=1.44×104N/C D 和E 的方向沿径向. (2) 当r=5cm <R 1时 U 1=⎰∞⋅rl E d ⎰=Rr r E d 1⎰++d R Rr E d 2⎰∞++dR r E d 3=Q/(4πε0εr R )-Q/[4πε0εr (R+d )]+Q/[4πε0(R+d )]=540V当r=15cm <R 1时U 2=⎰∞⋅rl E d ⎰+=dR rr E d 2⎰∞++dR r E d 3=Q/(4πε0εr r )-Q/[4πε0εr (R+d )]+Q/[4πε0(R+d )]=480V当r=25cm <R 1时U 3=⎰∞⋅rl E d ⎰∞=rr E d 3=Q/(4πε0r )=360V(3)在介质的内外表面存在极化电荷,P e =ε0χE=ε0(εr -1)E σ'= P e ·nr=R 处, 介质表面法线指向球心σ'=P e ·n =P e cos π=-ε0(εr -1)Eq '=σ'S =-ε0(εr -1) [Q /(4πε0εr R 2)]4πR 2=-(εr -1)Q /εr =-0.8×10-8Cr=R+d 处, 介质表面法线向外σ'=P e ·n =P e cos0=ε0(εr -1)Eq '=σ'S =ε0(εr -1)[Q /(4πε0εr (R+d )2]4π(R +d )2=(εr -1)Q /εr =0.8×10-8C2.两个相距很远可看作孤立的导体球,半径均为10cm ,分别充电至200V 和400V ,然后用一根细导线连接两球,使之达到等电势. 计算变为等势体的过程中,静电力所作的功.解;2.球形电容器 C =4πε0RQ 1=C 1V 1= 4πε0RV 1 Q 2=C 2V 2= 4πε0RV 2W 0=C 1V 12/2+C 2V 22/2=2πε0R (V 12+V 22)两导体相连后 C =C 1+C 2=8πε0R4 Q=Q 1+Q 2= C 1V 1+C 2V 2=4πε0R (V 1+V 2)W=Q 2/(2C )= [4πε0R (V 1+V 2)]2/(16πε0R )=πε0R (V 1+V 2)2静电力作功 A=W 0-W=2πε0R (V 12+V 22)-πε0R (V 1+V 2)2=πε0R (V 1-V 2)2=1.11×10-7J练习六 磁感应强度 毕奥—萨伐尔定律三、计算题1. 如图10.7所示, 一宽为2a 的无限长导体薄片, 沿长度方向的电流I 在导体薄片上均匀分布. 求中心轴线OO'上方距导体薄片为a 的磁感强度.解:1.取宽为d x 的无限长电流元d I=I d x/(2a ) d B=μ0d I/(2πr ) =μ0I d x/(4πar )d B x =d B cos α=[μ0I d x/(4πar )](a/r )=μ0I d x/(4πr 2)= μ0I d x/[4π(x 2+a 2)] d B y =d B sin α= μ0Ix d x/[4πa (x 2+a 2)]()⎰⎰-+==aax x a x xI B B 2204d d πμ=[μ0I/(4π)](1/a )arctan(x/a )a a-=μ0I/(8a )()⎰⎰-+==aay y ax a xIx B B 2204d d πμ=[μ0I/(8πa )]ln(x 2+a 2)a a-=02. 如图10.8所示,半径为R 的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈覆盖住半个球面. 设线圈的总匝数为N ,通过线圈的电流为I . 求球心O 的磁感强度.解:2. 取宽为d L 细圆环电流, d I=I d N=I [N/(πR/2)]R d θ =(2IN/π)d θd B=μ0d Ir 2/[2(r 2+x 2)3/2]r=R sin θ x=R cos θd B=μ0NI sin 2θ d θ /(πR )⎰⎰==πππθθμ220d sin d RNI B B图10.8xr5=μ0NI/(4R )练习七 毕奥—萨伐尔定律(续) 磁场的高斯定理三、计算题1.在无限长直载流导线的右侧有面积为S 1和S 2的两个矩形回路, 回路旋转方向如图11.6所示, 两个回路与长直载流导线在同一平面内, 且矩形回路的一边与长直载流导线平行. 求通过两矩形回路的磁通量及通过S 1回路的磁通量与通过S 2回路的磁通量之比. 解: 1.取窄条面元d S =b d r , 面元上磁场的大小为B =μ0I /(2πr ), 面元法线与磁场方向相反.有Φ1=⎰-=aabIbdr r I 2002ln 2cos 2πμππμ Φ2=⎰-=aabI bdr r I 42002ln 2cos 2πμππμ Φ1/Φ2=12. 半径为R 的薄圆盘均匀带电,总电量为Q . 令此盘绕通过盘心且垂直盘面的轴线作匀速转动,角速度为ω,求轴线上距盘心x 处的磁感强度的大小和旋转圆盘的磁矩.解;2. 在圆盘上取细圆环电荷元d Q =σ2πr d r , [σ=Q /(πR 2) ],等效电流元为d I =d Q /T =σ2πr d r/(2π/ω)=σωr d r(1)求磁场, 电流元在中心轴线上激发磁场的方向沿轴线,且与ω同向,大小为 d B=μ0d Ir 2/[2(x 2+r 2)3/2]=μ0σωr 3d r /[2(x 2+r 2)3/2]()()()⎰⎰++=+=RRx rx r r x r rr B 02322222002/32230d 42d σωμσωμ=()()()⎰+++Rx rx r x r23222222d 4σωμ-()()⎰++Rx rx r x 023222220d 4σωμ=⎪⎪⎭⎫⎝⎛+++RRx r x x r 022202202σωμ =⎪⎪⎭⎫ ⎝⎛-++x x R x R R Q 222222220πωμ (2)求磁距. 电流元的磁矩d P m =d IS=σωr d r πr 2=πσωr 2d r图11.66⎰=Rm dr r P 03πσω=πσωR 4/4=ωQR 2/4练习八 安培环路定律三、计算题1. 如图12.5所示,一根半径为R 的无限长载流直导体,其中电流I 沿轴向流过,并均匀分布在横截面上. 现在导体上有一半径为R '的圆柱形空腔,其轴与直导体的轴平行,两轴相距为 d . 试求空腔中任意一点的磁感强度.解:1. 此电流可认为是由半径为R 的无限长圆柱电流I 1和一个同电流密度的反方向的半径为R '的无限长圆柱电流I 2组成. I 1=J πR 2 I 2=-J πR '2 J =I/[π (R 2-R '2)] 它们在空腔内产生的磁感强度分别为 B 1=μ0r 1J/2 B 2=μ0r 2J/2 方向如图.有B x =B 2sin θ2-B 1sin θ1=(μ0J/2)(r 2sin θ2-r 1sin θ1)=0 B y =B 2cos θ2+B 1cos θ1=(μ0J/2)(r 2cos θ2+r 1cos θ1)=(μ0J/2)d 所以 B = B y = μ0dI/[2π(R 2-R '2)] 方向沿y 轴正向2. 设有两无限大平行载流平面,它们的电流密度均为j ,电流流向相反. 求: (1) 载流平面之间的磁感强度; (2) 两面之外空间的磁感强度.解;2. 两无限大平行载流平面的截面如图.平面电流在空间产生的磁场为 B 1=μ0J /2在平面①的上方向右,在平面①的下方向左;电流②在空间产生的磁场为 B 2=μ0J /2 在平面②的上方向左,在平面②的下方向右.(1) 两无限大电流流在平面之间产生的磁感强度方向都向左,故有 B=B 1+B 2=μ0J (2) 两无限大电流流在平面之外产生的磁感强度方向相反,故有 B=B 1-B 2=0练习九 安培力图12.5I 1 I 2①②7三、计算题1. 一边长a =10cm 的正方形铜导线线圈(铜导线横截面积S =2.00mm 2, 铜的密度ρ=8.90g/cm 3), 放在均匀外磁场中. B 竖直向上, 且B = 9.40⨯10-3T, 线圈中电流为I =10A . 线圈在重力场中 求:(1) 今使线圈平面保持竖直, 则线圈所受的磁力矩为多少.(2) 假若线圈能以某一条水平边为轴自由摆动,当线圈平衡时,线圈平面与竖直面夹角为多少.解:1. (1) P m =IS=Ia 2方向垂直线圈平面.线圈平面保持竖直,即P m 与B 垂直.有 M m =P m ×BM m =P m B sin(π/2)=Ia 2B=9.4×10-4m ⋅N(2) 平衡即磁力矩与重力矩等值反向 M m =P m B sin(π/2-θ)=Ia 2B cos θ M G = M G 1 + M G 2 + M G 3= mg (a/2)sin θ+ mga sin θ+ mg (a/2)sin θ =2(ρSa )ga sin θ=2ρSa 2g sin θ Ia 2B cos θ=2ρSa 2g sin θ tan θ=IB/(2ρSg )=0.2694θ=15︒2. 如图13.5所示,半径为R 的半圆线圈ACD 通有电流I 2, 置于电流为I 1的无限长直线电流的磁场中, 直线电流I 1 恰过半圆的直径, 两导线相互绝缘. 求半圆线圈受到长直线电流I 1的磁力. 解:2.在圆环上取微元 I 2d l = I 2R d θ 该处磁场为B =μ0I 1/(2πR cos θ)I 2d l 与B 垂直,有d F= I 2d lB sin(π/2) d F=μ0I 1I 2d θ/(2πcos θ)d F x =d F cos θ=μ0I 1I 2d θ /(2π)d F y =d F sin θ=μ0I 1I 2sin θd θ /(2πcos θ)⎰-=22102πππθμd I I F x =μ0I 1I 2/2因对称F y =0.故 F =μ0I 1I 2/2 方向向右.I图13.5I练习十洛仑兹力三、计算题1. 如图14.6所示,有一无限大平面导体薄板,自下而上均匀通有电流,已知其面电流密度为i(即单位宽度上通有的电流强度)(1) 试求板外空间任一点磁感强度的大小和方向.(2) 有一质量为m,带正电量为q的粒子,以速度v沿平板法线方向向外运动. 若不计粒子重力.求:(A) 带电粒子最初至少在距板什么位置处才不与大平板碰撞.(B) 需经多长时间,才能回到初始位置..解:1. (1)求磁场.用安培环路定律得B=μ0i/2在面电流右边B的方向指向纸面向里,在面电流左边B的方向沿纸面向外.(2) F=q v×B=m a qvB=ma n=mv2/R带电粒子不与平板相撞的条件是粒子运行的圆形轨迹不与平板相交,即带电粒子最初位置与平板的距离应大于轨道半径.R=mv/qB= 2mv/(μ0iq)(3) 经一个周期时间,粒子回到初始位置.即t=T=2πR/v= 4πm/(μ0iq)2. 一带电为Q质量为m的粒子在均匀磁场中由静止开始下落,磁场的方向(z轴方向)与重力方向(y轴方向)垂直,求粒子下落距离为y时的速率.并讲清求解方法的理论依据.解:2. 洛伦兹力Q v×B垂直于v,不作功,不改变v的大小;重力作功.依能量守恒有mv2/2=mgy,得v=(2gy)1/2.练习十一磁场中的介质三、计算题1. 一厚度为b的无限大平板中通有一个方向的电流,平板内各点的电导率为γ,电场强度为E,方向如图15.6所示,平板的相对磁导率为μr1,平板两侧充满相对磁导率为μr2的各向同性的均匀磁介质,试求板内外任意点的磁感应强度.解:1. 设场点距中心面为x,因磁场面对称以中心面为对称面过场点取矩形安培环路,有⎰⋅l lH d=ΣI02∆LH=ΣI0(1)介质内,0<x<b/2. ΣI0=2x∆lJ=2x∆lγE,有H=xγE B=μ0μr1H=μ0μr1xγE(2)介质外,|x|>b/2. ΣI0=b∆lJ=b∆lγE,有H=bγE/2B=μ0μr2H=μ0μr2bγE/2 i v∙图14.6892. 一根同轴电缆线由半径为R 1的长导线和套在它外面的半径为R 2的同轴薄导体圆筒组成,中间充满磁化率为χm 的各向同性均匀非铁磁绝缘介质,如图15.7所示. 传导电流沿导线向上流去, 由圆筒向下流回,电流在截面上均匀分布. 求介质内外表面的磁化电流的大小及方向.解:2. 因磁场柱对称 取同轴的圆形安培环路,有 ⎰⋅ll H d =ΣI 0在介质中(R 1<r <R 2),ΣI 0=I ,有 2πrH = I H = I /(2πr ) 介质内的磁化强度 M =χm H =χm I /(2πr )介质内表面的磁化电流 J SR 1=| M R 1×n R 1|=| M R 1|=χm I /(2πR 1) I SR 1=J SR 1⋅2πR 1=χm I (与I 同向) 介质外表面的磁化电流J SR 2=| M R 2×n R 2|=| M R 2|=χm I /(2πR 2) I SR 2=J SR 2⋅2πR 2=χm I (与I 反向)练习十二 电磁感应定律 动生电动势三、计算题1. 如图17.8所示,长直导线AC 中的电流I 沿导线向上,并以d I /d t = 2 A/s 的变化率均匀增长. 导线附近放一个与之同面的直角三角形线框,其一边与导线平行,位置及线框尺寸如图所示. 求此线框中产生的感应电动势的大小和方向.解: 1. 取顺时针为三角形回路电动势正向,得三角形面法线垂直纸面向里.取窄条面积微元d S =y d x =[(a+b -x )l/b ]d xΦm =⎰⋅S d S B=()⎰+-+⋅ba abldxx b a x I πμ20 =()⎥⎦⎤⎢⎣⎡-++b a b a b a b Il ln 20πμ图17.8图17.9图15.6图15.710 εi =-d Φm /d t=()dtdIa b a b a b b l ⎥⎦⎤⎢⎣⎡++-ln 20πμ =-5.18×10-8V负号表示逆时针2. 一很长的长方形的U 形导轨,与水平面成θ 角,裸导线可在导轨上无摩擦地下滑,导轨位于磁感强度B 垂直向上的均匀磁场中,如图17.9所示. 设导线ab 的质量为m ,电阻为R ,长度为l ,导轨的电阻略去不计, abcd 形成电路. t=0时,v=0. 求:(1) 导线ab 下滑的速度v 与时间t 的函数关系; (2) 导线ab 的最大速度v m .解:2. (1) 导线ab 的动生电动势为εi = ⎰l v×B ·d l=vBl sin(π/2+θ)=vBl cos θI i =εi /R = vBl cos θ/R方向由b 到a . 受安培力方向向右,大小为F =| ⎰l (I i d l×B )|= vB 2l 2cos θ/RF 在导轨上投影沿导轨向上,大小为F '= F cos θ =vB 2l 2cos 2θ/R重力在导轨上投影沿导轨向下,大小为mg sin θmg sin θ -vB 2l 2cos 2θ/R=ma=m d v /d t dt=d v /[g sin θ -vB 2l 2cos 2θ/(mR )]()[]{}⎰-=vmR l vB g dv t 0222cos sin θθ()()()mR t l B e l B mgR v θθθ222cos 2221cos sin --=(2) 导线ab 的最大速度v m =θθ222cos sin l B mgR .练习十三 感生电动势 自感三、计算题1. 在半径为R 的圆柱形空间中存在着均匀磁场B ,B 的方向与柱的轴线平行.有一长为2R 的金属棒MN 放在磁场外且与圆柱形均匀磁场相切,切点为金属棒的中点,金属棒与磁场B 的轴线垂直.如图18.6所示.设B 随时间的变化率d B /d t 为大于零的常量.求:棒上感应电动势的大图18.6图18.711小,并指出哪一个端点的电势高.(分别用对感生电场的积分εi =⎰l E i ·d l 和法拉第电磁感应定律εi =-d Φ/d t 两种方法解). .解:(1) 用对感生电场的积分εi =⎰l E i ·d l 解:在棒MN 上取微元d x (-R<x<R ), 该处感生电场大小为E i =[R 2/(2r )](d B/d t )与棒夹角θ满足tan θ=x/R εi =⎰⋅NMl E i d =⎰NMi x E θcos d=()⎰-⋅RR r R r x t B R 22d d d =⎰-+⋅RRR x x t B R 2232d d d =[R 3(d B/d t )/2](1/R )arctan(x/R )R R-=πR 2(d B/d t )/4因εi =>0,故N 点的电势高. (2) 用法拉第电磁感应定律εi =-d Φ/d t 解: 沿半径作辅助线OM ,ON 组成三角形回路MONM=⎰⋅NMl E i d =⎰⋅-MNl E i dεi=-⎢⎣⎡⋅⎰MNl E i d +⎰⋅OM l E i d +⎥⎦⎤⋅⎰NO l E i d=-(-d ΦmMONM /d t ) =d ΦmMONM /d t而 ΦmMONM =⎰⋅Sd S B =πR 2B/4故 εi =πR 2(d B/d t )/4 N 点的电势高.2. 电量Q 均匀分布在半径为a ,长为L (L >>a )的绝缘薄壁长圆筒表面上,圆筒以角速度ω绕中心轴旋转.一半径为2a ,电阻为R 总匝数为N 的圆线圈套在圆筒上,如图18.7所示.若圆筒转速按ω=ω0(1-t/t 0)的规律(ω0,t 0为已知常数)随时间线性地减小,求圆线圈中感应电流的大小和流向.解:2. .等效于螺线管B 内=μ0 nI=μ0 [Q ω /(2π)]/L=μ0 Q ω /(2πL )B 外=0Φ=⎰S B ⋅d S=B πa 2=μ0Q ω a 2 /(2 L ) εi =-d Φ/d t=-[μ0Q a 2 /(2 L )]d ω /d t=μ0ω 0Q a 2 /(2 L t 0)I i =εi /R=μ0ω 0Q a 2 /(2 LR t 0)方向与旋转方向一致.练习十四 自感(续)互感 磁场的能量12 三、计算题1. 两半径为a 的长直导线平行放置,相距为d ,组成同一回路,求其单位长度导线的自感系数L 0.解:1. 取如图所示的坐标,设回路有电流为I ,则两导线间磁场方向向里,大小为 0≤r ≤a B 1=μ0Ir/(2πa 2)+ μ0I/[2π(d -r )] a ≤r ≤d -a B 2=μ0I/(2πr )+μ0I/[2π(d -r )] d -a ≤r ≤d B 3=μ0I/(2πr )+ μ0I (d -r )/(2πa 2) 取窄条微元d S=l d r ,由Φm =⎰⋅SS B d 得Φml =⎰aa r Irl 0202d πμ+()⎰-a r d r Il 002d πμ +⎰-ad ar r Il πμ2d 0+()⎰--a d ar d r Il πμ2d 0 +⎰-ad ar r Il πμ2d 0+()⎰-a d aa rl r -d I 202d πμ =μ0Il/(4π)+[μ0Il/(2π)]ln[d/(d -a )]+[μ0Il/(2π)]ln[(d -a )/a ] +[μ0Il/(2π)]ln[(d -a )/a ]+[μ0Il/(2π)]ln[d/(d -a )]+μ0Il/(4π)=μ0Il/(2π)+(μ0Il/π)ln(d/a )由L l =Φl /I ,L 0= L l /l=Φl /(Il ).得单位长度导线自感 L 0==μ0l/(2π)+(μ0l/π)ln(d/a )2 内外半径为R 、r 的环形螺旋管截面为长方形,共有N 匝线圈.另有一矩形导线线圈与其套合,如图19.4(1)所示. 其尺寸标在图19.4(2) 所示的截面图中,求其互感系数.解:2. 设环形螺旋管电流为I , 则管内磁场大小为 B =μ0NI/(2πρ) r ≤ρ≤R方向垂直于截面; 管外磁场为零.取窄条微元d S=h d ρ,由Φm =⎰⋅SS B d 得Φm =⎰RrNIh πρρμ2d 0=μ0NIh ln(R/r )/(2π) M =Φm /I ==μ0Nh ln(R/r )/(2π)图19.4(1)。