运算放大器的非线性应用
- 格式:docx
- 大小:45.87 KB
- 文档页数:3
集成运放的非线性失真分析及电路应用0 引言运算放大器广泛应用在各种电路中,不仅可以实现加法和乘法等线性运算电路功能,而且还能构成限幅电路和函数发生电路等非线性电路,不同的连接方式就能实现不同的电路功能。
集成运放将运算放大器和一些外围电路集成在一块硅片上,组合成了具有特定功能的电子电路。
集成运放体积小,使用方便灵活,适合应用在移动通信和数码产品等便携设备中。
线性特性是考查具有放大功能的集成运放和接收射频前端电路的一个重要参数,并且线性范围对集成运放的连接方式也有很大影响。
集成运放的线性范围太小,就会造成输出信号产生多次谐波和较大的谐波功率,严重地影响整个电路的功能。
基于集成运放的非线性分析,可以发现造成电路非线性失真的原因,并且在不改变电路设计的前提下,通过改变集成运放的连接方式,达到实现集成运放正常工作的目的。
本文设计优化的集成运放电路应用于定位系统射频前端电路,完成对基带扫频信号的放大输出,能有效抑制了集成运放谐波的产生,实现射频接收前端电路的高增益,提高对后端电路设计部分的驱动能力。
l 差分电路的接入方法和集成运放的非线性参数通用集成运放电路由:偏置电路、输入级、中间级和输出级等组成。
其输入级部分由差分电路构成。
差分电路有双端输入和单端输入两种信号输入方法;偏置电路可以采用单电源和双电源两种供电方式。
在移动通信或便携设备中,一般采用单电源供电方式,单电源供电的集成运放要求输入信号采用单极性形式,即输入信号始终是正值或是负值,差分输入级可以用来保证输入中间级电路的信号极性,同时差分输入级放大电路可以有效抑制共模信号,增强集成运放的共模抑制比。
但是,当共模输入信号较大时,差分对管就会进入非线性工作状态,放大器将失去共模抑制能力,严重影响到集成运放的共模抑制比。
集成运放的非线性特性参数除了最大共模输入。
模拟电子技术基础知识运算放大器的非线性特性解析与应用模拟电子技术中的运算放大器是一种重要的电子元件,广泛应用于信号处理、滤波、运算和放大等领域。
运算放大器被设计为线性的电路,但在实际应用中,其非线性特性常常会对电路性能产生影响。
本文将对运算放大器的非线性特性进行解析,并探讨其在实际应用中的重要性。
1. 非线性特性的定义和分类非线性特性指的是电路输出与输入信号不成比例的关系。
在运算放大器中,这种非线性特性通常体现为失真、交叉耦合和非线性增益等现象。
2. 失真失真是指运算放大器输出信号中含有不同于输入信号的频谱成分。
主要的失真形式包括谐波失真、交调失真和互调失真等。
谐波失真是输出信号中含有输入信号频率的整数倍频率成分;交调失真是输出信号中含有输入信号频率之间的交叉成分;互调失真则是当输入信号有多个频率时,输出信号中含有两个或多个频率之间的非线性交叉成分。
3. 交叉耦合交叉耦合是指在运算放大器中,当输入信号的一个分量变化时,会影响到其他分量的输出。
这种非线性耦合效应会导致输出信号中出现与输入信号成分无关的非线性成分,从而改变电路的运算性能。
4. 非线性增益非线性增益是指运算放大器在不同输入信号幅度下的输出增益不一致性。
在理想的运算放大器中,输出信号应该与输入信号成比例,但由于非线性特性的存在,输出信号的增益并不是恒定的。
这种非线性增益会导致信号失真,并降低电路的工作精度。
5. 非线性特性的应用尽管非线性特性会对电路性能产生影响,但在某些应用场景下,非线性特性也是被利用的。
例如,压限放大器(limiter amplifier)就是一种利用非线性特性的运算放大器,它被广泛应用于无线通信中用于抑制干扰信号、防止过载和保护接收机等方面。
6. 技术手段与解决方案为了解决运算放大器的非线性特性问题,工程师们提出了许多技术手段和解决方案。
例如,通过合理的设计,可以采用负反馈手段来补偿非线性特性,使得输出信号更加稳定和准确。
模拟电子技术基础知识运算放大器的非线性特性解析与应用研究现代电子技术的发展使得电子设备日益小型化、高效化和多功能化。
在各种电子设备中,运算放大器(Operational Amplifier,简称OP-AMP)是一种十分重要的电子元件。
运算放大器主要用于信号放大、信号滤波和信号变换等电路中,其性能的好坏直接影响到电子设备的取样精度、信噪比和响应速度等指标。
然而,在实际应用中,运算放大器的非线性特性经常会产生一系列问题。
本文将对运算放大器的非线性特性进行解析,并探讨其在实际应用中的应用研究。
一、运算放大器的非线性特性解析运算放大器作为一种基本电路元件,其输出信号与输入信号的关系应该是线性的,即输出信号与输入信号之间存在一个比例关系。
然而,在实际应用中,运算放大器存在一定的非线性特性,主要表现为增益非线性和相位非线性。
1.1 增益非线性增益非线性是指运算放大器在输入信号较小的范围内,其输出信号的增益不随输入信号的变化而线性变化。
具体表现为输入输出特性曲线的局部不是一条直线,而是呈现出曲线的形状。
增益非线性的主要原因是运算放大器内部存在一些非线性元件或因素,如饱和效应、偏置电压不准确等。
1.2 相位非线性相位非线性是指运算放大器在输入信号较大的范围内,其输出信号的相位不随输入信号的变化而线性变化。
相位非线性主要是由运算放大器的频率响应特性不均匀引起的。
具体表现为输入输出信号的相位差不是严格的线性关系。
二、运算放大器非线性特性的应用研究考虑到运算放大器的非线性特性对其在实际应用中的影响,许多研究人员对该问题进行了深入的研究,并提出了一系列的解决方案和应用技巧。
2.1 非线性补偿技术非线性补偿技术是通过引入补偿电路或采用特殊的电路结构,来消除或减小运算放大器的非线性特性。
例如,采用反馈电路、加入补偿电容或调整工作点等方法,可以有效地减小运算放大器的非线性误差。
2.2 非线性特性的校准利用校准技术对运算放大器的非线性特性进行校准,使得其在一定的输入范围内具备较好的线性关系。
集成运放电路试题及答案第三章集成运放电路⼀、填空题1、(3-1,低)理想集成运放的A ud= ,K CMR= 。
2、(3-1,低)理想集成运放的开环差模输⼊电阻ri= ,开环差模输出电阻ro= 。
3、(3-1,中)电压⽐较器中集成运放⼯作在⾮线性区,输出电压Uo只有或两种的状态。
4、(3-1,低)集成运放⼯作在线形区的必要条件是___________ 。
5、(3-1,难)集成运放⼯作在⾮线形区的必要条件是__________,特点是___________,___________。
6、(3-1,中)集成运放在输⼊电压为零的情况下,存在⼀定的输出电压,这种现象称为__________。
7、(3-2,低)反相输⼊式的线性集成运放适合放⼤ (a.电流、b.电压) 信号,同相输⼊式的线性集成运放适合放⼤ (a.电流、b.电压)信号。
8、(3-2,中)反相⽐例运算电路组成电压(a.并联、b.串联)负反馈电路,⽽同相⽐例运算电路组成电压(a.并联、b.串联)负反馈电路。
9、(3-2,中)分别选择“反相”或“同相”填⼊下列各空内。
(1)⽐例运算电路中集成运放反相输⼊端为虚地,⽽⽐例运算电路中集成运放两个输⼊端的电位等于输⼊电压。
(2)⽐例运算电路的输⼊电阻⼤,⽽⽐例运算电路的输⼊电阻⼩。
(3)⽐例运算电路的输⼊电流等于零,⽽⽐例运算电路的输⼊电流等于流过反馈电阻中的电流。
(4)⽐例运算电路的⽐例系数⼤于1,⽽⽐例运算电路的⽐例系数⼩于零。
10、(3-2,难)分别填⼊各种放⼤器名称(1)运算电路可实现A u>1的放⼤器。
(2)运算电路可实现A u<0的放⼤器。
(3)运算电路可将三⾓波电压转换成⽅波电压。
(4)运算电路可实现函数Y=aX1+bX2+cX3,a、b和c均⼤于零。
(5)运算电路可实现函数Y=aX1+bX2+cX3,a、b和c均⼩于零。
11、(3-3,中)集成放⼤器的⾮线性应⽤电路有、等。
12、(3-3,中)在运算电路中,运算放⼤器⼯作在区;在滞回⽐较器中,运算放⼤器⼯作在区。
实验: 集成运算放大器的非线性应用电路一、实验目的1.掌握单限比较器、滞回比较器的设计、测量和调试方法。
2.掌握电压比较器应用电路电压传输特性的测试方法。
3.学习集成电压比较器在电路设计中的应用。
二、实验内容CCV+87651234OE IN-IN+CCV-LM311OCBAL/STRB BAL图1 741Aμ和LM311的引脚图1. 电压比较器(SPOC实验、Multisim仿真实验)(1)学习SPOC实验内容,利用Multisim仿真软件,按图2接好电路,电阻R1=R2=10kΩ,电阻R3为5.1kΩ。
由函数信号发生器调出1000Hz,峰峰值为5V,偏移量为0V的正弦交流电压加至iu端。
按表中给定数值改变直流信号源输入电压U R。
利用示波器通道1测量输入iu电压波形,通道2测量输出ou端的矩形波波形如图3所示。
其中稳压管VS选取:“DIODE”→“ZENER”→“1N5233B”iuou图2 电压比较器图3 输出电压波形(2)按表1中给定值调节U R的大小,用示波器观察输出矩形波的变化,测量测量HT和T的数值,并记入表1中。
表1电压比较器的测量0 1000 492.518 0.5 1000 945.454 11000 436.052截图仿真电路图:当U R =1V 时,截取输入i u 和输出o u 的电压波形:2. 反相滞回比较器电路(SPOC 实验、Multisim 仿真实验)1) 学习SPOC 实验内容,利用仿真软件,按图4所示的电路选择电路元件,接好电路。
其中稳压管VS 选取:“DIODE ”→“ZENER ” →“1N5233B ”-++81R iu ou 2R FR 3R 10k Ω10k Ω100k Ω5.1k ΩVS图4 反相滞回比较器仿真电路图截图:2) i u 接频率为1kHz ,峰峰值为2V 的正弦信号,观察并截取输入i u 和输出o u 的波形。
要求示波器的通道1接输入电压波形,通道2接输出电压波形。
实验题目集成运算放大器的非线性应用(3学时)一、实验目的:
1.加深理解集成运算放大器在波形产生方面的应用。
2.掌握RC串并联选频网络特性的测试方法和振荡频率的测量方法。
二、预备知识:
1.复习集成运算放大器的非线性应用。
2.学习使用集成运算放大器设计一个正弦波发生器。
3.完成预习报告。
三、实验项目:
1.RC串并联网络测试。
(1)测试其频率特性,并绘制曲线,求出f0;
(2)测试其输出函数;
(3)改变电容C的容量,并测试f0。
2.正弦波发生器的研究。
(1)设计并组装正弦波发生器电路。
(2)测试负反馈对振荡器的影响。
(3)测量振荡平衡条件——即负反馈放大器的电压放大倍数A uf。
(4)振荡频率测量。
(5)完成实验报告,要求:
①画出所设计的实验电路。
②列表、整理实验数据。
③分析误差原因。
④回答思考题。
四、思考题:
若电路元件完好、且安装无错,但仍不能产生振荡,使分析可能产生的原因。
毕业设计85集成运算放大器的非线性应用—限幅电路限幅电路是一种常用的非线性应用电路,常用于将信号限制在特定范围内。
在毕业设计中,我们可以利用85集成运算放大器设计一个限幅电路,用于限制输入信号在一定的电压范围内。
本文将对限幅电路的原理、设计步骤以及一些使用注意事项进行详细介绍。
限幅电路的原理是利用85集成运算放大器的饱和特性,将输入信号的幅值限制在一定的范围内。
具体实现的方式如下:首先,将输入信号接入到放大器的非反馈输入端口,并通过负反馈将输出信号反馈到反馈输入端口。
然后,在反馈路径上连接两个二极管,其方向相反。
当输入信号的幅值超过二极管的正向或反向导通电压时,二极管将开始导通,将反馈路径截断,从而限制输出信号的幅值。
设计限幅电路时,我们需要首先确定输入信号的幅值范围,然后选择合适的二极管。
一般情况下,我们会选择正向导通电压为0.7V的硅二极管。
接下来,我们需要计算二极管电流。
根据放大器的输入电流要求,我们可以选择合适的电阻值来限制二极管电流。
然后,根据输入电阻和电压放大倍数,计算出所需的反馈电阻值。
最后,根据反馈电阻和二极管电流,计算反馈电压。
在设计过程中,需要注意以下几点。
首先,输入信号的幅值范围应该小于放大器的饱和电压范围,以保证限幅电路的正常工作。
其次,选择的二极管应具有良好的温度稳定性和高导通能力。
此外,设计过程中应注意功耗和功率稳定性等问题。
在实际应用中,限幅电路常用于音频信号放大器、电压稳定器等电路中,用于限制输入信号的幅值,保护后续电路和设备免受过大幅值信号的损害。
总结起来,限幅电路是一种常用的非线性应用电路,可以通过利用85集成运算放大器的饱和特性,将输入信号的幅值限制在一定的范围内。
设计限幅电路需要确定输入信号的幅值范围,选择合适的二极管,并进行电流和电压的计算。
在实际应用中,限幅电路常用于保护电路和设备免受过大幅值信号的损害。
运算放大器的非线性应用
实验目的
1.掌握检查运算放大器工作在非线性区的分析方法。
2.学会运用运算放大器实现波形变换及波形产生。
实验仪器
1.双踪示波器X1
2.函数发生器X1
3.数字万用表X1
4.直流稳压电源X1
5.模拟实验箱X1
实验原理
1.在集成运放应用的电路中,运放的工作范围有两种:工作在线性区(指输入电压U0与输出电压Ud成正比时的输入电压范围)或工作在非线性区。
2.集成运放工作在非线性区的特点:
Uo=UoH(UP>UN)
Uo=UoL(UP<UN)
3.当运放放大器处于开环或接入正反馈时,其传输特性为非线性,工作为非线性状态。
4. LM741的引脚图:
实验内容:
基本操作:
将电源1,电源2分别调为12V,将电源1的红色夹子接在放大器的引脚7(正电源端),将电源2的黑色夹子接在放大器的引脚4(负电源端),接着电源1,2的其余夹子接在一起(接地端),使电源输出±12V。
(1).电压跟随器
实验电路图:
实验步骤:
1.调节信号发生器,在同相输入端接入直流电压Ui(-5 ~ 5V)。
2.使用万用表测量输出电压U0;比较Ui与U0的大小。
实验结果:
(2)过零比较器
实验电路图:
实验步骤:
1.如图连接电路,在输入端接入(峰峰值)Ui=2V,f=1kHz的正弦信号。
2.用示波器分别观察输入Ui和输出Uo波形,绘制传输特性。
实验结果:
(3)方波信号发生器
实验电路图:
操作步骤:
1.如上图所示连接电路。
2.用示波器观察输出Uo的波形,绘制波形。
3.用示波器测量输出Uo的频率,f=
4.用示波器观察输出Uo的幅值,Uo=
实验结果:
(4)占空比可调的矩形波发生器
实验电路图:
操作步骤:
1.如图连接电路。
2.调节Rw,用示波器观察输出U0的变化。
3.调节Rw为最大值,记录输出Uo波形。
4.调节Rw为最小值,记录输出Uo波形。
实验结果:
矩形波发生器输出波形实验总结:。