初中数学专题讲解:一元二次方程(二)
- 格式:docx
- 大小:157.93 KB
- 文档页数:6
2018年秋九年级数学上册第2章一元二次方程2.2 一元二次方程的解法2.2.1 配方法第2课时用配方法解二次项系数为1的一元二次方程同步练习(新版)湘教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年秋九年级数学上册第2章一元二次方程2.2 一元二次方程的解法2.2.1 配方法第2课时用配方法解二次项系数为1的一元二次方程同步练习(新版)湘教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年秋九年级数学上册第2章一元二次方程2.2 一元二次方程的解法2.2.1 配方法第2课时用配方法解二次项系数为1的一元二次方程同步练习(新版)湘教版的全部内容。
2.2。
1 配方法第2课时用配方法解二次项系数为1的一元二次方程知识点 1 配方1.配方:x2-8x+3=x2-8x+____-____+3=(x-____)2-____.2.对下列方程配方,其中应在左、右两边同时加上4的是( )A.x2-2x=5 B.x2-4x=5C.x2+8x=5 D.x2+2x=53.将x2+49配成完全平方式,需加上的一次项是( )A.7x B.14xC.-14x D.±14x知识点 2 用配方法解二次项系数为1的一元二次方程4.2017·舟山用配方法解方程x2+2x-1=0时,配方结果正确的是( )A.(x+2)2=2 B.(x+1)2=2C.(x+2)2=3 D.(x+1)2=35.用配方法解方程:x2+6x-16=0。
解:配方,得x2+6x+________-________-16=0,因此(x+3)2=________,由此得x+3=5或x+3=-5。
2021—2022学年九年级数学上学期重难点题型专项提优02 一元二次方程及其解法(二)【例题精讲】一、一元二次方程根与系数的关系例1.已知关于x 的一元二次方程220x x k +-=有两个不相等的实数根. (1)求k 的取值范围;(2)若方程的两个不相等的实数根是a ,b ,求111ab a -++的值. 【解析】解:(1)根据题意得△2240k =+>, 解得1k >-,k ∴的取值范围为1k >-; (2)由根与系数关系得2a b +=-,a b k =-,111111121a ab kb a ab a b k -+-===-+++++--+. 例2.已知α,β是方程2201710x x ++=的两个根,则22(12019)(12019)ααββ++++的值为 A .1 B .2C .3D .4【答案】D【解析】∵α,β是方程2201710x x ++=的两个根,2201710αα∴++=,2201710ββ++=,2017αβ+=-,1αβ=,22(12019)(12019)ααββ∴++++22(120172)(120172)αααβββ=++++++4αβ=4=.例3.阅读材料:已知方程210p p --=,210q q --=且1pq ≠,求1pq q+的值. 解:由210p p --=,及210q q --=,可知0p ≠,0q ≠.又1pq ≠,1p q∴≠. 210q q --=可变形为211()()10q q --=.根据210p p --=和211()()10q q--=的特征.p ∴、1q是方程210x x --=的两个不相等的实数根, 则11p q +=,即11pq q+=. 根据阅读材料所提供的方法,完成下面的解答. 已知:22510m m --=,21520n n+-=且m n ≠,求 (1)mn 的值;(2)2211m n +. 【解析】解:21520n n+-=, 22510n n ∴--=,根据22510m m --=和22510n n --=的特征, m ∴、n 是方程22510x x --=的两个不相等的实数根,52m n ∴+=,12mn =-, (1)12mn =-;(2)原式2222512()()242291()()2m n mn mn -⨯-+-===-. 变式训练:1.已知2210a a --=,2210b b +-=,且1ab ≠,则1ab b b++的值为 . 【答案】3【解析】2210b b +-=,0b ∴≠,方程两边同时除以2b ,再乘1-变形为211()210b b -⋅-=,1ab ≠,a ∴和1b 可看作方程2210x x --=的两根,12a b∴+=, ∴111213ab b a bb++=++=+=.2.已知关于x 的一元二次方程22(1)0x x m -++=.(1)m 为何值时,方程有两个不相等的实数根;(2)若该方程有两根为1x ,2x ,且2123x x +=,求m 的值.【解析】解:(1)关于x 的一元二次方程22(1)0x x m -++=有两个不相等的实数根,∴△2(1)412(1)0m =--⨯⨯+>,78m ∴<-.(2)1x ,2x 为一元二次方程22(1)0x x m -++=的两根,121x x ∴+=,2112(1)0x x m -++=.22121112()3x x x x x x +=-++=,即2(1)13m -++=,2m ∴=-.二、与一元二次方程有关的新定义问题例1.对于实数m ,n ,先定义一种新运算“⊗”如下:22,,,m m n m n m n n m n m n ⎧++⊗=⎨++<⎩当时当时,若(2)10x ⊗-=,则实数x 等于 A .3B .4-C .8D .3或8【答案】A【解析】解:当2x -时,2210x x +-=,解得:13x =,24x =-(不合题意,舍去);当2x <-时,2(2)210x -+-=,解得:8x =(不合题意,舍去);3x ∴=.例2.如果关于x 的一元二次方程20ax bx c ++=有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的个数有 ①方程220x x --=是倍根方程;②若(2)()0x mx n -+=是倍根方程,则22450m mn n ++=;③若p 、q 满足2pq =,则关于x 的方程230px x q ++=是倍根方程;④若方程20ax bx c ++=是倍根方程,则必有229b ac =. A .1 B .2C .3D .4【答案】C【解析】①解方程220x x --=得,12x =,21x =-,得,122x x ≠,∴方程220x x --=不是倍根方程;故①不正确;②若(2)()0x mx n -+=是倍根方程,12x =,因此21x =或24x =,当21x =时,0m n +=,当24x =时,40m n +=,2245()(4)0m mn n m n m n ∴++=++=,故②正确;③2pq =,则23(1)()0px x q px x q ++=++=,∴11x p =-,2x q =-,∴2122x q x p=-=-=, 因此是倍根方程,故③正确;④方程20ax bx c ++=的根为:1x 2x =若122x x =220=,∴0=,∴0b +,∴b -,229(4)b ac b ∴-=,229b ac ∴=.若122x x =2=,20=,∴0=,∴0b -+,∴b =229(4)b b ac ∴=-,229b ac ∴=.故④正确, ∴正确的有:②③④共3个.例3.转化是数学解题的一种极其重要的数学思想,实质是把新知识转化为旧知识,把未知转化为已知,把复杂的问题转化为简单的问题.例如,解方程42340x x --=时,我们就可以通过换元法,设2x y =,将原方程转化为2340y y --=,解方程得到11y =-,24y =,因为20x y =,所以1y =-舍去,所以得到24x =,所以12x =,22x =-.请参考例题解法,解方程:2320x x +=.y =,则223x x y +=.原方程可转化为:220y y --=.(2)(1)0y y ∴-+=.12y ∴=,21y =-.当2y =2,234x x ∴+=.即2340x x +-=.解这个方程得14x =-,21x =.20y x x =,1y ∴=-舍去.所以原方程的解为:14x =-,21x =.例4.阅读并回答问题:小亮是一位刻苦学习、勤于思考、勇于创新的同学.一天他在解方程21x =-时,突发奇想:21x =-在实数范围内无解,如果存在一个数i ,使21i =-,那么当21x =-时,有x i =±,从而x i =±是方程21x =-的两个根. 据此可知:(1)i 可以运算,例如:321i i i i i ==-⨯=-,则4i = ,2011i = ,2012i = ; (2)方程2220x x -+=的两根为 (根用i 表示). 【解析】解:(1)21i =-,422(1)(1)1i i i ∴==-⨯-=;2011210051005()(1)i i i i i ==-=-;2012210061006()(1)i i i i i ==-=.(2)△2(2)4124=--⨯⨯=-,21i =-,∴△24i =,∴方程2220x x -+=的两根为22121ix i ±==±⨯,即1x i =+或1x i =-. 例5.将关于x 的一元二次方程20x px q -+=变形为2x px q =-,就可以将2x 表示为关于x 的一次多项式,从而达到“降次”的目的;例如32()x x x x px q =⋅=-=,该方程变形为2x px q -=-,也可以实现“降次”目的,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式,请利用“降次法”解决下列问题:已知:2210x x --=,且0x >,求4323x x x --的值.【解析】解:方程2210x x --=的解为:1x ==±0x >.所以1x =+2210x x --=,221x x ∴-=,221x x ∴-=.4323x x x ∴--22(2)3x x x x =--23x x =-213x x =+-1x =-.当1x =1(1=-+=变式训练:1.阅读材料:解方程222(1)3(1)0x x ---=.我们可以将21x -视为一个整体,采用“换元法”求解,具体解法:设21x y -=,原方程化为230y y -=①解得10y =,23y =.当0y =时,210x -=.1x ∴=±,当3y =时,213x -=,2x ∴=±,∴原方程的解为11x =,21x =-,32x =,42x =-.请利用换元法解出方程220x -=的根.y =,221y x =-,原方程可变形为:2430y y -+=.(1)(3)0y y ∴--=.11y ∴=,23y =.当1y =1=, 两边平方,得22x =,1x ∴=2x =当3y =3, 两边平方,得210x =,3x ∴=4x =所以1x =2x =,3x =,4x =2.材料一:对称美不仅仅是图形之美,代数式中也有对称的结构之美,对称不仅仅给我们以美的体验,还能帮助我们解决问题.如:2310x x -+=中,因为左边代数式中三项系数依次为:1,3-,1,是呈对称结构的,于是我们可将它变形为130x x -+=,进而可以变形为13x x +=,以此为条件便可以得到22211()27x x x x+=+-=. 材料二:你知道我们为什么要因式分解吗?原因有二:一是化简,如220x x --=(x =-2)(1)x +中,我们通过因式分解将左边的二次式变成了两个一次式的乘积,次数降低了,式子也变简单了;二是增加了信息量,如220x x --=中,x 的取值信息不太明确,但是(2)(1)0x x -+=中,我们可以很快得到,2x =或者1x =-.利用上述材料解决下列问题: (1)材料一中,2310x x -+=到13x x+=的变形成立的前提条件是 . (2)为解系数对称的方程4310x x x --+=,陈功同学结合材料将它变形为1(2)x x +- 1(1)0x x++=,显然110x x ++≠,则只能是120x x+-=,进而解得121x x ==,请将从4310x x x --+=到11(2)(1)0x x x x+-++=的变形过程补充完整. (3)运用材料一、材料二以及第(2)问的解题经验,解方程:432223x x x +-26x +⨯26+ 0=. 【解析】解:(1)由题意知:0x ≠. (2)4310x x x --+=.421(1)x x x ∴+=+.两边同时除以2x 得:2211x x x x+=+. ∴211()2x x x x +-=+.∴211()()20x x x x +-+-=.11(2)(1)0x x x x ∴+-++=.显然110x x ++≠.120x x∴+-=.解得121x x ==. (3)方程两边同时除以2x 得:2212362230x x x x +-++=.∴266()2()350x x x x+++-=.66(7)(5)0x x x x ∴+++-=.670x x ∴++=或650x x+-=. 当670x x++=时,2760x x ++=.(1)(6)0x x ∴++=.1x ∴=-或6x =-. 当650x x+-=时,2560x x -+=.(2)(3)0x x ∴--=.2x ∴=或3x =. 综上:方程的解为:1x =-或6-或2或3. 【针对练习】1.若关于x 的一元二次方程2(1)220a x x --+=有实数根,则整数a 的最大值为A .1-B .0C .1D .2【答案】B【解析】关于x 的一元二次方程2(1)220a x x --+=有实数根,∴△2(2)8(1)1280a a =---=-且10a -≠,32a∴且1a ≠,∴整数a 的最大值为0. 2.下列一元二次方程中,没有实数根的是 A .220x x -= B .2210x x -+=C .2210x x --=D .2210x x -+=【答案】D【解析】解:(A )△4=,故选项A 有两个不同的实数根; (B )△440=-=,故选项B 有两个相同的实数根; (C )△1429=+⨯=,故选项C 有两个不同的实数根; (D )△187=-=-,故选项D 没有两个不同的实数根.3.关于x 的方程220x mx n ++=的两个根是2-和1,则m n 的值为 A .8-B .8C .16D .16-【答案】C 【解析】关于x 的方程220x mx n ++=的两个根是2-和1,12m ∴-=-,22n=-,2m ∴=,4n =-,2(4)16m n ∴=-=. 4.已知实数x 满足222(21)4(21)50x x x x -++-+-=,那么221x x -+的值为 A .5-或1 B .1-或5 C .1 D .5【答案】C【解析】设221y x x =-+,则2450y y +-=.整理,得(5)(1)0y y +-=.解得5y =-(舍去)或1y =.即221x x -+的值为1.5.如果1x ,2x 是两个不相等实数,且满足21121x x -=,22221x x -=,那么2212x x +等于A .2B .2-C .1-D .6【答案】D【解析】1x ,2x 是两个不相等实数,且满足21121x x -=,22221x x -=,1x ∴,2x 是方程2210x x --=的两个不相等的实数根,则122x x +=,121x x =-,2212x x ∴+21212()2x x x x =+-222(1)=-⨯-42=+6=.6.若关于x 的一元二次方程220x kx --=的一个根为1x =,则k = . 【答案】﹣1【解析】把1x =代入方程220x kx --=得120k --=,解得1k =-.7.若实数a ,b 满足()(221)1a b a b ++-=,则a b += .【答案】1或12-【解析】设a b x +=,则(21)1x x -=,2210x x --=,(1)(21)0x x -+=,解得11x =,12x =-,则1a b +=或12-.8.定义:如果两个一元二次方程有且只有一个相同的实数根,我们称这两个方程为“友好方程”,如果关于x 的一元二次方程220x x -=与2310x x m ++-=为“友好方程”,则m 的值 . 【答案】1或﹣9【解析】解方程220x x -=,得:10x =,22x =. ①若0x =是两个方程相同的实数根.将0x =代入方程2310x x m ++-=,得:10m -=,1m ∴=,此时原方程为230xx +=,解得:10x =,23x =-,符合题意,1m ∴=; ②若2x =是两个方程相同的实数根.将2x =代入方程2310x x m ++-=,得:4610m ++-=,9m ∴=-,此时原方程为23100x x +-=,解得:12x =,25x =-,符合题意,9m ∴=-.综上所述:m 的值为1或9-.9.若关于x 的一元二次方程2220(0)x x m m m +--=>,当1m =、2、3、2020时,相应的一元二次方程的两个根分别记为1α、1β,2α、2β,…,2020α、2020β,则11221111αβαβ+++2020202011αβ+++的值为 .【答案】40402021【解析】2220x x m m +--=,1m =,2,3,⋯,2020,∴由根与系数的关系得:112αβ+=-,1112αβ=-⨯;222αβ+=-,2223αβ=-⨯;202020202αβ+=-,2020202120202021αβ=-⨯;∴原式3320202020112211223320202020αβαβαβαβαβαβαβαβ++++=++++222212233420202021=++++⨯⨯⨯⨯1111111140402(1)2(1)223342020202120212021=⨯-+-+-++-=⨯-=. 10.已知关于x 的一元二次方程:21(21)4()02x k x k -++-=.(1)求证:这个方程总有两个实数根;(2)若等腰ABC ∆的一边长4a =,另两边长b 、c ,恰好是这个方程的两个实数根,求ABC ∆的周长. (3)若方程的两个实数根之差等于3,求k 的值.【解析】解:(1)△21(21)414()2k k =+-⨯⨯-24129k k =-+2(23)k =-,无论k 取何值,2(23)0k -,故这个方程总有两个实数根;(2)由求根公式得21(23)2k k x +±-=,121x k ∴=-,22x =.另两边长b 、c ,恰好是这个方程的两个实数根, 设21b k =-,2c =,当a ,b 为腰时,则4a b ==,即214k -=,计算得出52k =, 此时三角形周长为44210++=;当b ,c 为腰时,2b c ==,此时b c a +=,构不成三角形, 故此种情况不存在.综上所述,ABC ∆周长为10. (3)方程的两个实数根之差等于3,∴2123k --=,解得:0k =或3.11.已知关于x 的一元二次方程2(12)20kx k x k +-+-=.(1)若方程有两个不相等的实数根,求k 的取值范围;(2)当k 取满足(1)中条件的最小整数时,设方程的两根为α和β,求代数式322017αββ+++的值.【解析】解:(1)根据题意得0k ≠且△(12)24(2)0k k k =--->,解得14k >-且0k ≠; (2)k 取满足(1)中条件的最小整数,1k ∴=.此时方程变为210x x --=,1αβ∴+=,1αβ=-,210αα--=,210ββ--=,21αα∴=+,21ββ=+,32121αααααα∴=+=++=+,322017αββ∴+++2112017αββ=+++++2()2019αβ=++212019=⨯+2021=.12.已知关于x 的一元二次方程2260(x x k k --=为常数).(1)求证:方程有两个不相等的实数根;(2)设1x ,2x 为方程的两个实数根,且12214x x +=,试求出方程的两个实数根和k 的值.【解析】解:(1)证明:在方程2260x x k --=中,△222(6)41()36436k k =--⨯⨯-=+,∴方程有两个不相等的实数根.(2)1x ,2x 为方程2260x x k --=的两个实数根,126x x ∴+=,12214x x +=,28x ∴=,12x =-.将8x =代入2260x x k --=中,得:264480k --=,解得:4k =±. 答:方程的两个实数根为2-和8,k 的值为4±. 13.阅读下面的例题:解方程2||20m m --=的过程如下:(1)当0m 时,原方程化为220m m --=,解得:12m =,21m =-(舍去).(2)当0m <时,原方程可化为220m m +-=,解得:12m =-,21m =(舍去).原方程的解:12m =,22m =-.请参照例题解方程:2|1|10m m ---=.【解析】解:当1m 时,原方程化为20m m -=,解得:11m =,20m =(舍去).当1m <时,原方程可化为220m m +-=,解得:12m =-,21m =(舍去).原方程的解:11m =,22m =-.14.如果关于x 的一元二次方程20(0)ax bx c a ++=≠有两个实数根,且其中一个根比另一个根大1,那么称这样的方程为“邻根方程”.例如,一元二次方程20x x +=的两个根是10x =,21x =-,则方程20x x +=是“邻根方程”.(1)通过计算,判断下列方程是否是“邻根方程”:①260x x --=;②2210x -+=.(2)已知关于x 的方程2(1)0(x m x m m ---=是常数)是“邻根方程”,求m 的值;(3)若关于x 的方程210(ax bx a ++=、b 是常数,0)a >是“邻根方程”,令28t a b =-,问:存在多少组a 、b 的值使得t 为正整数?请说明理由.【解析】解:(1)①解方程得:(3)(2)0x x -+=,3x =或2x =-, 231≠-+,260x x ∴--=不是“邻根方程”;②x =,1=+,2210x ∴-+=是“邻根方程”;(2)解方程得:()(1)0x m x -+=, x m ∴=或1x =-,方程2(1)0(x m x m m ---=是常数)是“邻根方程”,11m ∴=-+或11m =--, 0m ∴=或2-;(3)解方程得,x =,关于x 的方程210(ax bx a ++=、b 是常数,0)a >是“邻根方程”,∴1=,224b a a ∴=+, 28t a b =-,22t a a a∴=-=--+,4(2)4a>,∴有最大值,最大值为4,tt为正整数,∴=或2或3或4,t1∴当a取7个值,b对应有14个值,∴存在14组a、b的值使得t为正整数.。
初中数学一元二次方程知识点总结(含习题)一元二次方程知识点的总结知识结构梳理:1、概念1) 一元二次方程含有一个未知数。
2) 未知数的最高次数是2.3) 是方程。
4) 一元二次方程的一般形式是ax²+bx+c=0.2、解法1) 因式分解法,适用于能化为(x+m)(x+n)=0的一元二次方程。
2) 公式法,即把方程变形为ax²+bx+c=0的形式,一元二次方程的解为x=[-b±√(b²-4ac)]/(2a)。
3) 完全平方式,其中求根公式是(x±a)²=b,当时,方程有两个不相等的实数根。
4) 配方法,其中求根公式是(x±a)(x±b)=0,当时,方程有两个实数根。
5) 二次函数图像法,当时,方程有没有实数根。
3、应用1) 一元二次方程可用于解某些求值题。
2) 一元二次方程可用于解决实际问题的步骤包括:列方程、化简方程、解方程、检验答案。
知识点归类:考点一:一元二次方程的定义如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。
一元二次方程必须同时满足以下三点:①方程是整式方程。
②它只含有一个未知数。
③未知数的最高次数是2.考点二:一元二次方程的一般形式一元二次方程的一般形式为ax²+bx+c=0,其中a、b、c分别叫做二次项系数、一次项系数、常数项。
要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。
考点三:解一元二次方程的方法一元二次方程的解也叫一元二次方程的根。
解一元二次方程的方法包括因式分解法、公式法、完全平方式、配方法和二次函数图像法。
解一元二次方程有四种常用方法:直接开平方法、配方法、因式分解法和公式法。
选择哪种方法要根据具体情况而定。
直接开平方法是解形如x²=a的方程的方法,解为x=±√a。
配方法是将方程的左边加上一次项系数一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里,然后用因式分解法或直接开平方法解方程。
第二讲 一元二次方程根的判别式趣通引路】话说小精灵拜数学高手为师,苦练了十八般数学技艺.一日师傅韦达对小精灵道:“师傅给你一件随身法宝——“Δ”,出去闯荡一下吧!”“小精灵拜别师傅韦达,来到“方程堡”,守门将喝道:“来者何人?”小精灵拱手答道:“晚辈小精灵奉师傅之命前来方程经见识见识.”守门将道:“先要破我一方程方能进堡!“说时迟,那时快,只见守门将挥手将许多数字、字母和符号排成2x 2+2xy +7y 2-10x -18y +19=0,并且问道:“你能说出实数x 、y 的值吗?”小精灵取出法宝灵机一动,将上式中的y 看成已知数,把它整理成关于x 的一元二次方程2x 2+(2y -10)x +(7y 2-18y +19)=0.好哇!因为x 是实数,上面的方程必有实数根,所以Δ≥0,即(2y -10)2-4×2(7y 2-18y +19)≥0,可得(y -1)2≤0,一下子便得到了y =1,再将y =1代人原方程就可得x =2. 小精灵这里用的法宝“Δ”是什么呢?它就是一元二次方程根的判别式.一元二次方程ax 2+bx +c =0(a ≠0),当Δ>0时,有两个不相等的实数根;当Δ=0时,有两个相等的实数根;当Δ<0时,没有实数根,反过来也成立.知识延伸】例1 已知关于x 的二次方程x ²+p 1x +q 1=0与x 2+p 2x +q 2=0,求证:当p 1p 2=2(q 1+q 2)时,这两个方程中至少有一个方程有实根.证明 设这两个方程的判别式为Δ1,Δ2,则Δ1+Δ2=2212p p +-4(q 1+q 2).∵p 1p 2=2(q 1+q 2),∴Δ1+Δ2=2212p p +-2p 1p 2=(p 1-p 2)2≥0.∴Δ1≥0与Δ2≥0中至少有一个成立,即两个方程中必有一个方程有实根.点评:两个方程中至少有一个方程有实根,可转化为证明Δ1+Δ2≥0;本题还可用反证法来证明,即假设Δ1<0且Δ2<0,则Δ1+Δ2<0,但Δ1+Δ2=(p 1-p 2)2≥0,两者矛盾,从而导出原题结论成立.例2 求函数y =(4-x )+解析 设u =x ,则u >0且y =4+u . ∴(u +x )2=4(x 2+9),即3x 2-2ux +36-u 2=0. ∵x ∈R ,故以上方程有解.∴Δ=(2u )2-4×3×(36-u 2)≥0,即u ≥27. 又u >0,∴u4y x =-+ 的最小值为4+x .好题妙解】佳题新题品味例 已知实数1234,,,a a a a 满足22222124213423()2()0a a a a a a a a a +-+++= ,求证:2213=a a a ⋅ 解析 把已知等式看成关于a 4的方程。
第二讲21.2.2 公式法探索:利用配方法解方程:ax 2+bx+c=0(a≠0)解:移项,得:ax 2+bx=-c二次项系数化为1,得x 2+b a x=-c a配方,得:x 2+b a x+(2b a )2=-c a+(2b a )2 即(x+2b a)2=2244b ac a - ∵4a 2>0,4a2>0, 当b 2-4ac≥0时2244b ac a -≥0∴(x+2b a)2)2直接开平方,得:x+b a即∴x 1x 2 由上可知,一元二次方程ax 2+bx+c=0(a≠0)的根由方程的系数a 、b 、c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b 2-4ac≥0时,•将a 、b 、c 代入式子x=2b a-就得到方程的根. 总结:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b 2-4ac≥0时,•将a 、b 、c 代入式子x=2b a-±. 例1.用公式法解下列方程.(1)2x 2-x-1=0 (2)x 2+1.5=-3x练一练:(1) x 2x+12=0 (2)4x 2-3x+2=0(3)3x 2x+1=0 (4)4x 2+x+1=021.2.4 判别一元二次方程根的情况探索新知求根公式:,当b 2-4ac>0具体数,所以一元一次方程的x 1=2b a -+≠x 1=2b a--,即有两个不相等的实根.当b 2-4ac=0时,•,所以x 1=x 2=2b a-,即有两个相等的实根;当b 2-4ac<0时,根据平方根的意义,负数没有平方根,所以没有实数解. 总结(1)当b 2-4ac>0时,一元二次方程ax 2+bx+c=0(a≠0)•有两个不相等实数根即x 1x 2 (2)当b-4ac=0时,一元二次方程ax 2+bx+c=0(a≠0)有两个相等实数根即x 1=x 2=2b a-. (3)当b 2-4ac<0时,一元二次方程ax 2+bx+c=0(a≠0)没有实数根.例1.不解方程,判定方程根的情况(1)16x 2+8x=-3 (2)9x 2+6x+1=0 (3)2x 2-9x+8=0 (4)x 2-7x-18=0练一练不解方程判定下列方程根的情况:(1)x 2+10x+23=0(2)x 2-x-34=0 (3)3x 2+6x-5=0(4)4x 2-x+116=0(5)x 2x-14=0 (6)4x 2-6x=0。
初中数学一元二次方程教案(5篇)初中数学一元二次方程教案(精选5篇)作为一名优秀的教育工作者,时常会需要准备好教案,编写教案助于积累教学经验,不断提高教学质量。
下面是小编为大家整理的初中数学一元二次方程教案,如果大家喜欢可以分享给身边的朋友。
初中数学一元二次方程教案篇1学习目标:1、使学生会用列一元二次方程的方法解决有关增长率的应用题;2、进一步培养学生分析问题、解决问题的能力。
学习重点:会列一元二次方程解关于增长率问题的应用题。
学习难点:如何分析题意,找出等量关系,列方程。
学习过程:一、复习提问:列一元二次方程解应用题的一般步骤是什么二、探索新知1.情境导入问题:“坡耕地退耕还林还草”是国家为了解决西部地区水土流失生态问题、帮助广大农民脱贫致富的一项战略措施,某村村长为带领全村群众自觉投入“坡耕地退耕还林还草”行动,率先示范.2023年将自家的坡耕地全部退耕,并于当年承包了30亩耕地的还林还草及管理任务,而实际完成的亩数比承包数增加的百分率为x,并保持这一增长率不变,2023年村长完成了36.3•亩坡耕地还林还草任务,求①增长率x是多少②该村有50户人家,每户均地村长2023•年完成的亩数为准,国家按每亩耕地500斤粮食给予补助,•则国家将对该村投入补助粮食多少万斤2.合作探究、师生互动教师引导学生分析关于环保的情境导入问题,•这是一个平均增长率问题,它的基数是30亩,平均增长的百分率为x,那么第一次增长后,•即2023年实际完成的亩数是30(1+x),第二次增长后,即2023年实际完成的亩数是30(1+x)2,而这一年村长完成的亩数正好是36.3亩.教师引导学生运用方程解决问题:①30(1+x)2=36.3;(1+x)2=1.21;1+x=±1.1;x1=0.1=10%,x2=-2.1(舍去),所以增长的百分率为10%.②全村坡耕地还林还草为50×36.3=1 815(亩),•国家将补助粮食1815 ×500=907 500(斤)=90.75(万斤).三、例题学习说明:题目中求平均每月增长的百分率,直接设增长的百分率为x,好处在于计算简便且直接得出所求。
一元二次方程的解法解读一、知识要点:一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是今后学习数学的基础,应引起同学们的重视.一元二次方程的一般形式为:ax 2+bx +c =0,(a ≠0),它是只含一个未知数,并且未知数的最高次数是2的整式方程.解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程.一元二次方程有四种解法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法.二、方法、例题精讲1、直接开平方法:直接开平方法就是用直接开平方求解一元二次方程的方法.用直接开平方法解形如(x -m )2=n (n ≥0)的方程,其解为x =m ±n .例1.解方程(1)75(3x +1)2=7;(2)9x 2-24x +16=11. 分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x -4)2,右边=11>0,所以此方程也可用直接开平方法解.(1)解:(3x +1)2=7×57, ∴(3x +1)2=5,∴3x +1=±5(注意不要丢解),∴x =13-,∴原方程的解为x x . (2)解: 9x 2-24x +16=11,∴(3x -4)2=11,∴3x -4=±11∴x ,∴原方程的解为x 1=43,x 2=43-. 2、配方法:用配方法解方程ax 2+bx +c =0(a ≠0)先将常数c 移到方程右边:ax 2+bx =-c ,将二次项系数化为1:x 2+b a x =-c a, 方程两边分别加上一次项系数的一半的平方:x 2+b a x +(2b a )2=-c a +(2b a)2 方程左边成为一个完全平方式:(x +2b a)2=2244b ac a -当b 2-4ac ≥0时,x + 2b a∴x (这就是求根公式) 例2.用配方法解方程 3x 2-4x -2=0解:将常数项移到方程右边 3x 2-4x =2将二次项系数化为1:x 2-43x =23, 方程两边都加上一次项系数一半的平方:x 2-43x +(23)2= 23+(23)2 配方:(x -23)2=109, 直接开平方得:x -23=±3∴x =23±∴原方程的解为x 1,x 2=. 3、公式法:把一元二次方程化成一般形式,然后计算判别式△=b 2-4ac 的值,当b 2-4ac ≥0时,把各项系数a , b , c 的值代入求根公式x (b 2-4ac ≥0)就可得到方程的根.例3.用公式法解方程 2x 2-8x =-5解:将方程化为一般形式:2x 2-8x +5=0∴a =2, b =-8, c =5b 2-4ac =(-8)2-4×2×5=64-40=24>0∴x = 8842242±±==⨯∴原方程的解为x ,x 4、因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根.这种解一元二次方程的方法叫做因式分解法.例4.用因式分解法解下列方程:(1) (x +3)(x -6)=-8;(2) 2x 2+3x =0;(1)解:(x +3)(x -6)=-8 化简整理得x 2-3x -10=0 (方程左边为二次三项式,右边为零)(x -5)(x +2)=0 (方程左边分解因式)∴x -5=0或x +2=0 (转化成两个一元一次方程)∴x 1=5,x 2=-2是原方程的解.(2)解:2x 2+3x =0x (2x +3)=0 (用提公因式法将方程左边分解因式)∴x =0或2x +3=0 (转化成两个一元一次方程)∴x 1=0,x 2=-32是原方程的解. 注意:有些同学做这种题目时容易丢掉x =0这个解,应记住一元二次方程有两个解.小结:一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数.直接开平方法是最基本的方法.公式法和配方法是最重要的方法.公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程是否有解.配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法解一元二次方程.但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好.(三种重要的数学方法:换元法,配方法,待定系数法).例5.求方程3(x+1)2+5(x+1)(x-4)+2(x-4)2=0的二根.(选学)分析:此方程如果先做乘方,乘法,合并同类项化成一般形式后再做将会比较繁琐,仔细观察题目,我们发现如果把x+1和x-4分别看作一个整体,则方程左边可用十字相乘法分解因式(实际上是运用换元的方法)解:[3(x+1)+2(x-4)][(x+1)+(x-4)]=0即(5x-5)(2x-3)=0∴5(x-1)(2x-3)=0(x-1)(2x-3)=0∴x-1=0或2x-3=0∴x1=1,x2=32是原方程的解.。
小专题(二)一元二次方程的实际问题类型1变化率问题变化率问题常用公式:a(1±x)n=b(其中a是起始量,x是平均变化率,n是变化的次数,b是终止量).起始量经过一次变化后达到a(1±x);第二次变化后达到a(1±x)2;第三次变化后达到a(1±x)3;…依次类推.1.(日照中考)某县为大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造和更新.县政府已投资5亿元人民币,若每年投资的增长率相同,预计投资7.2亿元人民币,那么每年投资的增长率为()A.20% B.40% C.-220% D.30%2.(咸宁中考改编)随着市民环保意识的增强,烟花爆竹销售量逐年下降.咸宁市销售烟花爆竹20万箱,到烟花爆竹销售量为9.8万箱.求咸宁市到烟花爆竹年销售量的平均下降率.3.某农场去年种植了10亩地的南瓜,亩产量为2 000 kg,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,已知南瓜种植面积的增长率是亩产量的增长率的2倍,今年南瓜的总产量为60 000 kg,求南瓜亩产量的增长率.4.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.市政府共投资2亿元人民币建设了廉租房8万平方米,预计到底三年累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,求到底共建设多少万平方米廉租房.5.脐橙是赣南的大产业,也是农民致富的大产业.“赣南脐橙”已成为中央电视台上榜品牌.我市近几年,通过各种途径,大力发展脐橙果业,脐橙总产量每年也在不断增加(如图所示).(1)根据图中所提供的信息回答下列问题:底脐橙的总产量为________万吨,比底增加了________%;在所统计的这几年中,增长速度最快的是________年;(2)为满足市场发展的需要,计划到底使脐橙总产量要达到121万吨,试计算、两年脐橙的年平均增长率.类型2 几何图形问题如图,在解决甬道或者边框问题时,灵活运用“平移变换”对分离的图形的面积“整体表示”,使问题简化.6.(深圳一模)在一张矩形的床单四周绣上宽度相等的花边,剩下部分面积为1.6 m 2,已知床单的长是2 m ,宽是1.4 m ,求花边的宽度.7.为响应市委市政府提出的建设“绿色襄阳”的号召,我市某单位准备将院内一块长30 m ,宽20 m 的长方形空地建成一个矩形花园.要求在花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草,如图所示,要使种植花草的面积为532 m 2,那么小道进出口的宽度应为多少米?(注:所有小道进出口的宽度相等,且每段小道均为平行四边形)8.如图,某旅游景点要在长,宽分别为20米,12米的矩形水池的正中央建一个与矩形的边互相平行的正方形观赏亭,观赏亭的四边连接四条与矩形的边互相平行且宽度相等的道路,已知道路的宽为正方形边长的14,若道路与观赏亭的面积之和是矩形水池面积的16,求道路的宽.9.在一块长16 m ,宽12 m 的矩形荒地上,要建造一个花园,要求花园面积是荒地面积的一半,下面分别是小华与小芳的设计方案.(1)同学们都认为小华的方案是正确的,但对小芳方案是否符合条件有不同意见,你认为小芳的方案符合条件吗?若不符合,请用方程的方法说明理由;(2)你还有其他的设计方案吗?请你设计出草图,将花园部分涂上阴影,并加以说明.参考答案1.A2.设年销售量的平均下降率为x ,依题意,得20(1-x)2=9.8.解这个方程,得x 1=0.3,x 2=1.7.∵x 2=1.7不符合题意,∴x =0.3=30%.答:咸宁市到烟花爆竹年销售量的平均下降率为30%.3.设南瓜亩产量的增长率为x ,则种植面积的增长率为2x.根据题意,得10(1+2x)·2 000(1+x)=60 000.解得x 1=0.5,x 2=-2(不合题意,舍去).答:南瓜亩产量的增长率为50%.4.(1)设每年市政府投资的增长率为x ,根据题意,得2+2(1+x)+2(1+x)2=9.5,∴x 1=0.5,x 2=-3.5(舍去).答:每年市政府投资的增长率为50%.(2)到底共建廉租房面积为9.5÷28=38(万平方米).答:到底共建设38万平方米廉租房.5.(1)76 52 (2)设年平均增长率为x ,依题意,得100(1+x)2=121,解得x 1=0.1,x 2=-2.1(舍去).答:年平均增长率为10%.6.设花边的宽度为x 米,依题意,得(2-2x)(1.4-2x)=1.6.解得x 1=1.5(舍去),x 2=0.2.答:花边的宽度为0.2米.7.设小道进出口的宽度应为x 米,根据题意,得(30-2x)(20-x)=532.解得x 1=1,x 2=34.∵34>30(不合题意,舍去),∴x =1.答:小道进出口的宽度应为1米.8.设道路的宽为x 米,则正方形边长为4x.可列方程为:x(12-4x)+x(20-4x)+16x 2=16×20×12.即x 2+4x -5=0.解得x 1=1,x 2=-5(舍去).答:道路的宽为1米.9.(1)不符合.设小路宽度均为x m ,根据题意,得(16-2x)(12-2x)=12×16×12.解得x 1=2,x 2=12.但x 2=12不符合题意,应舍去.∴.(2)答案不唯一.略。
推导一元二次方程的求根公式。
解一元二次方程:02=++c bx ax 。
推导:c a
b a b x a b x a
c x a b x a c bx ax c bx ax -=-+⋅⋅+⇒-=+⇒-=+⇒=++])2()2(22[)(0222222 2222222222222444)2(4)2(4)2(]4)2[(a b a ac a b x a b a c a b x a c a b a b x c a b a b x a +-=+⇒+-=+⇒-=-+⇒-=-+⇒ 222222222244244244)2(44)2(a
ac b a b x a ac b a b x a ac b a b x a b ac a b x -±=+⇒-±=+⇒-=+⇒+-=+⇒ a
ac b b x a ac b a b x a ac b a b x 24242242222-±-=⇒-±-=⇒-±=+⇒。
结论:一元二次方程02
=++c bx ax 的求根公式:a ac b b x 242-±-=。
判别式∆与一元二次方程解的个数的关系:
判别式:ac b 42-=∆。
第一种:当040402
2>-⇒>-⇒>∆ac b ac b 时:a ac b b x 2421-+-=,a ac b b x 2422---=。
一元二次方程有两个解。
第二种:当0404022=-⇒=-⇒=∆ac b ac b 时:a
b x a b x 220-=⇒±-=。
一元二次方程有一个解。
第三种:当ac b ac b 404022-⇒<-⇒<∆不成立时:
一元二次方程没有解。
例题一:解下列一元二次方程。
①0322=--x x ;②02522=-+-x x ;③03832=++-x x ;④02532=+-x x 。
解答:①0322=--x x 。
第一步:计算判别式∆。
⇒>=+=-⨯⨯--=∆016124)3(14)2(2方程有两个解。
第二步:用求根公式解方程。
3262422421216)2(1==+=⇒±=⨯±--=x x ,12
22422-=-=-=x 。
所以:方程0322=--x x 的解:31=x ,12-=x 。
②02522=-+-x x 。
第一步:计算判别式∆。
091625)2()2(452>=-=-⨯-⨯-=∆⇒方程有两个解。
第二步:用求根公式解方程。
2
142435435)2(2951=--=-+-=⇒-±-=-⨯±-=x x ,2484352=--=---=x 。
所以:方程02522=-+-x x 的解:211=
x ,22=x 。
③03832=++-x x 。
第一步:计算判别式∆。
010036643)3(482>=+=⨯-⨯-=∆⇒方程有两个解。
第二步:用求根公式解方程。
3
16261086108)3(210081-=-=-+-=⇒-±-=-⨯±-=x x ,361861082=--=---=x 。
所以:方程03832=++-x x 的解:3
11-=x ,32=x 。
④02532=+-x x 。
第一步:计算判别式∆。
012425234)5(2>=-=⨯⨯--=∆⇒方程有两个解。
第二步:用求根公式解方程。
166615615321)5(1==+=⇒±=⨯±--=x x ,3
2646152==-=x 。
所以:方程02532=+-x x 的解:11=x ,3
22=
x 。
例题二:解下列一元二次方程。
①01432=--x x ;②0222=++-x x ;③012212=-+-x x ;④012
32=-+x x 。
解答:①01432=--x x 。
第一步:计算判别式∆。
0281216)1(34)4(2>=+=-⨯⨯--=∆⇒方程有两个解。
第二步:用求根公式解方程。
37237267243228)4(1+=⇒±=±=⨯±--=x x ,3
722-=x 。
所以:方程01432=--x x 的解:3721+=
x ,3
722-=x 。
②0222=++-x x 。
第一步:计算判别式∆。
012842)1(422>=+=⨯-⨯-=∆⇒方程有两个解。
第二步:用求根公式解方程。
31312
322)1(21221+=⇒±=-±-=-⨯±-=x x ,312-=x 。
所以:方程0222=++-x x 的解:311+=x ,312-=x 。
③0122
12=-+-x x 。
第一步:计算判别式∆。
0224)1()2
1(422>=-=-⨯-⨯-=∆⇒方程有两个解。
第二步:用求根公式解方程。
2222122)2
1(2221+=⇒±=-±-=-⨯±-=x x ,222-=x 。
所以:方程0122
12=-+-x x 的解:221+=x ,222-=x 。
④012
32=-+x x 。
第一步:计算判别式∆。
0761)1(2
3412>=+=-⨯⨯-=∆⇒方程有两个解。
第二步:用求根公式解方程。
3713712
32711+-=⇒±-=⨯±-=x x ,3712--=x 。
所以:方程012
32=-+x x 的解:3711+-=x ,3712--=x 。
例题三:解下列一元二次方程。
①0122=+-x x ;②0962=-+-x x ;③091242=+-x x ;④043432=-+-x x 。
解答:①0122=+-x x 。
第一步:计算判别式∆。
044114)2(2=-=⨯⨯--=∆⇒方程有一个解。
第二步:用求根公式解方程。
122202120)2(==±=⨯±--=
x 。
所以:方程0122=+-x x 的解:1=x 。
②0962=-+-x x 。
第一步:计算判别式∆。
⇒=-=-⨯-⨯-=∆03636)9()1(462方程有一个解。
第二步:用求根公式解方程。
32
6206)1(206=--=-±-=-⨯±-=x 。
所以:方程0962=-+-x x 的解:3=x 。
③091242=+-x x 。
第一步:计算判别式∆。
0144144944)12(2=-=⨯⨯--=∆⇒方程有一个解。
第二步:用求根公式解方程。
2
38128012420)12(==±=⨯±--=x 。
所以:方程091242=+-x x 的解:2
3=x 。
④043432=-+-x x 。
第一步:计算判别式∆。
⇒=-=-⨯-⨯-=∆04848)4()3(4)34(2方程有一个解。
第二步:用求根公式解方程。
3
326346034)3(2034=--=-±-=-⨯±-=x 。
所以:方程043432=-+-x x 的解:332=
x 。
例题四:解下列一元二次方程。
①0322=+-x x ;②02322=-+-x x ;③053212=+-x x ;④0652
32=---x x 。
解答:①0322=+-x x 。
计算判别式⇒<-=-=⨯⨯--=∆08124314)2(2方程没有解。
②02322=-+-x x 。
计算判别式⇒<-=-=-⨯-⨯-=∆07169)2()2(432方程没有解。
③0532
12=+-x x 。
计算判别式⇒<-=-=⨯⨯--=∆0110952
14)3(2方程没有解。
④0652
32=---x x 。
计算判别式⇒<-=-=-⨯-⨯--=∆0113625)6()2
3(4)5(2方程没有解。