高中物理常用的研究方法汇总
- 格式:doc
- 大小:45.50 KB
- 文档页数:4
高中物理常用的研究方法汇总一、理想模型法实际中的事物都是错综复杂的,在用物理的规律对实际中的事物进行研究时,常需要对它们进行必要的简化,忽略次要因素,以突出主要矛盾。
用这种理想化的方法将实际中的事物进行简化,便可得到一系列的物理模型。
有实体模型:质点、点电荷、轻杆、轻绳、轻弹簧、理想变压器、(3-3)液片、理想气体、(3-4)弹簧振子,单摆等;过程模型:匀速直线运动、匀变速直线运动、匀变速曲线运动、匀速圆周运动等。
采用模型方法对研究和研究起到了简化和纯化的作用。
但简化后的模型一定要表现出原型所反映出的特点、知识。
每种模型有限定的运用条件和运用的范围。
二、控制变量法就是把一个多因素影响某一物理量的问题,通过控制某几个因素不变,只让其中一个因素改变,从而转化为多个单一因素影响某一物理量的问题的研究方法。
这种方法在实验数据的表格上的反映为:某两次试验只有一个条件不相同,若两次试验结果不同,则与该条件有关,否则无关。
反过来,若要研究的问题是物理量与某一因素是否有关,则应只使该因素不同,而其他因素均应相同。
控制变量法是中学物理中最常用的方法。
滑动摩擦力的大小与哪些因素有关;探究加速度、力和质量的关系(牛顿第二定律);导体的电阻与哪些因素有关(电阻定律);电流的热效应与哪些因素有关(焦耳定律);研究安培力大小跟哪些因素有关;研究理想气体状态变化(理想气体状态方程)等均应用了这种科学方法。
3、理想实验法(又称想象立异法,思想实验法)是在实验基础上经过归纳综合、抽象、推理得出纪律的一种研究问题的方法。
但得出的纪律却又不能用实验间接验证,是科学家们为了解决科学实践中的某些难题,以原有的实践知识(如原理、定理、定律等)作为思想实验的"材料",提出解决这些难题的设想作为理想实验的方针,并在想象中给出这些实验"材料"产生"相互作用"所需求的条件,然后,依照严格的逻辑思维操作方法去"处理"这些思想实验的"材料",从而得出一系列反映客观物资纪律的新原理,新定律,使科学难题得到解决,推动科学的发展。
物理常用研究方法
在物理研究中,常用的研究方法包括以下几种:
1. 实验方法:通过设计和进行实验来观察和测量物理现象,收集数据并进行定量分析。
实验方法常用于验证理论模型、探究物理规律和发现新现象。
2. 数值模拟方法:使用计算机模拟物理系统的行为。
通过数值计算和模拟,可以研究复杂的物理现象和系统,预测实验结果,并揭示与实验难以观测的细节。
3. 理论分析方法:通过推导和计算,从物理理论出发探究物理现象和问题。
通过建立数学模型,运用物理原理和数学工具进行分析,揭示物理规律和解释实验观测。
4. 数理统计方法:通过数学和统计学的方法,对实验数据进行处理和分析,提取相关信息和规律。
数理统计方法可用于验证实验结论的可靠性,揭示潜在的物理规律。
5. 纵向研究方法:通过对物理系统在不同时间点的观测和测量,研究物理过程的变化和演化。
纵向研究方法可用于分析物理系统在时间尺度上的动态特性。
6. 横向研究方法:通过对不同物理系统或者现象的比较和对比研究,揭示它们之间的联系和共性。
横向研究方法可用于发现物理规律、分析物理现象的本质和
机制。
以上是常用的物理研究方法,每种方法都有其优势和适用范围,研究者通常会根据具体问题和可行性选择合适的方法进行研究。
物理研究常用的方法七种物理学是自然科学的重要分支,负责研究物质的本质、性质和相互关系。
为了更好地理解物理学,物理学家使用了许多不同的研究方法,来探究物质的各种属性。
以下是常用的7种物理研究方法:1.分析法:这一方法在物理学中广泛使用,它主要是对现有的数据进行收集和分析。
这种方法通常会关注某些特定的问题,例如某种物质的化学成分或其在不同温度下的行为。
分析法的结果可以帮助科学家更好地解释和理解现有的物理数据,并有助于提出新的研究假设。
2.实验法:实验法是物理学研究中最常用的方法之一、通过实验,科学家可以精确地控制和操作物质,以研究某一实验条件下的物理特性。
这种方法通常适用于物理性质的测量和验证物理理论。
3.理论法:理论法是通过对数学公式和模型进行计算和研究,以得出物理现象的描述和解释。
这种方法主要用于预测和预测物理现象,以及验证和改进已有的理论模型。
4.数值模拟法:这种方法利用计算机算法和数学技术来描述和模拟物理现象。
它通常用于模拟高精度的物理过程,例如相对论、量子场论和宇宙学等领域。
数值模拟法也可以用于优化物理系统的结构和操作。
5.实地观察法:这种方法使用天文学、地质学和天气学等领域的仪器来观察自然界中的物理过程。
这项研究有助于理解许多物理现象,例如天体运动、地球板块运动和气候变化等。
6.统计分析法:统计法常用于处理大规模数据。
这种方法允许科学家将分布和变异性等特性与特定条件相关联。
例如,统计方法可以用于研究特定条件下原子核物理学中的粒子行为。
7.调查法:这种方法是通过问卷调查、实地调查等方式来收集有关物理学现象和事件的信息。
这种方法通常用于研究公众对科学问题的态度,并有助于了解公众对科学和技术的兴趣和关注度。
以上七种方法是物理学研究中常用的方法,每种方法都有其独特的优势和限制条件。
选择正确的方法对于科学家探索物理学中的各种问题至关重要。
高三物理学习中的物理学科研究方法在高三物理学习中,学科研究方法是一项至关重要的技能。
它不仅可以帮助学生更好地理解和掌握物理知识,还能培养学生的科学思维和创新能力。
本文将重点介绍几种高效的物理学科研究方法,以帮助高三学生取得更好的学习成果。
一、理论联系实际物理学作为一门实验科学,理论联系实际是物理学研究方法的基础。
高三学生在学习物理知识的同时,要善于运用所学的理论知识分析和解决实际问题。
例如,在学习电磁感应时,可以通过实验观察线圈在磁场中的运动状况,从而深入理解电磁感应的原理。
二、概念模型建立高三物理学习中的一个重要步骤是建立概念模型。
概念模型是一种抽象的框架,可以帮助学生理清物理知识的逻辑关系。
在建立概念模型时,可以使用概念图、思维导图等工具,将相关概念、公式、实验现象等组织起来,形成一个系统化的结构。
通过概念模型的建立,学生可以更好地理解和记忆物理知识。
三、数学工具运用数学在物理学研究中具有重要地位,高三物理学习中要善于运用数学工具。
物理学中的很多概念和理论都可以用数学语言进行描述。
例如,在学习运动学时,通过运用数学工具如向量、微分等,可以更准确地描述和分析物体的运动。
因此,高三学生需要掌握一定的数学基础,并灵活运用数学工具来解决物理问题。
四、实验设计与数据处理实验是物理学研究的重要手段之一,高三学生需要掌握实验设计和数据处理的技巧。
在进行物理实验时,学生应当合理安排实验步骤,准确记录实验数据,并运用适当的数据处理方法进行分析。
通过实验,可以帮助学生巩固理论知识,加深对物理原理的理解。
五、文献综述与科学报告在高三物理学习中,了解前人的研究成果对于学生的科学研究非常重要。
通过文献综述,可以了解到该领域的研究动态、争论焦点等信息。
在撰写科学报告时,高三学生应当注重论述的逻辑性和准确性,清晰表达自己的研究结果和结论。
总之,在高三物理学习中,科学研究方法的运用对于学生成绩的提高和科学素养的培养具有重要意义。
高中物理实验常见方法有哪些-物理(1)等效法等效法是物理学研究中的重要方法,也是物理实验中常用的方法。
如在“验证动量守恒定律”的实验中,用小球的水平位移代替小球的水平速度;在画电场中等势线的分布时,用电流场模拟静电场等等。
(2)累积法累积法是把某些难以直接准确测量的微小量累积后测量,以提高测量的精确程度。
如测单摆振动的周期时,常采用测量单摆多次全振动的时间除以全振动次数的办法,以减小个人反应时间对实验结果的过大影响,减小测量误差。
(3)控制变量法在多因素的实验中,可以先控制一些量不变,依次研究某一个因素的影响。
如在“验证牛顿第二定律”的实验中,可以先保持质量一定,研究加速度和力的关系;再保持力一定,研究加速度和质量的关系;最后综合得出加速度与质量、力的关系。
(4)留迹法它是一种把转瞬即逝的现象(位置、轨迹等)记录下来的方法。
如通过纸带上打出的小点记录小车的位置;用描迹法画出平抛物体的运动轨协;用沙摆品高中物理的实验方法具体到一些著名实验1控制变量法在实验中或实际问题中,常有多个因素在变化,造成规律不易表现出来,这时可以先控制一些物理量不变,依次研究某一个因素的影响和利用。
如气体的性质,压强、体积和温度通常是同时变化的,我们可以分别控制一个状态参量不变,寻找另外两个参量的关系,最后再进行统一。
欧姆定律、牛顿第二定律等都是用这种方法研究的。
2、等效替代法某些物理量不直观或不易测量,可以用较直观、较易测量而且又有等效效果的量代替,从而简化问题。
如在验证动量守恒实验中,发生碰撞的两个小球的速度不易直接测量,可用水平位移代替水平速度研究;在描绘电场中的等势线时,用电流场来模拟电场等都用了等效思想。
3、累积法把某些难以用常规仪器直接准确测量的物理量用累积的方法,将小量变大量,不仅可以便于测量,而且还可以提高测量的准确程度,减小误差。
如测量均匀细金属丝直径时,可以采用密绕多匝的方法;测量单摆的周期时,可测30-50个全振动的时间;分析打点计时器打出的纸带时,可隔几个点找出计数点分析等。
高一物理学习的探究学习方法在高一物理学习中,如何有效地掌握知识点、深入理解概念以及培养问题解决能力是学生们面临的重要挑战。
传统的课堂教学模式难以满足学生个性化学习的需求,因此探究学习方法被广泛应用于高一物理教学。
本文旨在探讨适用于高一物理学习的探究学习方法,并提供相应的实践建议。
1. 实验探究法实验是物理学习的重要环节之一,通过实验可以直观地观察现象、验证理论以及培养学生的动手能力。
在高一物理学习中,教师可以引导学生进行小规模的实验,让他们自己设计操作步骤、记录数据并得出结论。
这样的实验探究过程能够激发学生的学习兴趣,增强他们对物理现象的深入理解。
2. 论证探究法物理学习不仅仅是简单地记忆公式和定理,更需要学生理解其背后的原理和推导过程。
在高一物理学习中,学生可以通过论证探究法来深化对物理概念的理解。
教师可以提供一些问题或情境,引导学生自行推导公式或定律,并用逻辑推理验证其正确性。
通过自主思考和讨论,学生能够形成自己的认识,从而更好地理解物理学中的原理。
3. 项目探究法项目探究是一种将课堂学习与实际问题相结合的学习方法。
在高一物理学习中,教师可以给学生提供一些实际问题,并要求他们从物理角度进行分析和解决。
例如,研究汽车碰撞的力学原理、探究太阳能的利用原理等。
通过这样的项目探究,学生能够将所学的物理知识应用到实际生活中,培养他们的问题解决能力和综合思考能力。
4. 数模探究法数学模型是物理学研究的重要工具之一,也是高一物理学习中可以应用的探究方法。
学生可以通过建立数学模型来描述物理现象,并利用数学工具分析和解决问题。
例如,通过函数方程模拟自由落体运动,用微积分解决相关问题等。
这样的数模探究不仅提高了学生对物理概念的理解,还培养了他们的数学建模能力。
总结:高一物理学习中,探究学习方法是提高学生学习效果的重要途径。
实验探究、论证探究、项目探究和数模探究都是可以应用于物理学习中的有效方法。
学生可以通过这些方法培养自主学习能力、问题解决能力和创新思维能力。
高中物理光学实验知识点研究方法高中物理光学实验知识点研究方法一、重要概念和规律(一)、几何光学基本概念和规律1、基本规律光源发光的物体.分两大类:点光源和扩展光源.点光源是一种理想模型,扩展光源可看成无数点光源的集合.光线——表示光传播方向的几何线.光束通过一定面积的一束光线.它是温过一定截面光线的集合.光速——光传播的速度。
光在真空中速度最大。
恒为C=3×108m/s。
丹麦天文学家罗默第一次利用天体间的大距离测出了光速。
法国人裴索第一次在地面上用旋转齿轮法测出了光这。
实像——光源发出的光线经光学器件后,由实际光线形成的.虚像——光源发出的光线经光学器件后,由发实际光线的延长线形成的。
本影——光直线传播时,物体后完全照射不到光的暗区.半影——光直线传播时,物体后有部分光可以照射到的半明半暗区域.2.基本规律(1)光路可逆原理光线逆着反射线或折射线方向入射,将沿着原来的入射线方向反射或折射.(2)光的独立传播规律光在传播时虽屡屡相交,但互不扰乱,保持各自的规律继续传播。
(3)光的直线传播规律先在同一种均匀介质中沿直线传播。
小孔成像、影的形成、日食、月食等都是光沿直线传播的例证。
(4)光的反射定律反射线、人射线、法线共面;反射线与人射线分布于法线两侧;反射角等于入射角。
(5)光的折射定律折射线、人射线、法织共面,折射线和入射线分居法线两侧;对确定的两种介质,入角(i)的正弦和折射角(r)的正弦之比是一个常数.介质的折射串n=sini/sinr=c/v。
全反射条件①光从光密介质射向光疏介质;②入射角大于临界角A,sinA=1/n。
3.常用光学器件及其光学特性(1)棱镜光密煤质的棱镜放在光疏煤质的环境中,入射到棱镜侧面的光经棱镜后向底面偏折。
隔着棱镜看到物体的像向项角偏移。
棱镜的色散作用复色光通过三棱镜被分解成单色光的现象。
(2)平面镜点光源发出的同心发散光束,经平面镜反射后,得到的也是同心发散光束.能在镜后形成等大的、正立的虚出,像与物对镜面对称。
高中物理研究方法总结
高中物理是一门需要实验和理论相结合的学科,因此研究方法非常重要。
以下是高中物理中常见的一些研究方法:
1. 控制变量法:通过控制其他变量不变,只改变一个变量,来观察这个变量对物理现象的影响。
例如,在研究滑动摩擦力与接触面粗糙程度的关系时,可以通过控制压力不变,只改变接触面的粗糙程度来得出结论。
2. 实验法:通过实验来探究物理现象和规律的方法。
例如,在研究自由落体运动时,可以通过实验测量不同高度下落的时间和速度,来探究自由落体的规律。
3. 理想实验法:在实验的基础上,通过推理和想象来探究物理现象和规律的方法。
例如,在研究单摆的摆动周期时,可以通过理想实验法来探究单摆的周期与什么因素有关。
4. 等效替代法:通过等效替代的方式来探究物理现象和规律的方法。
例如,在研究合力与分力的关系时,可以通过等效替代法来探究合力与分力之间的关系。
5. 归纳法:通过观察和实验,将一系列具体事实归纳总结成一般规律的方法。
例如,在研究匀变速直线运动的规律时,可以通过归纳法来总结出匀变速直线运动的规律。
6. 演绎法:根据已知的一般规律,推导出个别具体事物的结论的方法。
例如,在研究抛体运动时,可以根据已知的自由落体运动规律,推导出竖直上抛运动的规律。
以上是高中物理中常见的一些研究方法,这些方法对于理解和掌握物理知识和规律非常重要。
通过不断地练习和应用这些方法,可以逐渐提高自己的物理学科素养和能力。
高中物理学习中的科学研究方法在高中物理学习中,科学研究方法是非常重要的。
通过科学研究方法,我们可以更好地理解和应用物理知识,培养科学思维和实验技能。
本文将介绍在高中物理学习中常用的科学研究方法,包括观察法、实验法、比较法和数学建模等。
观察法观察法是物理研究中最基础,也是最常用的方法之一。
通过观察物体或现象的外部特征和行为,我们可以得到一些基本的信息和规律。
例如,观察天空中的太阳、月亮和星星的运动,可以了解天体运行和地球自转的基本规律。
观察法帮助我们积累实际经验,培养对事物的敏锐观察力。
实验法实验法是物理学习中最为重要的研究方法之一。
它通过精心设计和操控实验条件,观察和测量物理量来研究物理规律。
在高中物理实验中,我们经常进行实验来验证理论,深入理解和掌握物理现象与概念之间的关系。
通过实验,我们可以发现现象背后的规律,并通过数据分析和建模来进一步研究。
实验法培养了我们的实践能力和科学思维。
比较法比较法是通过对不同情况或对象的比较,找出差异和共同点,从而得出结论或假设的方法。
在物理学习中,我们常常通过对不同物体或条件的比较来研究物理现象。
例如,我们可以比较不同材料的导热性能,以确定不同材料的热传导规律。
比较法帮助我们发现事物之间的联系和影响因素,培养了我们的分析和推理能力。
数学建模数学建模是将物理现象和规律用数学语言和公式描述的方法。
通过建立数学模型,我们可以对物理问题进行定量分析和预测,进一步深入理解和应用物理概念。
在高中物理学习中,我们常常使用数学建模来解决复杂的物理问题,如运动学、力学和电磁学等领域。
数学建模培养了我们的模型构建和数学运算能力。
总结科学研究方法在高中物理学习中起着至关重要的作用。
观察法、实验法、比较法和数学建模等方法的综合运用,有助于我们全面地认识和理解物理世界的奥妙。
通过科学研究方法的学习,我们可以培养批判性思维、实验技能和数理观念,为今后深入研究物理和相关学科打下坚实的基础。
隔离法和整体法1.所谓隔离法,就是将物理问题的某些研究对象或某些过程、状态从系统或全过程中隔离出来进行研究的方法.隔离法的两种类型:(1)对象隔离:即为寻求与某物体有关的所求量与已知量之间的关系,将某物体从系统中隔离出来.(2)过程隔离:物体往往参与几个运动过程,为求解涉及某个过程中的物理量,就必须将这个过程从全过程中隔离出来.2.所谓整体法,是指对物理问题的整个系统或过程进行研究的方法,也包括两种情况:(1)整体研究物体体系:当所求的物理量不涉及系统中某个物体的力和运动时常用.(2)整体研究运动全过程:当所求的物理量只涉及运动的全过程时常用.等效法等效法是物理学中一个基本的思维方法,其实质是在效果相同的条件下,将复杂的情景或过程变换为简单的情景或过程.1.力的等效合力与分力具有等效性,将物体所受的多个恒力等效为一个力,就把复杂的物理模型转化为相对简单的物理模型,大大降低解题难度.2.运动的等效由于合运动和分运动具有等效性,所以平抛运动可看作是水平方向的匀速直线运动和竖直方向的自由落体运动的合运动。
“小船过河”中小船的运动可以看作是沿水流的方向的匀速直线运动和垂直于河岸方向的匀速直线运动的合运动。
在计算大小不变方向变化的阻力做功时,如空气阻力做功的时候,可以应用公式W=fS,只是式中的S是路程而不是位移,不管物体的运动方向如何变,均可等效为恒力f作用下的单向直线运动。
3.物理过程的等效若一个研究对象从同一初始状态出发,分别经过两个不同过程而最后得到的结束状态相同,这两个过程是等效的.4.模型的等效等效就是相互替代的效果相同。
利用等效法,不仅可以使非理想模型变为理想模型,使复杂问题变成简单问题,而且可以使感性认识上升到理性认识,使一般理性认识升华到更深层次。
在解题过程中,我们应用最多的、最典型的物理模型并不是很多,如碰撞模型、人船模型、子弹射木块模型、卫星模型、弹簧振子模型等等。
5.实验原理的等效在高中物理力学实验中,几乎可以说离开了等效的思想将“寸步难行”。
高中物理常用的研究方法汇总一、理想模型法实际中的事物都是错综复杂的,在用物理的规律对实际中的事物进行研究时,常需要对它们进行必要的简化,忽略次要因素,以突出主要矛盾。
用这种理想化的方法将实际中的事物进行简化,便可得到一系列的物理模型。
有实体模型:质点、点电荷、轻杆、轻绳、轻弹簧、理想变压器、(3-3)液片、理想气体、(3-4)弹簧振子,单摆等;过程模型:匀速直线运动、匀变速直线运动、匀变速曲线运动、匀速圆周运动等。
采用模型方法对学习和研究起到了简化和纯化的作用。
但简化后的模型一定要表现出原型所反映出的特点、知识。
每种模型有限定的运用条件和运用的范围。
二、控制变量法就是把一个多因素影响某一物理量的问题,通过控制某几个因素不变,只让其中一个因素改变,从而转化为多个单一因素影响某一物理量的问题的研究方法。
这种方法在实验数据的表格上的反映为:某两次试验只有一个条件不相同,若两次试验结果不同,则与该条件有关,否则无关。
反过来,若要研究的问题是物理量与某一因素是否有关,则应只使该因素不同,而其他因素均应相同。
控制变量法是中学物理中最常用的方法。
滑动摩擦力的大小与哪些因素有关;探究加速度、力和质量的关系(牛顿第二定律);导体的电阻与哪些因素有关(电阻定律);电流的热效应与哪些因素有关(焦耳定律);研究安培力大小跟哪些因素有关;研究理想气体状态变化(理想气体状态方程)等均应用了这种科学方法。
三、理想实验法(又称想象创新法,思想实验法)是在实验基础上经过概括、抽象、推理得出规律的一种研究问题的方法。
但得出的规律却又不能用实验直接验证,是科学家们为了解决科学理论中的某些难题,以原有的理论知识(如原理、定理、定律等)作为思想实验的"材料",提出解决这些难题的设想作为理想实验的目标,并在想象中给出这些实验"材料"产生"相互作用"所需要的条件,然后,按照严格的逻辑思维操作方法去"处理"这些思想实验的"材料",从而得出一系列反映客观物质规律的新原理,新定律,使科学难题得到解决,推动科学的发展。
又称推理法。
伽利略斜面实验、推导出声音不能在真空中传播、推导出牛顿第一定律等。
四、微量放大法物理实验中常遇到一些微小物理量的测量。
为提高测量精度,常需要采用合适的放大方法,选用相应的测量装置将被测量进行放大后再进行测量。
常用的放大法有累计放大法、形变放大法、光学放大法等。
1)累计放大法:在被测物理量能够简单重叠的条件下,将它展延若干倍再进行测量的方法,称为累计放大法(叠加放大法)。
如测量纸的厚度、金属丝的直径等,常用这种方法进行测量;累计放大法的优点是在不改变测量性质的情况下,将被测量扩展若干倍后再进行测量,从而增加测量结果的有效数字位数,减小测量的相对误差。
2)形变放大法:形变是力作用的效果,在力学中形变的基本表现形式为体积、长度、角度的改变。
而显示形变的方法可用力学的方法,也可用电学、光学的方法,如:体积的变化:由液柱的长度的变化显示;热膨胀:杠杆放大法显示。
3)光学放大法:常用的光学放大法有两种,一种是使被测物通过光学装置放大视角形成放大像,便于观察判别,从而提高测量精度。
例如放大镜、显微镜、望远镜等。
另一种是使用光学装置将待测微小物理量进行间接放大,通过测量放大了的物理量来获得微小物理量。
例如测量微小长度和微小角度变化的光杠杆镜尺法,就是一种常用的光学放大法。
卡文迪许通过扭秤装置测量引力常量就采用了多种放大方法。
五、模拟法模拟法和类比法很近似。
它是在实验室里先设计出于某被研究现象或过程(即原型)相似的模型,然后通过模型,间接的研究原型规律性的实验方法。
先依照原型的主要特征,创设一个相似的模型,然后通过模型来间接研究原型的一种形容方法。
根据模型和原型之间的相似关系,模拟法可分为物理模拟和数学模拟两种。
如在描绘电场中等势线实验中用直流电流场模拟静电场。
六、类比与归纳所谓类比,是根据两个(或两类)对象之间在某些方面的相同或相似而推出它们在其他方面也可能相同或相似的一种逻辑思维。
如万有引力公式和库仑力公式从形式上很相似。
七、等效替代效法等效法是常用的科学思维方法。
等效是指不同的物理现象、模型、过程等在物理意义、作用效果或物理规律方面是相同的。
它们之间可以相互替代,而保证结论不变。
等效的方法是指面对一个较为复杂的问题,提出一个简单的方案或设想,而使它们的效果完全相同,从而将问题化难为易,求得解决。
例如我们学过的等效电路、等效电阻、电压表等效为电流表、电流表等效为电压表、测电阻中的替代法、分力与合力等效、分运动与合运动等效、环形电流与小磁体的等效、通电螺线管与条形磁铁的等效等等。
八、比值定义法比值定义法,就是在定义一个物理量的时候采取比值的形式定义。
用比值法定义的物理概念在物理学中占有相当大的比例,比如如速度、加速度、密度、压强、功率、电场强度、电势、电势差、磁感应强度、电阻、电容等等。
加速度a=(Δv)/(Δt) ;电场强度E=F/q ;电容C=Q/U ;电阻R=U/I ;电流I=q/t ;电动势,ε=W/q;电势差U=W/q;磁感应强度B=F/(IL)或B=F/qv或B=Φ/S。
(一)"比值法"的特点:1、比值法适用于物质属性或特征、物体运动特征的定义。
应用比值法定义物理量,往往需要一定的条件;一是客观上需要,二是间接反映特征属性的的两个物理量可测,三是两个物理量的比值必须是一个定值。
2.两类比值法及特点一类是用比值法定义物质或物体属性特征的物理量,如:电场强度E、磁感应强度B、电容C、电阻R等。
它们的共同特征是;属性由本身所决定。
定义时,需要选择一个能反映某种性质的检验实体来研究。
比如:定义电场强度E,需要选择检验电荷q,观测其检验电荷在场中的电场力F,采用比值F/q就可以定义。
另一类是对一些描述物体运动状态特征的物理量的定义,如速度v、加速度a、角速度ω等。
这些物理量是通过简单的运动引入的,比如匀速直线运动、匀变速直线运动、匀速圆周运动。
这些物理量定义的共同特征是:相等时间内,某物理量的变化量相等,用变化量与所用的时间之比就可以表示变化快慢的特征。
(二)"比值法"的理解1.理解要注重物理量的来龙去脉。
为什么要研究这个问题从而引入比值法来定义物理量(包括问题是怎样提出来的),怎样进行研究(包括有哪些主要的物理现象、事实,运用了什么手段和方法等),通过研究得到怎样的结论(包括物理量是怎样定义的,数学表达式怎样),物理量的物理意义是什么(包括反映了怎样的本质属性,适用的条件和范围是什么)和这个物理量有什么重要的应用。
2.理解要展开类比与想象,进行逻辑推理。
所有的比值法定义的物理量有相同的特点,通过展开类比与想象,进行逻辑推理、抽象思维等活动,从而引起思维的飞跃,知识的迁移,在类比中加深理解。
如在重力场、电场、磁场的教学中,相同的是都需要选择一个检验场性质的实体,用检验实体的受力与检验实体的有关物理量的比来定义。
但也存在区别,重力场的比值中,分母是质量最简单,电场定义时,要考虑电荷的电性,而磁场定义最复杂,不仅与考虑电流元I,而且要考虑电流元的放置方位与有效长度。
3.不能将比值法的公式纯粹的数学化。
在建立物理量的时候,交代物理思想和方法,搞清概念表达的属性,从这些量度公式中理解它们的物理过程与物理符号的真实内容,切忌被数学符号形式化,忽视了物理量的丰富内容,一定要从量度公式中揭示所定义的概念与有关概念的真实依存关系和物理过程,防止死记硬背和乱用。
另一方面,在数学形式上用比例表示的式子,不一定就应用比值法。
如公式a=F/m,只是数学形式上象比值法,实际上不具备比值法的其它特点。
所以不能把比值法与数学形式简单的联系在一起。
九、微元法微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。
用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。
在使用微元法处理问题时,需将其分解为众多微小的"元过程",而且每个"元过程"所遵循的规律是相同的,这样,我们只需分析这些"元过程",然后再将"元过程"进行必要的数学方法或物理思想处理,进而使问题求解。
使用此方法会加强我们对已知规律的再思考,从而引起巩固知识、加深认识和提高能力的作用。
在高中物理中,由于数学学习上的局限,对于高等数学中可以使用积分来进行计算的一些问题,在高中很难加以解决。
例如对于求变力所做的功或者对于物体做曲线运动时某恒力所做的功的计算;又如求做曲线运动的某质点运动的路程,这些问题对于中学生来讲,成为一大难题。
但是如果应用积分的思想,化整为零,化曲为直,采用"微元法",可以很好的解决这类问题。
"微元法"通俗地说就是把研究对象分为无限多个无限小的部分,取出有代表性的极小的一部分进行分析处理,再从局部到全体综合起来加以考虑的科学思维方法,在这个方法里充分的体现了积分的思想。
十、极限法极限法是把某个物理量推向极端,即极大和极小或极左和极右,并依此做出科学的推理分析,从而给出判断或导出一般结论。
1.由平均值得瞬时值用到极限法一般由比值定义式定义出的物理量均为平均值,如,当取趋近于零时的平均速度可看做瞬时速度2.极限法在进行某些物理过程分析时,具有独特作用,恰当应用极限法能提高解题效率,使问题化难为易,化繁为简,思路灵活,判断准确。
因此要求解题者,不仅具有严谨的逻辑推理能力,而且具有丰富的想象能力,从而得到事半功倍的效果。