第十六章 植物转基因技术
- 格式:ppt
- 大小:8.45 MB
- 文档页数:94
生物学中的植物遗传转化与基因编辑技术植物遗传转化与基因编辑技术在生物学中的应用植物遗传转化与基因编辑技术是生物学领域中的重要研究方向,它们可以用于改良植物品种、提高农作物产量和抵抗力、开发新型植物药物等。
一、植物遗传转化技术的原理和方法植物遗传转化是指将外源基因或DNA片段导入植物细胞,并使其稳定地遗传给后代。
常见的植物遗传转化方法包括农杆菌介导的遗传转化、基因枪法和凯南法等。
1. 农杆菌介导的遗传转化农杆菌介导的遗传转化是最常用的植物遗传转化方法之一。
该方法利用土壤中广泛存在的植物病原性农杆菌将外源基因导入目标植物细胞。
首先,将外源基因插入农杆菌质粒的T-DNA区域,然后将农杆菌通过注射或浸泡等方式导入植物细胞。
在遗传转化后,利用选择标记基因或报告基因进行筛选和检测。
2. 基因枪法基因枪法是将DNA载体以高速射击的方式直接导入植物细胞。
将外源基因负载在金粒等微粒表面,然后使用高压氦气或火药等加速器将其射入植物细胞。
在转化后,通过培养基中的选择性筛选剂来筛选转化的细胞。
3. 凯南法凯南法是一种基于物理和化学手段的遗传转化方法。
通过利用聚乙烯醇(PEG)或电击等方法,使DNA能够与植物细胞质融合,然后通过培养和筛选等步骤来获得转化的植物细胞。
二、基因编辑技术在植物遗传改良中的应用基因编辑技术是指通过精确地修改植物基因组中的特定位置,实现遗传改良的方法。
常见的基因编辑技术包括CRISPR-Cas9系统、TALENs和ZFNs等。
1. CRISPR-Cas9系统CRISPR-Cas9系统是一种高效、快速和精确的基因编辑技术。
它利用CRISPR RNA(crRNA)和转录单元RNA(tracrRNA)组成的复合物与Cas9蛋白结合,以形成靶向特定基因序列的复合物。
在植物中,CRISPR-Cas9系统被广泛应用于基因敲除、基因敲入和基因修饰等方面。
通过将CRISPR-Cas9系统导入植物细胞,可以实现对植物基因组的精确编辑。
植物转基因原理与技术植物转基因原理与技术转基因是指通过基因工程技术将外源基因导入到受体细胞中的过程。
微生物和动物细胞转基因开展较早,技术也比较成熟,相对动物和微生物转基因来说,植物转基因开展较晚。
自1984年获得第一株转基因烟草以来,近二十年的时间里在数百种植物中获得成功。
下面就植物转基因的原理和常见技术做一简单介绍。
原理根据植物细胞能再生成植株的全能性,利用生物媒介或其他物理化学的方法和技术将外源基因导入受体细胞并且整合到基因组中,通过组织培养获得完整植株。
在培养过程中为了筛选阳性转基因植物往往采用植物敏感的抗生素进行筛选,最后经过分子生物学和生理方面的检测来鉴定抗性生根的植株是否是真正的转基因植物。
以技术为媒介,一个植物转基因系统必然涉及到外源基因和受体细胞。
外源基因可以是克隆到质粒等载体中的或是未经克隆的裸露基因。
受体细胞根据转基因技术和植物的类型的不同,可以选择外植体,愈伤组织,原生质体等。
一个好的转基因受体细胞应该是具有高效稳定的再生能力,并且能接受外源基因的整合,并对选择抗生素敏感的无性繁殖系。
植物转基因流程图如下所示。
外植体)愈伤组织瞬时表达外源基因植物受体细胞原生质体生殖细胞稳定表达获得抗性生根转基因苗转基因植物的检测和鉴定(PCR, Southern blot ,Northern blot,生理指标鉴定等)技术就植物转基因技术而言可以根据转化系统的原理分为三大系统:载体转化技术,直接转化技术和种质转化技术。
下面分别叙述。
一载体转化技术载体转化技术是指通过农杆菌的Ti 或Ri质粒,植物病毒的DNA或RNA等生物载体介导基因进入并整合到植物基因组上的方法。
其中土壤农杆菌转化系统是目前研究最为清楚而且转化最成功的方法。
病毒载体转化系统的研究也取得一些成就。
土壤农杆菌是一类浸染受伤植物并且形成冠瘿瘤的革兰氏阴性菌。
它的致瘤能力来源于存在于细胞内的Ti(tumour-induced)质粒。
植物基因转变技术的研究与应用第一章:引言植物基因转变技术是指利用生物工程的手段,对植物基因进行改造和转变的科学方法。
它能够通过选择性地引入外源基因或改造内源基因,使植物获得新的性状或改善现有性状,从而应对环境压力、提高产量和质量等。
本文旨在对植物基因转变技术的研究与应用进行深入探讨。
第二章:植物基因转变技术的研究方法2.1 基因传递方式植物基因转变技术常用的传递方式包括农杆菌介导的转化、基因枪法和电击法等。
农杆菌介导的转化是较常用的方法,通过利用农杆菌及其质粒将外源基因导入到植物细胞中。
基因枪法是将外源基因包裹在微小金属颗粒上,通过高速撞击的方式将基因引入到植物细胞中。
电击法则是利用电场脉冲使植物细胞膜通透性增加,以便外源基因能够进入细胞。
2.2 基因的选择和构建基因的选择是植物基因转变技术中的重要步骤。
常用的外源基因包括抗病基因、抗虫基因、抗逆基因和营养改良基因等。
构建外源基因则需要将目标基因与适当的调控序列组合,并经过人工合成或进行PCR扩增,最终构建出能够在转基因植物中进行表达的基因。
第三章:植物基因转变技术的应用3.1 抗病基因的导入通过转基因技术将抗病基因导入到植物中,能够提高植物的抗病能力。
例如,在水稻中导入水稻白叶枯病的抗性基因Xa21,能够显著提高水稻对白叶枯病的抗性,从而实现重要农作物的病害防控。
3.2 抗虫基因的导入抗虫基因的导入能够有效降低植物受虫害的损失,并减少对化学农药的依赖。
例如,通过导入杀虫蛋白基因Bt基因到作物中,可以使作物在遭受害虫攻击时产生抗虫蛋白,从而实现对害虫的有效防控。
3.3 抗逆基因的导入逆境胁迫对植物的生长和产量产生严重影响。
通过导入抗逆基因,可以增强植物的抵抗逆境胁迫的能力。
例如,在水稻中导入轮播麦作为转基因水稻的耐旱基因,能够显著提高转基因水稻的耐旱能力,并增加其产量。
3.4 营养改良基因的导入通过导入营养改良基因,可以增加植物对营养元素的吸收和利用效率,从而提高作物的产量和品质。
第十六章转基因技术与作物育种转基因育种:就是根据育种目标,从供体生物中分离目的基因,经DNA 重组与遗传转化或直接运载进入受体作物,经过筛选获得稳定表达的遗传工程体,并经过田间试验与大田选择育成转基因新品种或种质资源。
与常规育种技术相比,转基因育种在技术上较为复杂,要求也很高,但是具有常规育种所不具备的优势:(1)转基因育种技术体系的建立使可利用的基因资源大大拓宽。
(没有物种局限性)(2)转基因育种技术为培育高产、优质、高抗,适应各种不良环境条件的优良品种提供了崭新的育种途径。
(3)利用转基因育种技术可以对植物的目标性状进行定向变异和定向选择:很强的目的性(4)利用转基因技术可以大大提高选择效率,加快育种进程。
(5)通过转基因的方法,还可将植物作为生物反应器生产药物等生物制品。
第一节作物的转基因技术一、转基因技术的发展现状(一)国际转基因植物研究与现状1.自从20世纪70年代重组DNA技术创建到1983年第一株转基因烟草获得以来,至今已有35个科120种植物转基因获得成功。
(植物)2.先后有30多个国家批准了3000多例田间试验,涉及的植物种类有40多种,2000年已有13个国家种植了商品化的转基因植物。
(国家数量)3.1996年全世界转基因作物种植面积约为280万hm2,1997年增加到1100万hm2,1998年为2780万hm2,1999年增加到3 990万hm2,2000年达到4420万hm2。
(面积增长)4.1996-2000年,转基因作物大部分(85%)种植在发达国家,其中美国种植的面积最大,2000年为3 030万hm2,占全球的68%。
其次为加拿大,2001年为320万hm2。
随着转基因技术的不断完善和普及,发展中国家转基因作物的种植面积也在逐年扩大,所占份额不断增加,从1997年占全球转基因面积的14%,到2000年占到了24%。
其中以阿根廷和中国较多。
5.目前所种植的转基因作物主要为大豆、玉米、棉花和油菜等,其中以转基因大豆的种植面积最大。
植物转基因技术植物转基因技术,也被称为植物基因工程技术,是一种利用生物技术手段改造植物基因组的方法。
通过将外源基因导入植物细胞中,植物转基因技术使得植物获得了新的性状或功能,从而在农业、环境保护和医药等领域带来了革命性的变化。
一、植物转基因技术的原理和方法植物转基因技术主要依靠DNA分子的重组和重构完成。
其中,常用的方法包括基因枪法、农杆菌介导转化法和双链RNA法。
基因枪法是将外源基因通过微粒轰击的方式送入植物细胞中,使得外源基因插入目标植物基因组中。
农杆菌介导转化法则通过利用农杆菌将外源基因转移到植物细胞中。
双链RNA法则是通过RNA干扰的方式,引导RNA分子与目标基因互作,从而达到基因沉默的目的。
二、植物转基因技术的应用植物转基因技术在农业领域中有着广泛的应用。
常见的转基因植物作物包括转基因水稻、转基因玉米、转基因大豆等。
这些作物通过引入耐草酮类和杀虫剂抗性基因,提高了作物的抗蚜、抗虫能力,从而减少了农药的使用量。
此外,转基因作物还能够抵抗病毒、细菌和真菌等各类病害,提高了作物的产量和质量。
植物转基因技术在环境保护领域也有重要的应用。
通过转基因技术改造植物的性状,例如增加植物的污染物吸收能力和金属离子富集能力,可以用于修复受到污染的土壤和水源。
此外,转基因技术还可以改善植物的耐旱、抗盐性能,以应对气候变化和土地退化等问题。
植物转基因技术还在医药领域有着巨大的潜力。
通过转基因技术,植物可以成为生产蛋白质药物和疫苗的“生物工厂”。
例如,转基因植物可以表达人类胰岛素、乳制品过敏症患者所需的乳头素等蛋白质,用于治疗糖尿病、乳制品过敏等疾病。
三、植物转基因技术的争议和风险尽管植物转基因技术在农业、环境保护和医药领域带来了巨大的潜力,但它也面临着一些争议和风险。
其中,最主要的争议之一是关于转基因食品的安全性问题。
有人担心转基因食品对人体健康产生潜在影响,而另一些人则认为已有的科学研究没有证明转基因食品有害。
植物转基因技术及其应用摘要:综合介绍了植物转基因的主要技术与其在各个领域的主要应用;对转基因植物的安全性进行了一些讨论,并对植物转基因技术的发展前景进行了展望。
自1983 年第一株转基因植物问世以来,转基因植物的研究和应用在世界各国蓬勃开展。
所谓转基因植物就是植物细胞或组织经遗传转化后,进行组织培养长出愈伤组织,再经诱导所分化出来的完整植株。
转基因可以使优良的生物基因在不同种生物之间进行交流, 从而弥补单一生物种类中的遗传资源不足,丰富种质库。
转基因植物的研究在目前的生物技术领域中最为活跃,具有十分广泛的应用前景。
1. 植物转基因技术1.1 土壤农杆菌介导转化技术革兰氏阴性菌根瘤农杆菌是一种植物病原菌,通常只能感染双子叶植物的受伤部位。
农杆菌携带一种称为Ti 的质粒,该质粒含有一段NDA ,称T-DNA(transfer-DNA) ,它能转移并整合到植物组织中,并导致冠瘿瘤的形成。
不含有Ti 质粒的土壤农杆菌不能诱导冠瘿瘤产生。
利用Ti 质粒对植物进行遗传转化的最基本方法是将目的DNA 片段插入T-DNA 区,然后通过土壤农杆菌和Ti 质粒将其送入受体植物并整合到植物细胞的基因组内,使之得到遗传转化。
2 土壤农杆菌介导的基因转移是目前最常用的获得转基因植物的方法。
由于近几年来在载体系统和转化方法上的不断完善,土壤农杆菌介导的基因转移不仅局限于其天然寄主双子叶植物范围内,在转化水稻、玉米和小麦等单子叶植物上也取得了重大的突破。
例如,Ishida 等1996 年在玉米上获得了 5 %~30 %的转化率,Hiei 等1994年在水稻上获得了29 % 的转化率。
就目前的情况看,土壤农杆菌介导的基因转化关键在于找到合适的组织培养和再生技术。
1.2基因枪技术由于土壤农杆菌转化技术在单子叶植物上的局限性,目前,多数研究者倾向于使用基因枪技术对单子叶植物进行转化。
基因枪技术1987 年由Sanford 等人发明,是目前最有前途的植物DNA 转移系统之一。