八年级数学上册《三角形内角和》教案
- 格式:doc
- 大小:118.00 KB
- 文档页数:4
三角形的内角和优秀教学设计_三角形的内角和(优秀8篇)《三角形内角和》数学教案篇一尊敬的各位评委老师:大家好!今天我很高兴也很荣幸能有这个机会与大家共同交流,在深入钻研教材,充分了解学生的基础上,我准备从以下几个方面进行说课:“三角形的内角和”是三角形的一个重要性质,它有助于学生理解三角形内角之间的关系,是进一步学习几何的基础。
1、知识与技能:明确三角形的内角的概念,使学生自主探究发现三角形内角和等于180°,并运用这一规律解决问题。
2、过程和方法:通过学生猜、量、拼、折、观察等活动,培养学生发现问题、提出问题、分析问题和解决问题的能力。
3、情感与态度:使学生感受数学图形之美及转化思想,体验数学就在我们身边。
教学重点:动手操作、自主探究发现三角形的内角和是180°,并能进行简单的运用。
教学难点:采用多种途径验证三角形的内角和是180°。
通过前面的学习,学生已经掌握了三角形的一些基础知识,会量角,部分学生已经知道三角形内角和是180°,但不知道怎样得出这个结论。
本节课采用自主探索、合作交流的教学方法,学生自主参与知识的构建。
领悟转化思想在解决问题中的应用。
1、教师准备:多媒体课件、三角形教具。
2、学生准备:锐、直、钝角三角形各两个,量角器、剪刀。
(一)、创设情境,激趣导入导入:“同学们,有三位老朋友已经恭候我们多时了。
“(出示三角形动画课件),让学生依次说出各是什么三角形。
课件分别闪烁三角形三个内角,并介绍:“这三个角叫做三角形的内角,把三个角的度数加起来,就是三角形的内角和。
请学生画一个三角形,要求:有两个直角。
为什么不能画,问题在哪呢?这节课我们就一起来探究三角形的内角和。
板书课题。
(二)、自主探究、合作交流1、探索特殊三角形内角和拿出自己的一副三角板,同桌之间互相说一说各个角的度数。
三角形内角和是多少度呢?指名汇报。
90°+30°+60°=180°90°+45°+45°=180°从刚才两个三角形内角和的计算中,你发现了什么?2、探索一般三角形的内角和一般三角形的内角和是多少度?猜一猜。
第七章平行线的证明7.5 三角形内角和定理第 2 课时一、教学目标1.掌握三角形内角和定理的两个推理,并能运用这些定理解决简单的问题.2.经历探索与证明的过程,进一步发展推理能力.3.在一题多解、一题多变中,积累解决几何问题的经验,提升解决问题的能力.二、教学重点及难点重点:了解并掌握三角形的外角的定义.难点:掌握三角形内角和定理的两个推论,利用这两个推论进行简单的证明和计算.三、教学用具多媒体课件,三角板、直尺。
四、相关资《三角形外角》动画,《三角形其他外角》动画.五、教学过程【新知导入】△ABC内角的一条边与另一条边的反向延长线组成的角,称为△ABC的外角.请试着画出△ABC的其他外角.设计意图:外角概念探究意义不大,所以直接明晰这一概念,通过在图中标注其他外B ACDE 角,深化学生对外角概念的理解,同时,在图中标注其他外角的过程也为发现有关外角的结论做了铺垫.【合作探究】图中,∠ACD 与其他角有什么关系?请证明你的结论.通过学生讨论,发现:定理 三角形的一个外角等于和它不相邻的两个内角的和.定理 三角形的一个外角大于任何一个和它不相邻的内角.已知:△ABC .求证:∠ACD=∠A +∠B ,∠ACD >∠A ,∠ACD >∠B .证明:∵ ∠A +∠B +∠ACB =180°(三角形内角和定理),∴∠A +∠B =180°-∠ACB (等式的性质),∵ ∠ACD +∠ACB =180°(平角的定义)∴∠ACD =180°-∠ACB (等式的性质)∴∠ACD =∠A +∠B (等量代换)∴∠ACD >∠A ,∠ACD >∠B .在这里,我们通过三角形的内角和定理直接推导出两个新定理.像这样,由一个基本事实或定理直接推出的定理,叫做这个基本事实或定理的推论.推论可以当做定理使用.设计意图:希望发现有关外角的两个定理.可以对学生进行适当的引导,关系既可以是不等关系,也可以是等量关系.【典例精析】例1 已知,如图,在△ABC 中,∠B =∠C ,AD 平分外角∠EAC .求证:AD ∥BC分析:要证明AD∥BC,只需证明“同位角相等”或“内错角相等”或“同旁内角互补”.证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∠B=∠C(已知)∴∠B=∠EAC(等式的性质)∵AD平分∠EAC(已知)∴∠DAE=∠EAC(角平分线的定义)∴∠DAE=∠B(等量代换)∴A D∥BC(同位角相等,两直线平行)想一想,还有没有其他的证明方法呢?这个题还可以用“内错角相等,两直线平行”来证.证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∠B=∠C(已知)∴∠C=∠EAC(等式的性质)∵AD平分∠EAC(已知)∴∠DAC=∠EAC(角平分线的定义)∴∠DAC=∠C(等量代换)∴AD∥BC(内错角相等,两直线平行)还可以用“同旁内角互补,两直线平行”来证.证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∠B=∠C(已知)∴∠C=∠EAC(等式的性质)∵AD平分∠EAC(已知)∴∠DAC=∠EAC∴∠DAC=∠C(等量代换)∵∠B+∠BAC+∠C=180°∴∠B+∠BAC+∠DAC=180°即:∠B+∠DAB=180°∴AD∥BC(同旁内角互补,两直线平行)设计意图:例题的图形较复杂,可以给出分析过程,鼓励学生先自行解决,同时对有困难的学生给予必要的指导.“想一想”关注解决问题方法的多样化,通过多种解法,开拓学生思维.例2如图,P是△ABC内的一点,求证:∠BPC>∠A.解析:由题意无法直接得出∠BPC>∠A,延长BP交AC于D,就能得到∠BPC>∠PDC,∠PDC>∠A.即可得证.证明:延长BP,交AC于D,∵∠BPC是△PDC的外角(外角定义),∴∠BPC>∠PDC(三角形的一个外角大于任何一个和它不相邻的内角).∵∠PDC是△ABD的外角(外角定义),∴∠PDC>∠A(三角形的一个外角大于任何一个和它不相邻的内角).∴∠BPC>∠A.方法总结:利用推论2证明角的大小时,两个角应是同一个三角形的内角和外角.若不是,就需借助中间量转化求证.设计意图:让学生复习“三角形的一个外角大于任何一个和它不相邻的内角”,同时体会某些不等关系的递推和论证过程.鼓励学生寻求多种解法,如还可以连接AP,并延长AP 交BC于点D ,这时∠BPC和∠A分别被分成了两个小角,用“三角形的一个外角大于任何一个和它不相邻的内角”可以证明.【课堂练习】1.判断下列命题的对错.(1)三角形的外角和是指三角形的所有外角的和. ()×(2)三角形的外角和等于它的内角和的2倍. ()√(3)三角形的一个外角等于两个内角的和. ()×(4)三角形的一个外角等于与它不相邻的两个内角的和.( )√(5)三角形的一个外角大于任何一个内角. ( )×(6)三角形的一个内角小于任何一个与它不相邻的外角.( )√2.若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( )C A.直角三角形 B.锐角三角形 C.钝角三角形 D.无法确定3.如图所示,若∠A=32°,∠B=45°,∠C=38°,则∠DFE 等于( )B A.120° B.115° C.110° D.105°4.如图,AB//CD ,∠A =37°, ∠C =63°,那么∠F 等于( )A.26° B.63° C.37° D.60°5.如图,如果∠1=100°,∠2=145°,那么∠3等于( )A .110°B .160°C .137°D .115°解析:∠1=100°∠2=145°∠BAC =80°∠ABC =35°∠3=∠BAC +∠ABC =115°方法总结:三角形的外角等于与它不相邻的两个内角的和,而不是等于任意两个内角的和.6.如图,求证:(1)∠BDC >∠A .(2)∠BDC =∠B +∠C +∠A .FEDCB A FA B ECD证法一:(1)连接AD,并延长AD,如图,则∠1是△ABD的一个外角,∠2是△ACD的一个外角.∴∠1>∠3.∠2>∠4(三角形的一个外角大于任何一个和它不相邻的内角)∴∠1+∠2>∠3+∠4(不等式的性质)即:∠BDC>∠BAC.(2)连结AD,并延长AD,如图.则∠1是△ABD的一个外角,∠2是△ACD的一个外角.∴∠1=∠3+∠B∠2=∠4+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∴∠1+∠2=∠3+∠4+∠B+∠C(等式的性质)即:∠BDC=∠B+∠C+∠BAC证法二:(1)延长BD交AC于E(或延长CD交AB于E),如图.则∠BDC是△CDE的一个外角.∴∠BDC>∠DEC.(三角形的一个外角大于任何一个和它不相邻的内角)∵∠DEC是△ABE的一个外角(已作)∴∠DEC>∠A(三角形的一个外角大于任何一个和它不相邻的内角)∴∠BDC>∠A(不等式的性质)(2)延长BD交AC于E,则∠BDC是△DCE的一个外角.∴∠BDC=∠C+∠DEC(三角形的一个外角等于和它不相邻的两个内角的和)∵∠DEC是△ABE的一个外角∴∠DEC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和)∴∠BDC=∠B+∠C+∠BAC(等量代换)设计意图:巩固三角形外角定理.六、课堂小结今天这节课你学到了什么知识?1.外角2.三角形的外角等于与它不相邻的两个内角的和3.三角形的一个外角大于任何一个和它不相邻的内角设计意图:通过对三角形外角及性质的学习,使学生的认识有进一步的升华,再一次体会证明格式的严谨,体会到数学的严密性.七、板书设计7.5 三角形内角和定理(2)1.外角2.三角形的外角等于与它不相邻的两个内角的和3.三角形的一个外角大于任何一个和它不相邻的内角。
三角形内角和數學教案設計
标题:三角形内角和的数学教案设计
一、教学目标:
1. 知识与技能:理解并掌握三角形内角和定理,能运用此定理解决相关问题。
2. 过程与方法:通过观察、操作、推理等活动,培养学生的空间观念和逻辑思维能力。
3. 情感态度与价值观:体验数学学习的乐趣,养成严谨的学习态度。
二、教学重点难点:
1. 重点:理解和掌握三角形内角和定理。
2. 难点:运用三角形内角和定理解决实际问题。
三、教学过程:
(一) 引入新课
教师展示几个不同形状的三角形,引导学生观察每个三角形内角的特点,并提出问题:“这些三角形的内角有什么共同之处?”
(二) 新知探究
1. 教师引导学生用折纸的方式制作一个任意三角形,然后剪下三个内角,拼接在一起。
让学生直观地看到三个内角可以拼成一个平角,从而得出“三角形内角和等于180度”的结论。
2. 教师给出三角形内角和定理的定义,即“任何三角形的三个内角之和都等于180度”。
(三) 巩固练习
设计一些题目让学生进行练习,如计算给定三角形的未知角度,或者判断是否符合三角形内角和定理等。
(四) 小结与拓展
让学生总结本节课所学的内容,教师补充强调三角形内角和定理的重要性,并引入多边形内角和的概念,激发学生对更深入的数学知识的好奇心。
四、教学反思:
在教学过程中,教师要关注每一位学生的学习状态,及时调整教学策略,确保每位学生都能理解和掌握三角形内角和定理。
同时,教师应鼓励学生主动思考,提高他们的解决问题的能力。
教学设计探究新知如何验证三角形的内角和等于180°?提示:阅读教材11页(度量或剪拼)以小组为单位进行交流,教师巡视学生的操作活动过程,请小组代表展示。
小组讨论,用剪纸拼图的方法。
验证三角形内角和,小组代表呈现结果.预设可能出现的拼图结果方案一:将两个角,拼在第三个角的旁边,构成平角180°;方案二:将∠A和∠B剪下拼到点C处;方案三:将∠C剪下拼到点A处......小组讨论,小组代表口述说理过程.观察拼接图形,思考:(1)拼接法改变的是什么?(2)移动角的目的是什么?(3)和180°相关的结论有哪些?(4)你能得到什么启示?任意一个三角形的内角和都等于180°,与三角形的形状、大小无关.已知:在ΔABC中,∠A、∠B、∠C是它的三个内角,求证:∠A+∠B+∠C=180°.按小组对三角形内角和性质“说理”(口述),教师板书,师生共同完成证明过程归纳知识点:三角形的内角和定理:三角形三个内角的和等于180°符号语言:在三角形ABC中,∠A+∠B+∠C=180°(三角形的内角和等于180°)教师介绍三角形内角和的证明史。
通过拼接图形,自主探究三角形的内角和是180度,体验解决问题策略的多样化并启发学生添加辅助线得到平行,进而利用平行线的性质证实三角形的内角和性质。
学生可凭借操作时的感性经验,找到证明方法.以方案一为例,学生口述说理过程,教师板书。
有了前面的铺垫,降低了说理的难度.书写的过程加深了对三角形内角和性质的记忆。
拉近学生与古代数学家之间的距离。
尝试运用1.在△ABC中,∠A=35°,∠ B=43 °,则∠C = ()2.在一个三角形中,有两个内角分别是26°,64°,则此三角形一定是()三角形.3.下列各组角能成为三角形的三个内角的是()(A)100°,50°,20° (B)10°,10°,60°(C)10°,10°,60°(D)2.5°,2.5°,175°4.下列说法不正确的是()(A)三角形三个内角中最多有一个钝角;(B)三角形三个内角中至少有2个锐角:(C)三角形三个内角中最多有一个直角;(D)钝角三角形的内角和大于直角三角形的内角和。
《三角形内角和》數學教案設計标题:《三角形内角和》數學教案設計一、教学目标:1. 学生能理解和掌握三角形的内角和定理。
2. 学生能够通过实验操作,观察并发现三角形内角和等于180度的规律。
3. 培养学生的空间想象能力、逻辑推理能力和动手操作能力。
二、教学重点和难点:教学重点:理解并掌握三角形内角和定理。
教学难点:通过实验操作,发现并理解三角形内角和等于180度的规律。
三、教学过程:1. 引入新课:教师可以通过提问:“同学们,你们知道三角形有几条边,几个角吗?”引导学生复习三角形的基本概念。
然后提出问题:“那么,一个三角形的三个内角加起来是多少度呢?”,引发学生思考,引入新课。
2. 新课讲解:教师可以利用教具或PPT展示,先让学生自己尝试测量不同类型的三角形的内角,并记录下来。
然后,教师引导学生观察数据,发现三角形内角和总是等于180度的规律。
最后,教师给出三角形内角和定理的定义和证明方法。
3. 实验操作:教师可以让学生分组进行实验,每组准备一些不同类型的三角形纸片,用量角器测量每个三角形的内角,验证三角形内角和是否等于180度。
4. 巩固练习:教师提供一些题目,让学生运用所学知识解题,以巩固对三角形内角和定理的理解和掌握。
5. 课堂小结:教师带领学生回顾本节课的内容,总结三角形内角和定理,强调其在实际生活中的应用。
四、作业布置:安排一些与三角形内角和相关的习题,要求学生独立完成,以检验他们对本节课内容的理解程度。
五、教学反思:在课程结束后,教师需要反思教学效果,看看是否达到了预期的教学目标,对于教学过程中出现的问题,应该如何改进等。
以上就是关于《三角形内角和》的数学教案设计,希望对您有所帮助。
《三角形的内角和》数学教案标题:《三角形的内角和》数学教案一、教学目标1. 知识与技能:(1) 学生能够理解并掌握三角形内角和为180度的概念。
(2) 学生能通过实际操作,验证三角形内角和为180度的性质。
2. 过程与方法:(1) 通过观察、操作、推理等活动,提高学生的空间观念和逻辑思维能力。
(2) 通过合作交流,培养学生良好的学习习惯和团队协作精神。
3. 情感态度与价值观:(1) 培养学生对数学的兴趣,体验成功的喜悦。
(2) 让学生意识到数学与生活密切相关,提高应用数学知识解决实际问题的能力。
二、教学重难点1. 教学重点:理解和掌握三角形内角和为180度的性质。
2. 教学难点:如何引导学生从实际操作中抽象出三角形内角和为180度的规律。
三、教学过程(一) 导入新课教师可以通过展示生活中常见的三角形图形(如三角尺、金字塔等),引出今天要学习的内容——三角形的内角和。
(二) 新知探索1. 定义讲解教师首先介绍什么是三角形的内角,并在黑板上画出一个三角形,标出三个内角,让学生明确三角形内角的概念。
2. 探索实践然后,教师分发预先准备好的各种形状和大小的三角形纸片,让学生动手测量并计算每个三角形的内角和。
在这个过程中,教师可以适时地进行指导和帮助。
3. 归纳总结当所有小组完成测量后,教师组织全班进行交流分享。
通过对各组数据的分析,引导学生发现无论三角形的形状和大小如何变化,其内角和总是等于180度。
(三) 巩固练习设计一些针对性的练习题,让学生运用所学知识解决问题,进一步巩固三角形内角和为180度的知识点。
四、课堂小结教师引导学生回顾本节课的学习内容,强调三角形内角和为180度这一重要性质,并鼓励学生在日常生活中寻找应用这个性质的例子。
五、作业布置布置一些关于三角形内角和的习题,让学生回家独立完成,以检验他们对本节课知识的理解和掌握程度。
六、教学反思在教学结束后,教师应反思本节课的教学效果,评估学生的学习情况,思考如何改进教学方法,提高教学效率。
11.2与三角形有关的角三角形的内角第1课时三角形的内角和一、教学目标1.探索并掌握三角形内角和定理.2.学会运用三角形内角和定理.二、教学重难点1.三角形内角和定理.2.三角形内角和定理的推导过程.三、教学设计◆活动1新课导入1.问题:三角形的内角和是多少度?2.在直角△ABC中,∠C=90°,则∠A与∠B的关系是____∠A+∠B=90°__.3.三角形的三个内角之比为1∶3∶5,那么这个三角形的最大内角为__100°__.本节课我们一起学习有关三角形内角和的有关知识.◆活动2探究新知1.现在有一副三角板.提出问题:(1)每个三角板的每个角各是多少度?(2)每个三角板三个内角的和各是多少度?(3)猜一猜,任意一个三角形的三个内角和都相同吗?等于多少度?学生完成并交流展示.2.教材P11探究.提出问题:(1)在图(1)中,直线l与△ABC的边BC有什么关系?(2)在图(2)中,直线l与△ABC的边AB有什么关系?(3)利用图(1)或图(2)能证明三角形的内角和定理吗?这样证明的依据是什么?(4)你还能想出其他方法证明三角形的内角和定理吗?学生完成并交流展示.◆活动3知识归纳三角形的内角和定理:__三角形三个内角的和等于180°__.◆活动4例题与练习例1教材P12例1.例2教材P12例2.例3若△ABC的一个内角∠A是另一个内角∠B的23,也是第三个内角∠C的45,求△ABC三个内角的度数.解:依题意,得∠A=23∠B,∠A=45∠C,∴∠B=32∠A,∠C=54∠A.∵∠A+∠B+∠C=180°,∴∠A+32∠A+54∠A=180°,∴∠A=48°,∠B=72°,∠C=60°.例4如图,将△ABC沿EF折叠,使点C落在点C′处,试探求∠1,∠2与∠C的数量关系.解:由折叠的性质,得∠CEF=∠C′EF,∠CFE=∠C′FE.∴∠1=180°-2∠CEF,∠2=180°-2∠CFE,∴∠1+∠2=360°-2(∠CEF+∠CFE)=360°-2(180°-∠C)=2∠C,即∠1+∠2=2∠C.练习1.教材P13练习第1,2题.2.如图,AB∥CD,AD和BC相交于点O,∠A=20°,∠COD=100°,则∠C的度数是(C) A.80° B.70° C.60° D.50°(第2题图)(第3题图) 3.如图,AB∥CD,AD平分∠BAC.若∠BAD=70°,则∠ACD的度数是(A)A.40° B.35° C.50° D.45°4.当三角形中的一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为__30°__.5.如图,在△ABC中,∠ACB=∠ABC,∠A=40°,P是△ABC内一点,且∠1=∠2,求∠BPC 的度数.解:∵∠A=40°,∠ACB=∠ABC,∴∠ACB=∠ABC=70°.又∵∠1=∠2,∴∠BCP=∠ABP,∴∠2+∠BCP=∠2+∠ABP=∠ABC=70°,∴∠BPC=180°-(∠2+∠BCP)=180°-70°=110°.◆活动5完成《名师测控》随堂反馈手册◆活动6课堂小结三角形的内角和定理.四、作业和反思1.作业布置(1)教材P16习题11.2第3,9题;(2)《名师测控》对应课时练习.2.教学反思第2课时直角三角形的两个锐角互余一、教学目标1.了解直角三角形两个锐角的关系.2.掌握直角三角形的判定.二、教学重难点1.了解直角三角形两个锐角的关系,掌握直角三角形的判定.2.掌握直角三角形的判定,会运用直角三角形的性质和判定进行相关计算.三、教学设计◆活动1新课导入三角形中求角的度数问题,当角之间存在数量关系时,一般根据三角形内角和为180°建立方程来解决.◆活动2探究新知1.教材P13练习下面的内容.提出问题.(1)在△ABC中,∠C=90°,∠A与∠B之间有什么关系?(2)你能证明吗?如何证明?学生完成并交流展示.2.在△ABC中,若∠B+∠A=90°,那么△ABC是什么形状的三角形?并说明理由.学生完成并交流展示.◆活动3知识归纳1.直角三角形的两个锐角__互余__.2.有两个角互余的三角形是__直角__三角形.◆活动4例题与练习例1教材P14例3.例2如图,点E是△ABC中AC边上的一点,过点E作ED⊥AB,垂足为D.若∠1=∠2,则△ABC是直角三角形吗?为什么.解:△ABC是直角三角形.理由如下:∵ED⊥AB,∴∠ADE=90°,∴△ADE是直角三角形,∴∠1+∠A=90°.又∵∠1=∠2,∴∠2+∠A=90°,∴∠C=180°-(∠2+∠A)=180°-90°=90°,∴△ABC是直角三角形.例3(1)如图①,在△ABC中,AD⊥BC于点D,CE⊥AB于点E.试猜测∠1与∠2的关系,并说明理由;(2)如图②,在△ABC中,如果∠BAC是钝角,BD⊥AC于点D,CE⊥AB于点E,那么(1)中的结论是否仍然成立?请说明理由.解:(1)∠1=∠2.理由如下:∵AD⊥BC,CE⊥AB,∴△ABD和△BCE都是直角三角形,∴∠1+∠B=90°,∠2+∠B=90°,∴∠1=∠2;(2)结论仍然成立.理由如下:∵BD⊥AC,CE⊥AB,∴∠D=∠E=90°,∴∠1+∠4=90°,∠2+∠3=90°.又∵∠3=∠4,∴∠1=∠2.练习1.教材P14练习第1,2题.2.如图,在△ABC中,AD是边BC上的高,BE平分∠ABC交边AC于点E,∠BAC=60°,∠ABE=25°,则∠DAC的度数是(B)A.15° B.20° C.25° D.30°(第2题图)(第3题图) 3.如图,将有一块含有60°角的直角三角板的两个顶点分别放在长方形的对边上.如果∠1=18°,那么∠2的度数是__12°__.4.如图,AB∥CD,直线EF分别交AB,CD于点E,F,∠BEF的平分线与∠DFE的平分线相交于点P,试说明△EPF为直角三角形.解:∵AB∥CD,∴∠BEF+∠DFE=180°.∵EP为∠BEF的平分线,FP为∠DFE的平分线,∴∠PEF=12∠BEF,∠PFE=12∠DFE,∴∠PEF+∠PFE=12(∠BEF+∠DFE)=90°,∴△EPF为直角三角形.◆活动5完成《名师测控》随堂反馈手册◆活动6课堂小结1.直角三角形的性质——两锐角互余.2.直角三角形的判定——有两角互余的三角形是直角三角形.四、作业与反思1.作业布置(1)教材P16习题11.2第4,10题;(2)《名师测控》对应课时练习.2.教学反思。