反函数、复合函数的求导法则
- 格式:ppt
- 大小:325.00 KB
- 文档页数:16
反函数和复合函数的求导法则在微积分中,函数是一种将一个集合的元素映射到另一个集合的方式。
在函数的研究中,反函数和复合函数是两个重要的概念。
本文将介绍反函数和复合函数的求导法则。
1.反函数反函数是指一个函数的输入和输出对调的函数。
如果函数f将集合A的元素映射到集合B的元素,那么反函数f^(-1)就将集合B的元素映射到集合A的元素。
设函数f的定义域为A,值域为B,则对于任意y∈B,如果存在x∈A,使得f(x)=y,那么函数f的反函数f^(-1)将满足f^(-1)(y)=x。
反函数的求导法则可以通过链式法则来推导。
设函数y=f(x)在区间I上是可导的,且f'(x)≠0。
若函数f在点x处可导,且f'(x)≠0,那么f^(-1)在点y=f(x)处也可导,且有反函数的导数公式:(f^(-1))'(y)=1/f'(x)其中x是f^(-1)(y)=x的解。
这个公式意味着反函数的导数是通过将函数的导数取倒数得到的。
这是因为反函数的定义是将函数的输入和输出对调,因此反函数的斜率应该是原函数斜率的倒数。
2.复合函数复合函数是指由两个或多个函数组合起来形成的新的函数。
设有函数f(x)和g(x),那么f(g(x))就是一个由两个函数复合而成的函数。
复合函数的求导法则可以通过链式法则来推导。
设函数y=f(g(x)),其中f和g都是可导函数。
那么复合函数y的导数dy/dx可以通过链式法则表示为:dy/dx = dy/du * du/dx其中u=g(x)是变量x经过函数g变换后的结果。
这个公式意味着复合函数的导数是由两部分组成的。
第一部分是外层函数对内层函数的导数,第二部分是内层函数对变量的导数。
通过链式法则,我们可以将复合函数的求导问题转化为求两个简单函数的导数问题。
需要注意的是,如果函数f和g都是可导函数,那么复合函数f(g(x))不一定是可导函数。
复合函数的可导性依赖于函数f和g的可导性。
反函数复合函数求导法则和基本求导公式一、反函数求导法则:设函数y=f(x)在[a,b]上连续可导,且f'(x)≠0,设F(x)是f(x)在[a,b]上的反函数,则F'(x)=1/f'(F(x))。
证明:对于函数y=f(x)在区间[a,b]上的其中一点x,设其反函数为y=F(x)。
则根据反函数的定义可知:f(F(x))=x两边同时对x求导,则有:f'(F(x))*F'(x)=1由此可得:F'(x)=1/f'(F(x))这即为反函数求导法则。
二、复合函数求导法则:设函数y=f(u),u=g(x)是由函数u=g(x)和函数y=f(u)复合而成的复合函数,则其导函数为:dy/dx = f'(u) * g'(x)证明:根据链式法则,设y=f(u),u=g(x),则由复合函数求导法则可知:dy/du = f'(u)du/dx = g'(x)将以上两个导数代入复合函数的导数公式中,则有:dy/dx = dy/du * du/dx = f'(u) * g'(x)这即为复合函数求导法则。
三、基本求导公式:1.常数函数的导数:(c)'=0,其中c为常数。
证明:设y=c,其中c为常数,则有:Δy/Δx=0当Δx趋近于0时,上式可进一步得到:dy/dx = 0因此,常数函数的导数为0。
2.变量的幂函数的导数:(x^n)'=n*x^(n-1),其中n为常数。
证明:设y=x^n,其中n为常数,则有:Δy/Δx=[(x+Δx)^n-x^n]/Δx根据二项式定理展开(x+Δx)^n,这里不再赘述,从展开后的表达式中可以看出,除了形如x^n的一项,其他各项都含有Δx。
因此当Δx趋近于0时,可以将这些含有Δx的项直接忽略,只剩下一项:dy/dx = n*x^(n-1)这就是变量的幂函数的导数公式。
3.e^x的导数:(e^x)'=e^x。