新能源核能
- 格式:pdf
- 大小:8.97 MB
- 文档页数:101
新能源与可再生能源随着全球经济的发展和人民生活水平的提高,对能源的需求越来越大。
然而,传统的能源资源如煤炭、石油和天然气等已渐渐枯竭,其使用还给地球环境带来了严重的污染问题。
因此,新能源与可再生能源的开发和利用逐渐成为全球关注的焦点。
一、新能源的定义与分类新能源是相对于传统能源而言的,它指那些具有先进技术手段开发的能源资源。
常见的新能源包括核能、风能、太阳能、地热能等。
其中,核能源是通过核反应释放出的能量,被广泛用于发电和医药等领域;风能、太阳能和地热能是自然界中存在的,通过现代技术手段进行收集和利用,被广泛应用于电力生成、供暖和热水等领域。
二、可再生能源的定义与分类可再生能源是指自然界中不会枯竭的能源资源,它可以持续地进行再生,是解决能源短缺和环境污染问题的一种重要途径。
常见的可再生能源包括风能、太阳能、水能和生物质能等。
风能是利用风干驱动发电机发电;太阳能是利用太阳辐射产生电能或热能;水能则是利用水流、潮汐等运动能产生的能量;生物质能是指利用植物生物质或动物粪便等有机物质产生的能源。
三、新能源与可再生能源的优势1. 环保性:新能源和可再生能源的利用过程中不会产生大量的污染物,可以有效减少大气、水体和土壤的污染,保护生态环境。
2. 可持续性:新能源和可再生能源具有不可枯竭的特点,相对于传统能源资源而言,可以更长久地满足人们对能源的需求。
3. 分布性:新能源和可再生能源广泛存在于全球各地,利用这些能源可以减少对传统能源资源集中开采的依赖。
四、新能源与可再生能源的挑战与前景1. 技术挑战:新能源和可再生能源的开发利用需要高度的技术和设备支持,目前仍面临着诸多技术难题,如存储和转换效率的提升等。
2. 经济挑战:与传统能源相比,新能源和可再生能源的成本较高,需要进一步降低成本,提高经济性。
3. 产业转型:新能源和可再生能源的发展需要推动产业结构的调整和转型升级,培育相关产业链,促进经济可持续发展。
4. 前景展望:随着技术的不断进步和成本的降低,新能源和可再生能源有望成为未来能源发展的主要方向,为人类创造一个更加清洁、可持续的生活环境。
《核能》演讲稿——Dismark在做讲解之前,我先介绍一下我们的团队。
我们的团队叫Dismark,团队成员有:拓、黄、刘、杨、韩、杨这次课题的任务分工是:资料收集:刘、杨PPT的制作:拓、韩演讲稿的整理:黄、杨PPT的讲解:黄、韩、杨、刘对于核能的知识学习,我们组打算从四个方面介绍。
首先是核能的基础知识介绍,第二部分是核能的发展和利用,其次是核能的危害,最后是核能的前景。
第一部分:核能的介绍(主讲人:黄)看到核能,我们首先能想到的是什么呢?下面,让我们来看一些图片,初步认识一下什么是核能。
(第6、7页ppt展示)看完这几幅图片,大家是不是感觉蘑菇云真的太漂亮了?但是漂亮的背后也有很惨痛的历史。
1937年,日本发动全面侵华战争后,又与德国、意大利结成法西斯轴心国同盟,发动太平洋战争,入侵东南亚,妄图实现其独霸东亚、称霸世界的野心。
为促使发动侵略战争的日本尽快投降,美军于1945年8月6日和9日分别向日本广岛和长崎投下原子弹。
当年8月15日,日本宣布投降。
在核弹爆炸以后,广岛市80%的建筑物化为灰烬,6.8万人当场丧生,这结果一点也不亚于汶川地震,甚至比汶川地震的后遗症还要严重。
大家看,5年后因原子弹死亡人数达到24.7万人;长崎市60%的建筑物被摧毁,当场伤亡8.6万人,5年后共死亡14万人。
该地区核爆炸的幸存者也不同程度受到放射性污染,患了各种怪异的后遗症,在随后几年中,又有大批人痛苦地死去。
大家看,这是爆炸后的日本长崎市,这都是多年后拍的照片了,这里任然一片荒芜。
下面这张是广岛废墟中的工商业区建筑残骸:1945年8月6日原子弹爆炸,广岛市的工商业建筑区离爆心投影点相对较远,但也变成一片废墟,这些建筑废墟被有意保存下来作为历史的见证。
看到这张图,大家都被吓到了吧?这是一位核弹战争后的幸存者。
看到这儿,核能既能爆发出那么漂亮的蘑菇云,又有那么大威力!那究竟什么是核能呢?下面我们来看一下,核能是什么!原子能又称“核能”。
核能在清洁能源发展中的重要地位清洁能源的发展一直是全球关注的热点,其中核能作为一种重要的清洁能源形式,已经在全球范围内扮演着重要的角色。
核能作为一种可持续的能源来源,不仅能够减少对传统化石燃料的依赖,还可以有效减少温室气体的排放。
在新能源和可持续发展的背景下,核能的重要地位日益凸显。
首先,核能是一种低碳清洁能源,能够显著减少二氧化碳等温室气体的排放。
由于核能发电不会产生尾气和燃烧废物,减少了大气污染的风险。
与传统的燃煤发电相比,核能发电可以减少约90%的二氧化碳排放量。
这对于应对全球变暖、降低碳排放的目标具有重要意义。
同时,核能发电还能有效减少其他有害物质的排放,如硫化物、氮氧化物等,对环境的保护和生态平衡具有积极作用。
其次,核能还具备稳定可靠的特点。
相比于太阳能和风能等可再生能源,核能发电能够全天候稳定供应电力。
核电厂可以稳定运行,并能够应对国家和地区在能源需求上的变化。
这对于保障国家能源安全、稳定供应电力具有重要意义。
同时,核能的能量密度较高,相对于其他清洁能源形式,核能发电所需的空间更小,降低了对土地的需求,对于国土资源的保护也具有积极意义。
此外,核能在应对气候变化挑战和可持续发展方面也发挥了重要的作用。
全球范围内减少对化石燃料的依赖和转向清洁能源是实现可持续发展的关键。
核能的使用可以有效减少对化石燃料需求,降低国家对进口石油和天然气的依赖,实现能源多元化。
同时,核能发电也可以稳定价格,减少对能源价格的不确定性。
这对于维护国家能源安全和经济稳定发展具有重要意义。
然而,核能在清洁能源发展中也面临一些挑战和争议。
核能发电需要高额的投资和技术支持,核电站建设和运行的安全问题也备受关注。
此外,核能废料的处理和核材料的非扩散问题也是核能发展中的关键问题。
因此,在推动核能发展的同时,必须加强核安全和核废料处理技术的研究,确保核能的安全和可持续发展。
总结而言,核能作为一种清洁、低碳、可靠的能源形式,在全球清洁能源发展中具有重要的地位。
能源科学中的太阳能和核能能源是人类社会发展的基石,它为人们的生产和生活提供了可靠的能源保障。
而在当今的能源科技中,太阳能和核能作为两种主要的新型能源,备受关注。
本文将从能源保障、环保、安全性、经济性等几个方面的维度来探讨太阳能和核能的发展现状及其前景。
太阳能,指人们通过太阳能热或光发电来利用太阳能资源。
太阳能技术作为一种新型可再生能源,其发展前景广阔。
首先,太阳能技术可以提供清洁的能源保障。
太阳能电站在发电过程中不产生任何二氧化碳等污染物,能够有效地减少空气、水质污染,保护环境,提高人们身体健康水平。
同时,太阳能将成为未来可循环能源的主要来源,因为太阳能是一种免费的能源,太阳光照在大自然中世上平均每平方米地面的日照辐照量可达到5000焦耳左右。
能够满足人类对能源的需求,为可持续发展提供重要支撑。
其次,太阳能发电的安全性高。
相对于燃煤发电等传统的火力发电方式,太阳能发电不会产生燃烧过程中的危险气体,避免了可能的火灾、爆炸等安全问题。
而且太阳能发电设备无须长距离运输、处理,能大大降低相关物流运输费用和环境安全压力。
最后,太阳能发电具有经济效益明显的优势。
太阳能发电设备相对于传统电厂的建设、维护、运营成本较低,能够进行大规模的发电,具有很好的经济性,是未来新型清洁能源的主要发源地。
但是,也有一些太阳能技术的挑战需要克服。
首要是太阳能转换效率的改善,太阳能电池转换效率较低,能量损失较大,需要通过技术不断提升效率,为能源转型提供更好的支撑。
核能是人类开发的一种基于核子反应的热能源,是一种高效而又可持续的新型能源。
从供能可靠性、环保、安全性和经济性四个维度来看,核能的发展前景十分广阔。
首先,核能是一种能源可靠性较高的能源,其发电率高,能够对全球能源需求进行有效的保障。
与其他火力发电方式相比,核能产生量相对稳定,不受外部环境因素影响。
就可靠性而言,是一种可以长期保持高效运转的新能源类型。
其次,核能在环保方面表现出良好的性能。
核能是新能源么核能是一种高效且可持续的能源形式,是一种新能源。
本文将分别从核能的定义、特点、发展历程以及利与弊等方面进行阐述。
首先,核能是指利用原子核裂变或聚变过程中释放的能量来进行能源转换和利用的能源形式。
裂变能源是指通过将重核裂变成轻核并释放巨大能量的方式来产生能源。
聚变能源是指通过将两个轻核聚变成一个重核并释放巨大能量的方式来产生能源。
核能因其高能量密度和持续稳定的特点而被认为是一种新能源。
其次,核能具有许多独特的特点。
首先,核能资源丰富。
在地球上,核能资源不受地理限制,几乎可以在任何地方使用,并且不受气候和天气的影响。
其次,核能发电效率高。
核电站可以高效地将核能转化为电能,相较于传统燃煤发电,核能发电的效率更高,排放的污染物也更少。
再次,核能发电过程中不会产生二氧化碳等温室气体,因此对环境影响较小。
此外,核能还具有可持续性,即核燃料可循环利用,做到能源的可持续发展。
核能的发展历程可以追溯到20世纪30年代,当时科学家发现了原子核裂变能量释放的潜力。
1942年,美国科学家成功制造出第一颗核子弹,并在1945年投放于日本广岛和长崎。
随后,核能开始被用于发展和研究。
1954年,英国建立了世界上第一座商业性核电站,并成为一个多国家、多领域的国际合作项目。
核能持续发展并迅速扩大应用,成为解决能源短缺问题的一种重要方案。
然而,核能也存在一些问题和争议。
首先,核能的安全风险是人们普遍关注的问题。
核错误或事故可能会导致放射性物质的泄漏和污染,对人类和环境构成潜在威胁。
1986年的切尔诺贝利核事故和2011年的福岛核事故就给人们留下了深刻的印象。
其次,核废料处理也是一个具有挑战性的问题。
核能发电产生的放射性废料需要被妥善处理和存储,以免对环境和人类健康造成影响。
最后,核能发展也需要大量的投资和技术支持,因此成本较高。
综上所述,核能是一种新能源,具有能源丰富、高效、可持续等特点。
随着能源需求的增长和对环境保护的要求,核能在世界范围内的开发和利用将变得更为重要。
核能属于新能源吗核能是一种重要的能源形式,也被称为新能源之一。
核能指的是通过核反应产生的能量,包括核裂变和核聚变两种方式。
首先,核裂变是一种常见的核能形式,它是指将重核(如铀235、钚239等)通过自发地分裂产生能量的过程。
核裂变反应在核电站中被广泛应用,通过控制裂变反应使核燃料放出热能,进而产生蒸汽驱动涡轮发电机。
与传统燃烧化石燃料不同,核裂变反应不会产生二氧化碳等温室气体,因此不会增加大气中的温室效应。
同时,核燃料的能量密度非常高,一定量的核燃料可以提供大量的能量,且核燃料的储存需求相对较小,可以在较长时间内供应能源需求。
此外,核聚变也是一种核能形式。
核聚变是指将轻核(如氢、氦等)融合在一起形成更重的核,并放出巨大的能量。
核聚变是太阳等恒星的能源来源,是一种更为理想的能源形式,因为核聚变反应不会产生放射性废物,且燃料广泛、可再生。
目前,科学家们正在努力开发可控核聚变技术,以期在未来能够利用核聚变作为清洁、可持续的能源来源。
然而,要将核能归类为新能源也存在一些争议。
一方面,核能的发展受到技术、安全、环境等方面的挑战。
核电站的运行和废物处理需要严格的安全措施,以防止核事故发生。
此外,核废料的处理和存储也是一个复杂的问题,需要长期研究和投资。
另一方面,核能在可再生能源中的地位也有争议。
可再生能源一般指太阳能、风能、水能等形式的能源,这些能源可以通过自然的循环过程得到补充,具有较高的可持续性。
而核能的燃料需要人为提供,并不属于自然循环能源。
因此,有人认为核能只是一种低碳能源,而非真正的新能源。
综上所述,核能属于一种关键的能源形式,其应用广泛且可以为人类提供可靠的能源供应。
无论核能是否被归类为新能源,其在减少碳排放、减少能源依赖等方面都具有重要意义。
然而,研究和发展更可持续、安全的能源形式仍然是人们努力的方向。
简述新能源的定义和特点
答:
定义:新能源是指技术上可行,经济上合理,环境和社会可以接受,能确保供应和替代常规化石能源的可持续发展能源体系。
广义的新能源包含两个方面:1、新能源体系包括可再生能源和地热能,氢能,核能;2、新能源利用技术,包括高效利用能源,资源综合利用,替代能源,节能等。
特点:
1)、新能源是人类社会未来能源的基石,是目前大旦燃用的化石能源的替代能源。
2)、新能源清洁干净、污染物排放很少,是与人类赖以生存的地球的生态环
境相协调的清洁能源。
3)、新能源是不发达国家20多亿无电、缺能人口和特殊用途解决供电用能问题的现实能源。
新能源和可再生能源的开发与利用探讨随着经济的发展和人口的增加,能源需求量也逐渐增加。
然而,传统化石燃料的使用不仅导致能源资源的枯竭,还会对环境造成严重的污染和破坏。
因此,新能源和可再生能源的开发和利用变得越来越重要。
新能源主要包括核能、太阳能、风能、地热能等。
其中,核能是一种重要的清洁能源,不会产生大气污染,并能够满足大规模的能源需求。
然而,核能也存在安全隐患和管理难题。
另外,太阳能和风能是目前发展最为迅速的新能源。
太阳能光伏发电系统可以利用太阳光直接转化为电力,而且系统用寿命长,维护成本低,适用范围广,是未来发展方向之一。
风能也是目前兴起的清洁能源,它不仅具有低成本、可控性好、持续性强等优点,还可以有效减少温室气体的排放。
可再生能源主要包括水能、生物能、地热能等。
水能是一种最古老也最为广泛使用的清洁能源,主要利用水流和水头产生动力,产生电力和温暖。
在中国,水能已成为主要的新能源之一,并且得到了广泛应用。
生物质能则是一种重要的可再生能源,可以通过生物质材料(如木材、秸秆、沼气等)进行转化,成为液体燃料、气体燃料、电力等多种形式的能源。
由于其资源广泛,且价格低廉,其利用前景十分广阔。
地热能则是通过地球内部的地热资源,利用热能发电或供热。
地热能具有二氧化碳排放量低、稳定性高、技术成熟等优点,已经成为国内外广泛启动的清洁能源项目。
总之,新能源和可再生能源的开发与利用将是未来能源行业的发展方向。
为了实现能源的可持续性和环境的可持续性,我们需要司法、经济、科技和社会等多方面的支持和合作,共同推动新能源和可再生能源的发展。
一、常见的新能源发电技术常见的新能源发电技术主要分为:地热能、海洋能、氢能、核能、太阳能、风能、生物质能、天然气水合物等发电技术。
1.地热能〔Geothermal Energy〕由地壳抽取的天然热能,这种能量来自地球内部的熔岩,并以热力形式存在,是引致火山爆发及地震的能量。
地球内部的温度高达7000℃,而在80至100公英里的深度处,温度会降至650至1200℃。
透过地下水的流动和熔岩涌至离地面1至5公里的地壳,热力得以被转送至较接近地面的地方。
高温的熔岩将附近的地下水加热,这些加热了的水最终会渗出地面。
运用地热能最简单和最合乎成本效益的方法,就是直接取用这些热源,并抽取其能量。
地热能是可再生资源。
地热发电实际上就是把地下的热能转变为机械能,然后再将机械能转变为电能的能量转变过程或称为地热发电。
开发的地热资源主要是蒸汽型和热水型两类,因此,地热发电也分为两大类。
地热蒸汽发电有一次蒸汽法和二次蒸汽法两种。
一次蒸汽法直接利用地下的干饱和(或稍具过热度)蒸汽,或者利用从汽、水混合物中分离出来的蒸汽发电。
二次蒸汽法有两种含义,一种是不直接利用比较脏的天然蒸汽(一次蒸汽),而是让它通过换热器汽化洁净水,再利用洁净蒸汽(二次蒸汽)发电。
第二种含义是,将从第一次汽水分离出来的高温热水进行减压扩容生产二次蒸汽,压力仍高于当地大气压力,和一次蒸汽分别进入汽轮机发电。
地热水中的水,按常规发电方法是不能直接送入汽轮机去做功的,必须以蒸汽状态输入汽轮机做功。
对温度低于100℃的非饱和态地下热水发电,有两种方法:一是减压扩容法。
利用抽真空装置,使进入扩容器的地下热水减压汽化,产生低于当地大气压力的扩容蒸汽然后将汽和水分离、排水、输汽充入汽轮机做功,这种系统称“闪蒸系统”。
低压蒸汽的比容很大,因而使气轮机的单机容量受到很大的限制。
但运行过程中比较安全。
另一种是利用低沸点物质,如氯乙烷、正丁烷、异丁烷和氟里昂等作为发电的中间工质,地下热水通过换热器加热,使低沸点物质迅速气化,利用所产生气体进入发电机做功,做功后的工质从汽轮机排入凝汽器,并在其中经冷却系统降温,又重新凝结成液态工质后再循环使用。