数据中心(IDC机房)冷源设备之高温冷机
- 格式:docx
- 大小:28.05 KB
- 文档页数:3
数据中心常见的制冷方式概述及解释说明1. 引言1.1 概述数据中心是现代社会不可或缺的基础设施,用于存储、处理和传输大量的数据。
然而,随着计算机和服务器的不断发展,它们所产生的热量也越来越多,对数据中心进行有效的制冷成为了一项迫切需要解决的问题。
各种制冷方式因此应运而生,以确保数据中心能够正常运行并保持理想的工作温度。
1.2 文章结构本文将首先对常见的数据中心制冷方式进行概述及解释说明。
然后在接下来的章节中详细介绍每种制冷方式的原理、应用以及优缺点,并进行比较与分析。
最后,文章将展望未来发展趋势并给出结论。
1.3 目的本文旨在提供关于数据中心常见制冷方式的全面介绍,并对每种方式进行详细解释说明。
读者可以通过本文了解到不同制冷方式之间的差异和适用场景,帮助其选择合适的方案来满足自己数据中心制冷需求。
同时,本文也为进一步研究和改进数据中心制冷技术提供了一定程度的参考。
2. 常见的制冷方式2.1 空调制冷方法空调制冷是目前使用最广泛的一种数据中心制冷方式。
它采用了压缩循环制冷系统,利用制冷剂进行热量的吸收和释放。
该方法通过将新鲜空气进入数据中心并经过过滤、降温后供应给设备以保持其正常工作温度。
在此过程中,空调系统将热量排出建筑物外部或转移到其他区域。
2.2 液冷制冷方法液冷制冷方法是另一种常见的数据中心制冷技术。
与空调制冷不同,液冷系统通过将液体直接引入数据中心设备或机架内部来实现散热。
这些液体可以是水或者具有良好热传导性能的液态金属(如液态铜)等。
利用此方法,数据中心可以更高效地移除设备产生的热量。
相较于空调制冷方式,液态散热具有更高的换热效率和更少的能量消耗。
2.3 相变材料制冷方法相变材料制冷是一种新兴而有潜力的数据中心制冷技术。
相变材料是一种可以在特定温度范围内完成相变(如固态到液态)的物质。
当相变材料吸收热量时,它会发生相变并储存大量的热能。
而当环境温度下降时,相变材料会释放储存的热量从而保持设备的正常工作温度。
数据中心大型冷冻水系统介绍随着互联网行业高速发展,数据业务需求猛增,数据中心单机柜功率密度增加至6~15kw,数据中心的规模也逐渐变大,开始出现几百到上千个机柜的中型数据中心。
随着规模越来越大,数据中心能耗急剧增加,节能问题开始受到重视。
在办公建筑中大量采用的冷冻水系统开始逐渐应用到数据中心制冷系统中,由于冷水机组的COP 可以达到6以上,大型离心冷水机组甚至更高,采用冷冻水系统可以大幅降低数据中心运行能耗。
冷冻水系统主要由冷水机组、板式换热器、冷却塔、冷冻水泵、冷却水泵以及通冷冻水型专用空调末端组成。
系统采用集中式冷源,冷水机组制冷效率高,冷却塔放置位置灵活,可有效控制噪音并利于建筑立面美观,达到一定规模后,相对于直接蒸发式系统更有建造成本和维护成本方面的经济优势。
1、冷水机组冷水机组包括四个主要组成部分:压缩机,蒸发器,冷凝器,膨胀阀,从而实现了机组制冷制热效果。
中大型数据中心多采用离心式水冷冷凝器冷水机组。
冷水机组的作用:为数据中心提供低温冷冻水。
原理:冷水机组是利用壳管蒸发器使水与冷媒进行热交换,冷媒系统在蒸发器内吸收高温冷冻水(21℃)水中的热量,使水降温产生低温冷冻水(15℃)后,通过压缩机的作用将热量带至壳管式冷凝器,由冷媒与低温冷却水水进行热交换,使冷却水吸收热量后通过水管将热量带出到外部的冷却塔散热。
如图,开始时由压缩机吸入蒸发制冷后的低温低压制冷剂气体,然后压缩成高温高压气体送冷凝器;高压高温气体经冷凝器冷却后使气体冷凝变为常温高压液体;当常温高压液体流入热力膨胀阀,经节流成低温低压的湿蒸气,流入壳管蒸发器,吸收蒸发器内的冷冻水的热量使水温度下降;蒸发后的制冷剂再吸回到压缩机中,又重复下一个制冷循环。
2、板式换热器当过渡季节及冬季室外湿球温度较低时,可以使用板式换热器利用间接水侧自然冷却技术为数据中心制冷。
间接水侧自然冷却技术指利用室外较低的湿球温度通过冷却塔来制备冷水,部分或全部替代机械制冷的一项技术,冷却塔自然冷却属于水侧自然冷却,冷却塔自然冷却是目前数据中心采用最多的自然冷却技术之一。
数据中心(IDC机房)暖通设备-冷水机组介绍随着互联网行业的高速发展,数据中心的规模和能耗也在迅速增加。
为了解决这一问题,越来越多的数据中心开始采用冷冻水系统作为制冷系统,其中核心设备之一就是冷水机组。
冷水机组的主要作用是为数据中心提供低温冷冻水。
根据结构和工作原理的不同,冷水机组可以分为活塞式、螺杆式和离心式等几种形式。
其中,离心式冷水机组是中大型数据中心中常用的一种,由冷凝器、蒸发器、电动机、膨胀阀、齿轮、叶轮和预旋转导叶等组成。
冷水机组的制冷原理是利用壳管蒸发器使水与冷媒进行热交换,冷媒系统在蒸发器内吸收高温冷冻水中的热量,使水降温产生低温冷冻水后,通过压缩机的作用将热量带至壳管式冷凝器,由冷媒与低温冷却水进行热交换,使冷却水吸收热量后通过水管将热量带出到外部的冷却塔散热。
离心式压缩的原理是电动机带动压缩机主轴叶轮转动,在离心力作用下,气体被甩到工作轮后面的扩压器中去。
气体因离心作用增加了压力,还可以很大的速度离开工作轮,气体经扩压器逐渐降低了速度,动能转变为静压能,进一步增加了压力。
最后,需要注意的是冷水机组的油路冷却循环,其中开式电机和闭式电机的油路冷却方式也有所不同。
闭式电机采用低温制冷剂进行分流至电机冷却和油冷却系统。
制冷剂通过限流孔流进电机,电机冷却管路的支路上还设有一只限流孔和一只电磁阀。
当电机需要冷却时,电磁阀会开启,制冷剂流经限流孔,喷淋整个电机,并集中到电机室的底部排放回到蒸发器。
另一路制冷剂则流经油冷却系统,量由热力膨胀阀调节,通过限流孔始终保持一个最小流量。
膨胀阀上的温包感应冷却后流进压缩机到轴承的油温,由膨胀阀调节进油/制冷剂板式油冷却器的制冷量,制冷剂气化离开油冷却器后返回到蒸发器。
开式电机只存在油冷却系统的循环。
备用油槽在主机启动之前、运行期间和逐渐停转阶段,由变频驱动式油泵压入各轴承、齿轮和旋转面。
在压缩机顶部有一个重力供油式贮油槽,当电源发生故障机器逐渐停转时,由它提供润滑。
数据中心常见冷却方式介绍(4):双冷源型精密空调系统数据中心机房内部温湿度环境的控制要依靠室内空调末端得以实现,机房空调具有高效率、高显热比、高可靠性和灵活性的特点,能满足数据中心机房日益增加的服务器散热、湿度恒定控制、空气过滤及其他方面的要求。
随着不同地域PUE的严苛要求以及高密度服务器的广泛应用,数据中心新型的冷却方式被越来越开发及使用。
下面分别介绍几种数据中心传统与新型的冷却方式。
1. 双冷源精密空调系统组成
双冷源精密空调配置两套不同/独立的制冷盘管组成,本文主要介绍风冷直接蒸发式/冷冻水型双冷源精密空调机组,机组组成如下图所示。
机组主要由框架、室内EC风机、控制系统、进出风温湿度传感器、冷冻水盘管、电磁两通调节阀(电动球阀)、冷冻水管路;氟利昂蒸发器盘管、冷凝器盘管、压缩机、节流阀、干燥过滤器、氟利昂管路等组成。
图1 双冷源精密空调机组结构图
2.系统运行控制原理图
该机组由风冷直接蒸发制冷系统和冷冻水盘管组成。
机组正常运行时优先使用冷冻水系统,当冷冻水系统无法满足制冷需求(回风温度、出风温度持续偏高)或冷冻水系统故障(冷冻水中断、冷冻水供水温度持续偏高)时,机组控制器自动启动风冷直接蒸发制冷系统。
水冷双冷源系统与风冷双冷源系统结构类似,只是冷凝器的冷却方式不同,具体差异可查看前几篇文章。
3.产品特点及应用
(1)一般核心IT设备机房会配置双冷源精密空调,提高制冷的连续性。
(2)设备投资成本较高,提高了制冷安全系数。
(3)由于在同一框架内安装两套盘管,体积较大,设备重量较大,对空间及荷载有较高要求。
大型数据中心10kV冷水机组配电整体方案随着信息技术的不断发展,大型数据中心的需求也不断增加。
为了满足数据中心的需求,冷水机组成为数据中心中必不可少的设备。
而对于冷水机组的集中配电整体方案,也成为数据中心设计和运营中的重要问题。
本文将针对大型数据中心10kV冷水机组配电整体方案进行讨论,分析其特点和应用。
首先,本文将介绍10kV冷水机组的概念和特点。
其次,本文将探讨10kV冷水机组配电整体方案的设计原则。
最后,本文将分析10kV冷水机组配电整体方案的应用并对其进行展望。
一、10kV冷水机组的概念和特点10kV冷水机组是一种用于大型数据中心的冷却设备,其主要功能是提供冷水给数据中心的IT设备进行降温,确保数据中心的正常运行。
10kV冷水机组具有以下特点:1. 大功率输出:10kV冷水机组的功率一般在数百千瓦至数兆瓦之间,适用于大型数据中心的需求。
2. 高效节能:10kV冷水机组采用高效的压缩式或吸收式制冷技术,能够在低功耗的情况下提供足够的冷却能力。
3. 抗干扰能力强:10kV冷水机组采用数字化控制技术,对电力质量的要求较高,具有较强的抗干扰能力。
4. 配备多重保护:10kV冷水机组在运行中具有多重保护,包括过载、超温、电压不足等保护措施。
二、10kV冷水机组配电整体方案的设计原则10kV冷水机组配电整体方案的设计原则是保证其稳定可靠、安全高效。
具体设计原则如下:1. 基础设施满足要求:10kV冷水机组配电整体方案需要基于数据中心的实际情况,满足配电变电所、电缆线路、开关设备等基础设施的要求。
2. 充分考虑安全因素:10kV冷水机组的电气配电系统需要满足相关的安全标准要求,保证人员和设备的安全。
3. 设计合理的备份方案:10kV冷水机组的配电整体方案需要有备份方案,以保证数据中心在意外情况下的正常运行。
4. 满足效能要求:10kV冷水机组配电整体方案需要满足数据中心的效能要求,保证其高效能的运行。
数据中心常见冷却方式介绍数据中心机房内部温湿度环境的控制要依靠室内空调末端得以实现,机房专用精密空调具有高效率、高显热比、高可靠性和灵活性的特点,能满足数据中心机房日益增加的服务器散热、湿度恒定控制、空气过滤及其他方面的要求。
数据中心传统冷却方式主要有:风冷型直接蒸发式空调机组、水冷型直接蒸发式空调机组、冷冻水型空调系统、双冷源空调系统。
传统数据中心冷却方式存在传热效率低、局部热点难以消除以及制冷系统能耗大等问题。
针对常规机房能耗较高及使用局限性的问题,数据中心行业新型的冷却方式被越来越开发及使用。
新型的冷却方式有:风侧自然冷却技术、水侧自然冷却技术和热管自然冷却技术等。
下面分别介绍这几种数据中心传统与新型的冷却方式。
1. 风冷型直接蒸发式空调系统风冷型直接蒸发式空调系统如图一所示,机组主要有框架、压缩机、蒸发器、冷凝器、电子调节阀、室内风机、室外风机、机组控制系统、温湿度传感器等组成室外侧翅片换热器作为冷凝器,室内侧翅片换热器作为蒸发器,压缩机排出的制冷剂高温气体在室外侧翅片换热器冷凝成液体后,经膨胀阀节流降压成为低温气液混合体,再流入室内侧翅片换热器,吸收热量蒸发后回到压缩机,完成一个制冷循环; 同时,从室内来的回风经过室内侧蒸发器后则被冷却降温,处理后的冷风由室内侧风机再送入室内。
2. 水冷型直接蒸发式空调系统水冷型直接蒸发式空调系统,室内机配置水冷冷凝器,由室外冷却塔提供冷却水。
机组冷凝器、蒸发器均在室内机组内,制冷循环系统管路短。
风冷型与水冷型直接蒸发式空调系统的主要区别在于冷凝器的冷却方式。
所有机组的冷却水可以做到一个系统当中,由水泵为冷却水循环提供动力。
3. 冷冻水型空调系统冷冻水型精密空调系统一般由冷水机组、冷却塔、冷冻水泵、冷却水泵、冷冻水型精密空调、管路及附件组成。
冷冻水型空调机组,采用冷水机组或板式换热器提供冷冻水,对机房进行温湿度控制。
冷冻水型精密空调具有高能效、结构紧凑、可远距离输送冷量的特点。
数据中心设备散热水冷机风冷和液冷冷却方式介绍随着数据中心的进展建设中,其能耗要求在不绝降低,数据中心设备散热水冷机的液冷冷却方式是使用液体作为冷媒为发热部件散热的一种技术,接下来为您介绍风冷和液冷的冷却方式。
一、数据中心风冷冷却方式介绍以前数据中心设备散热水冷机以风冷为主,风冷是将空气作为冷媒,把服务器主板、CPU等散发出的热量传递给散热器模块,再利用风扇或空调制冷等方式将热量吹走,这也是散热系统消耗数据中心近半电力的重要原因。
风冷包含直接空气自然冷技术和间接空气自然冷技术。
直接空气自然冷可以依据室外温度结合机械制冷给数据中心内部设备散热,这种技术能效高,但空气质量的不确定性会带来较大风险,特别是室外空气湿度过高或者有害气体过多会对IT设备造成损坏。
为了躲避这种情况发生,近些年的数据中心开始采纳间接空气自然冷技术,将室外冷空气通过空气热换器对室内热空气进行冷却,躲避室外空气进入数据中心内部,受环境影响较直接冷较小。
这两种风冷技术效率都比较高,但对环境和安装要求较高,会对IT设备造成损耗降低牢靠性。
随着数据中心规模加添及单机柜功率密度加添,对制冷也提出了更高要求,面对下一代IT系统的液冷技术应运而生。
二、数据中心液冷冷却方式介绍液冷作为当前数据中心设备散热水冷机的散热方式,通过外部冷却水或冷冻水系统实现系统换热,实在是使用高比热容的液体作为传热工作介质来充足IT设备(如服务器)的冷却需求。
目前,基于液冷技术的主流方案包含冷板式液冷和浸没式液冷两种。
冷板式液冷也称间接式液冷,也就是冷媒和被冷却对象分别,不会直接接触。
通过液冷等热传导部件,将被冷却对象的热量传递到冷媒中。
一般冷板式液冷只用于冷却CPU、内存等关键器件,只占总发热量的一半左右,因此还需要搭配风冷散热,可以削减IT设备自带风扇的数量和电耗,实现很大程度的。
浸没式液冷也叫直接式液冷,是将IT设备包含服务器主板、CPU、内存等发热量大的元器件全部浸入冷却液中,用冷却液体替代空气给IT设备降温,让被冷却对象与冷媒直接接触,因发热元器件冷却均匀度更好,可以选择肯定温度下相变的液体。
IDC数据中心空调制冷1.引言随着互联网和大数据技术的飞速发展,数据中心作为信息处理和存储的核心设施,其规模和数量日益扩大。
数据中心运行过程中,服务器等设备的能耗巨大,其中空调制冷系统是保证数据中心稳定运行的关键。
因此,对IDC数据中心空调制冷技术的研究具有重要的现实意义。
2.IDC数据中心空调制冷需求2.1温湿度控制数据中心内部设备对温湿度要求严格,过高或过低的温湿度都会影响设备的正常运行。
空调制冷系统需确保数据中心内部温度控制在一定范围内,同时湿度也要满足设备运行需求。
2.2高效节能数据中心能耗巨大,空调制冷系统作为能耗大户,其能效比直接关系到数据中心的整体能耗。
因此,提高空调制冷系统的能效比,降低能耗,是IDC数据中心空调制冷技术的关键需求。
2.3可靠性与安全性数据中心作为关键信息基础设施,其运行稳定性至关重要。
空调制冷系统需具备高可靠性和安全性,以确保数据中心稳定运行,避免因制冷系统故障导致的数据丢失或业务中断。
3.IDC数据中心空调制冷技术3.1直接膨胀式制冷技术直接膨胀式制冷技术是利用制冷剂在蒸发器、压缩机、冷凝器和膨胀阀等部件组成的封闭循环系统中,通过相变实现热量传递的一种制冷方式。
该技术具有结构简单、能效比高、可靠性好等特点,广泛应用于IDC数据中心空调制冷。
3.2水冷式制冷技术水冷式制冷技术是利用水作为冷却介质,通过冷却塔、水泵、冷却盘管等设备将热量传递到外部环境中。
该技术具有制冷效果好、能效比高、适用范围广等优点,但占地面积较大,对水源有一定依赖。
3.3风冷式制冷技术风冷式制冷技术是利用空气作为冷却介质,通过风机、散热器等设备将热量传递到外部环境中。
该技术具有结构简单、安装方便、适用范围广等优点,但能效比较低,适用于小型或中小型数据中心。
3.4冷冻水式制冷技术冷冻水式制冷技术是利用冷冻水作为冷却介质,通过冷水机组、冷却塔、水泵等设备将热量传递到外部环境中。
该技术具有制冷效果好、能效比高、适用范围广等优点,但系统复杂,初投资较高。
数据中心(IDC机房)冷冻水温度对系统节能的影响随着数据中心的建筑规模和单机柜功耗的增加,大型数据中心越来越多,因空调系统在数据中心能耗占比大,越来越引起关注。
从2018年开始,北京、上海、深圳等一线城市,陆续出台“PUE新政”。
2018年9月,北京提出全市范围内禁止新建和扩建互联网数据服务、信息处理和存储支持服务数据中心(PUE值在1.4以下的云计算数据中心除外)。
上海也出台类似政策,存量改造数据中心PUE不得高于1.4,新建数据中心PUE限制在1.3以下。
2019年4月,深圳提出PUE1.4以上的数据中心不再享有支持,PUE低于1.25的数据中心,可享受新增能源消费量40%以上的支持。
提高空调系统全年整体效率,有效降低能耗是数据中心空调专业设计建设重点考虑和研究的课题。
近几年空调系统冷却方式发展变化较快,在保证机房安全正常工作的前提下,提高冷冻水供回水温度、优化气流组织、室外自然冷源合理利用等冷却方式已被广泛接受,并在工程中实践。
本文就技术成熟、使用效果好的部分冷却方式从基本理论、使用方法、效率、使用注意事项等方而进行总结叙述,提出相关冷却技术的观点和建议,供数据中心空调专业的设计、建设、运维入员技术交流与学习参考。
目前广泛采用的集中式空调系统的冷冻水系统,其供回水温度作为关键指标,对整个空调系统的能耗、投资均有着至关重要的影响。
冷冻水供回水温度直接影响空调冷源侧及空调末端侧的换热温差,进而影响冷源侧、末端侧水与空气的换热效率;对于利用自然冷源的系统,也影呐空调冷源侧自然冷源的利用时间。
1、冷冻水温度对空调系统的影响1.1提高冷冻水供回水温度的有利影响如下:(1)较高的冷冻水水温能够提高冷水机组的制冷效率。
按照主流电动压缩式冷水机组厂家的经验参数,冷冻水温度每提升1°C ,冷机能效可提高2%~3% 。
(2)提高冷冻水温度,可提高空调显热比;提高到一定数值后,可实现干工况运行,减少除湿功耗。
数据中心冷机制冷原理
数据中心是许多企业和组织存储、管理和处理大量数据的关键
设施。
为了确保数据中心的正常运行和数据的安全性,必须保持适
宜的温度和湿度。
而冷机制冷是数据中心中常用的一种制冷方法。
冷机制冷的原理是利用蒸发冷却的物理原理,通过循环系统将
热量从数据中心中抽出,从而降低数据中心的温度。
这种制冷方法
主要包括以下几个步骤:
1. 蒸发器,在数据中心中安装蒸发器,蒸发器中充满了制冷剂。
当热空气通过蒸发器时,制冷剂会吸收热量并蒸发成为低温的气体。
2. 压缩机,蒸发器中的制冷剂蒸发后成为低温低压的气体,然
后被压缩机压缩成高温高压的气体。
3. 冷凝器,高温高压的制冷剂气体通过冷凝器,与外部空气接触,散发热量并冷却成为高压液体。
4. 膨胀阀,高压液体通过膨胀阀减压成为低温低压的制冷剂,
然后再次进入蒸发器,完成制冷循环。
通过这样的循环过程,冷机制冷系统能够持续地将热量从数据中心中排出,从而保持数据中心的适宜温度。
冷机制冷在数据中心中的应用有许多优势,例如可以精确控制温度和湿度、能够适应不同规模的数据中心、具有较高的制冷效率等。
然而,也需要注意的是,冷机制冷系统的运行需要消耗大量的能源,因此在设计和运行中需要考虑能源消耗和环保等因素。
总的来说,冷机制冷是数据中心中常用的一种制冷方法,通过循环系统将热量从数据中心中排出,保持数据中心的适宜温度。
在数据中心的设计和运行中,合理利用和优化冷机制冷系统,可以有效地保障数据中心的正常运行和数据的安全性。
数据中心(IDC机房)空调冷却系统分类及散热特点合理、有效、最大化利用室外天然自然冷源,降低空调系统的能耗、提高空调系统全年运行效率是空调系统设计建设的基本原则。
在满足服务器设备正常安全运行需要的空气温度、湿度、洁净度的条件下,空调系统的冷却热交换环节少、各环节换热效率高、换热距离短,快速地把服务器散热带出机房,是数据中心选择空调冷却系统形式、提高冷却效率的关键,也是今后数据中心冷却系统发展的方向。
1、数据中心机房的散热特点数据中心机房内服务器设备散热属于稳态热源,服务器全年不间断运行,这就需要有一套全年不间断运行的空调冷却系统,把服务器散热量排至室外大气或其他自然冷源中。
为保证服务器的冷却需要,即使在冬季也需要提供相应的冷却系统运行。
随着IT 技术的不断发展,机柜的功率密度不断提高。
几年前,服务器机柜功率大多在1~2kW/机架,现在绝大多数数据中心的服务器功率达到了5~6kW , 最高的功率已高达35kW/机架,随着未来服务器技术进步,其功率密度还将进一步提高。
因此,数据中心需要根据数据中心功率密度的不同,同时考虑到建筑规模、负荷特点、当地气候条件、能源状况、节能环保要求等因素,综合比较后确定合理的空调冷却系统。
2、数据中心冷却系统组成数据中心空调冷却系统由空调末端设备、输配系统、冷源部分以及控制系统等几部分组成。
3、数据中心冷却系统冷源冷源分为自然冷源和人工冷源两大类,任何冷却系统在设计建设运行中,条件许可时应首选自然冷源,自然冷源不满足冷却需要时,才采用人工冷源。
在现有的冷却系统中,除了芯片级冷却方式采用纯自然冷源外,其他冷却系统一般采用相结合的方式,自然冷源和人工冷源在系统中相互融合配合使用。
4、数据中心冷却系统冷量输配空调系统冷量输配系统是冷源和末端之间能量交换的一个桥梁和渠道,通过流体(物质)的转运与分配,把冷源设备产生的冷量输送到空调末端,通过末端的热交换带走机房的IT 设备产生的热量。
PART1数据中心大品牌都用SMARDT000亿度2.5万数据中心.0平均PUE数据中心数量多、能效低、能耗高321数据中心全生命期陈本分析电费70%建设费用20%人工5%房租5%某大型数据中心运营10年总成本构成数据中心建设成本与电力成本的平衡•三年电费总和•设计费用•施工费用•设备费用•维护费用运营电费建设费用对于PUE=2.0的大型数据中心而言,假设运营周期为10年,则总成本中70%为电费,占据最大比例。
大约三年的电费便可再建一个数据中心。
➢兼顾考虑建设成本和电力成本➢考虑后期维护成本及成本回收期限制➢选择电价低的区域来降低电力成本➢短期效益、没有长期运营的规划三年电费一个数据中心数据中心10年TCO (全生命周期成本)数据中心政策约束PUEPUE<1.5☐2013年,工业和信息化部《关于进一步加强通信业节能减排工作的指导意见》:新建PUE<1.5,改造PUE<2.0。
☐2016年,《国务院关于印发“十三五”国家信息化规划的通知》:新建PUE<1.5,云计算数据中心PUE <1.4。
PUE<1.32018年,《上海市推进新一代信息基础设施建设助力提升城市能级和核心竞争力三年行动计划(2018-2020年)》:新建PUE<1.3,改造PUE<1.4.PUE<1.42018年,《北京市新增产业的禁止和限制目录》:所有城区禁止新、扩建数据中心,PUE<1.4除外。
数据中心标准放开高水温2008版主机房温度23±1℃,冷冻水温度7℃,送风温度13℃2017版冷通道温度17~28℃,冷冻水温度11~22℃,送风温度17~28℃安全可靠地降低PUE 的关键因素1高效设备:高可靠性高节能性低故障维护率2自然冷源利用:自然冷却废热回收3气流组织优化:冷/热通道封闭风量匹配机柜盲板4系统集控:智能算法自动控制智慧运维安全可靠地降低P U E的关键因素数据中心空调系统近年来行业内部分创新冷却方式,成本太高或应用过于片面,我们认为并不是绿色数据中心主流新风自然冷却河、湖水自然冷却芯片级液冷PART2数据中心更新、改造解决方案1水冷磁悬浮冷水机组高效冷源系统高效输配系统高效机房空调系统高效冷却系统水冷磁悬浮冷水机组板式换热器开式冷却塔水冷自然冷却解决方案也可以替换为闭式冷却塔或定制制冷剂循环泵供回水温:15/21℃48.50%26.50%25%主机制冷完全自然冷却混合制冷0%10%20%30%40%50%60%70%80%90%100%05101520253035123456789101112武汉市气候特征平均干球温度平均湿球温度平均相对湿度1200RT机房全年制冷方案:单位自然冷却+主机+水泵+冷却塔主机+水泵+冷却塔1台600RT磁悬浮+1台600RT工频螺杆自然冷却*年均运维费用万元227 242节能率% 6.1%/设备投资成本差价万元12/运维降低万元14.8 /投资回收期年0.8 /注,计算全年有3个月室外空调计算干球温度再10℃以下,此时开启自然冷却模式。
数据中心暖通设备冷水机组介绍随着信息技术的快速发展,数据中心已成为现代社会的重要基础设施。
数据中心因其高密度、大功率的特点,对环境及设备冷却要求极高。
暖通设备是数据中心必不可少的组成部分,而冷水机组则是暖通设备的关键部分,对于保障数据中心的稳定运行和节能减排具有重要意义。
一、冷水机组概述冷水机组是一种制冷设备,通过制冷循环,将数据中心的热量转移,以维持数据中心内部适宜的温度。
冷水机组主要由压缩机、冷凝器、膨胀阀和蒸发器等组成。
二、冷水机组的工作原理冷水机组的工作原理主要是利用制冷剂在蒸发器中吸收热量,然后被压缩机压缩成高温高压气体,再经过冷凝器将热量散发出去,最后经过膨胀阀节流降压,进入蒸发器再次吸收热量,形成制冷循环。
制冷剂的不断循环,使得数据中心的热量被持续带走,维持数据中心内部适宜的温度。
三、冷水机组的优点1、高效冷却:冷水机组能够提供大流量、低水温的冷却水,能够有效地将数据中心的热量带走,保证数据中心的稳定运行。
2、节能环保:冷水机组采用先进的制冷技术,能够有效地提高制冷效率,降低能源消耗,减少碳排放。
3、维护方便:冷水机组结构简单,操作维护方便,能够有效地降低运营成本。
四、冷水机组的选型要点1、匹配性:选择冷水机组时,需要考虑其与数据中心的匹配性。
具体来说,需要考虑到数据中心的面积、功率、发热量等因素,选择合适的冷水机组型号和规格。
2、能效比:能效比是衡量冷水机组性能的重要指标。
选择能效比高的冷水机组,能够有效地降低能源消耗和运营成本。
3、可靠性:冷水机组是数据中心的关键设备之一,因此需要选择可靠性高的产品。
选择知名品牌、质量可靠的产品,能够有效地保证冷水机组的稳定运行。
4、噪音控制:冷水机组运行时会产生一定的噪音。
对于要求安静的数据中心,需要选择噪音控制好的产品。
5、售后服务:良好的售后服务能够有效地保证冷水机组的长期稳定运行。
选择具有完善售后服务的品牌和产品,能够减少后顾之忧。
五、总结在数据中心中,暖通设备是保障其稳定运行的重要设施之一,而冷水机组则是暖通设备的核心组成部分。
数据中心(IDC机房)冷源设备之高温冷水机组
合理、有效、最大化利用室外天然自然冷源,降低空调系统的能耗、提高空调系统全年运行效率是空调系统设计建设的基本原则。
在满足服务器设备正常安全运行需要的空气温度、湿度、洁净度的条件下,空调系统的冷却热交换环节少、各环节换热效率高、换热距离短,快速地把服务器散热带出机房,是数据中心选择空调冷却系统形式、提高冷却效率的关键,也是今后数据中心冷却系统发展的方向。
1、冷源设备的性能评价方法
当前数据中心用冷源设备(主要冷水机组)的性能评价方法,主要采用传统民用建筑负荷需求和分布规律的额定工况性能(COP )或部分负荷性能系数IPLV) , 计算方法如下式。
IPLV = 2.3% X A +41.5% X B+46.1% X C+10. 1% X D
其中,A、B、C、D分别为冷水机组在100%、75%、50%和25%负荷率下的COP。
对于风冷型冷水机组,上述四个负荷率对应的室外干球温度分别为30℃、26℃、23℃和19℃;各工况下,冷水出水温度均为7℃。
各负荷率的权重系数是通过调查我国4个典型气候区域(严寒地区、寒冷地区、夏热冬冷地区和夏热冬暖地区)19个城市典型建筑空调运行情况,通过温频法综合分析得出的。
对于数据中心而言,其负荷特征与传统民用建筑有肴明显的区别,主要体现在:
(1)数据中心冷负荷大、湿负荷小。
传统民用建筑为了保证冷冻除湿的
效果,一般需要冷源设备提供7℃左右的冷水。
而数据中心的冷源设备不需要考虑除湿,可以采用更高温度的冷水(如16°C) 处理冷负荷,以提高冷源设备的能效,降低整个制冷系统的能耗。
(2)数据中心内部设备负荷大且比较稳定,而通过围护结构引起的冷负荷占数据中心总负荷的比重很小,即数据中的冷负荷并不随外界温度变化产生较大的波动。
因此,数据中心用冷源设备的全年性能评价也应以恒定制冷量为主,采用基于100% 、75 %、50% 、25% 等负荷率下的IPLV,不能充分反映数据中心用冷源设备的性能以促进冷源设备的技术和能效提升。
(3)数据中心需全年制冷运行,冷源设备的室外工作环境温度跨度大。
IPLV评价体系中,采用室外干球温度分别为35°C 、31.5 ℃、28°C 和24.5℃,或冷却水进水温度分别为30°C 、26°C、23℃和19℃的温度区间远小于数据中心用冷源设备的实际工作温度区间。
2、离心式高温冷水机组
常规舒适性空调冷冻水出水温度一般在7℃左右,此时既可以提供冷量,也可以对室内空气进行除湿,而数据中心机房空调负荷几乎全部为显热负荷,可以提高冷冻水出水温度,减少不必要的除湿,冷水机组冷冻水出水温度越高,机组性能越高,越节能。
虽然直接采用常规离心式冷水机组提升出水温度设置也可满足要求,但对离心机来说,冷水出水温度为7℃时,压比为2.6左右,冷水出水温度提高至16℃时,压比减小到2.0左右,如下表所示。
常规离心机一般按照7℃出水,压比为2.6设计;当压缩机运行在高冷水出水温况时,压缩机工作点偏离设计点,导致常规压缩机绝热效率下降。
在冷水16℃出水、冷却水23℃进水工况下,压缩机绝热效率由0.6降为0.8,实际COP 可达到8.67。
为了实现较高的IPLV值,传统的冷水机组的压缩机最高效率点一般设计在50%负荷和75%负荷之间,而额定工作点(100%负荷)压缩机效率偏低。
因此,针对以上问题,以压比2.0为设计工况,对压缩机气动部件进行优化设计,专门为小压比的高温工况设计独特叶轮,串联叶片回流器,改善制冷剂的流道,减少衰减,保证效率,更适用于数据中心空调系统的高温工况。