遗传算法简介
- 格式:ppt
- 大小:279.00 KB
- 文档页数:49
遗传算法遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它最初由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。
基本概念遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。
它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。
遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。
它是现代有关智能计算中的关键技术。
对于一个求函数最大值的优化问题(求函数最小值也类同),一般可以描述为下列数学规划模型:遗传算法式中为决策变量,为目标函数式,式2-2、2-3为约束条件,U是基本空间,R是U的子集。
满足约束条件的解X称为可行解,集合R表示所有满足约束条件的解所组成的集合,称为可行解集合。
遗传算法的基本运算过程如下: a)初始化:设置进化代数计数器t=0,设置最大进化代数T,随机生成M个个体作为初始群体P(0)。
b)个体评价:计算群体P(t)中各个个体的适应度。
c)选择运算:将选择算子作用于群体。
选择的目的是把优化的个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代。
选择操作是建立在群体中个体的适应度评估基础上的。
d)交叉运算;将交叉算子作用于群体。
遗传算法变异策略遗传算法是一种基于生物进化原理的优化算法,在解决复杂问题上具有很好的适应性和鲁棒性。
变异策略是遗传算法中的一个重要步骤,它通过引入随机扰动来增加搜索空间,使得算法能够更好地探索问题的解空间。
本文将重点讨论遗传算法中的变异策略。
一、遗传算法简介遗传算法是一种模拟生物进化过程的优化算法,它通过模拟自然界的选择、交叉和变异等过程,逐步优化问题的解。
遗传算法通常由三个基本操作组成:选择、交叉和变异。
其中,变异是遗传算法中的一个重要步骤,它通过引入随机扰动来增加搜索空间,以避免陷入局部最优解。
二、变异策略的意义在遗传算法中,变异策略的主要作用是引入随机扰动,使得算法能够更好地探索解空间。
如果只使用选择和交叉操作,那么算法可能会陷入局部最优解,无法找到全局最优解。
而变异操作能够通过改变个体的某些基因值,打破局部最优解,增加搜索的多样性,从而提高算法的全局搜索能力。
三、常用的变异策略在遗传算法中,常用的变异策略包括基本变异、非均匀变异和自适应变异等。
下面将分别介绍这三种变异策略。
1. 基本变异基本变异是最简单的一种变异策略,它通过随机改变个体的某个基因值来引入扰动。
具体步骤如下:(1) 随机选择一个个体;(2) 随机选择一个基因位进行变异;(3) 根据设定的变异概率,决定是否改变该基因位的值;(4) 如果改变了基因位的值,则将变异后的个体加入到下一代种群中。
2. 非均匀变异非均匀变异是一种根据适应度函数调整变异概率的策略,它可以使得变异概率随着进化过程的进行逐渐减小。
具体步骤如下:(1) 计算种群中每个个体的适应度值;(2) 根据适应度值计算每个个体的变异概率;(3) 对于每个个体,根据其变异概率进行基本变异操作;(4) 将变异后的个体加入到下一代种群中。
3. 自适应变异自适应变异是一种根据个体的适应度动态调整变异策略的方法,它能够根据问题的特点自适应地改变变异概率和变异方式。
具体步骤如下:(1) 计算种群中每个个体的适应度值;(2) 根据适应度值调整变异概率和变异方式;(3) 对于每个个体,根据调整后的变异概率和变异方式进行变异操作;(4) 将变异后的个体加入到下一代种群中。
遗传算法简介遗传算法英文全称是Genetic Algorithm,是在1975年的时候,由美国科学家J.Holland从生物界的进化规律之中发现并且提出来的,借助适者生存,优胜劣汰的自然科学规律运用到科学的训练方法之中,对于对象直接进行操作的一种算法。
并且,遗传算法作为一种搜索的方法,已经成为成熟的具有良好收敛性、极高鲁棒性和广泛适用性的优化方法,很好的解决了电力系统的多变量、非线性、不连续、多约束的优化控制问题。
非常多的运用到了生产的方方面面。
可以说遗传算法的研究已经取得了巨大的成功。
2.1.1染色体在具体的使用遗传算法的时候,一般是需要把实际之中的问题进行编码,使之成为一些具有实际意义的码子。
这些码子构成的固定不变的结构字符串通常被叫做染色体。
跟生物学之中一样的,具体的染色体中的每一个字符符号就是一个基因。
总的固定不变的结构字符串的长度称之为染色体长度,每个具体的染色体求解出来就是具体问题之中的一个实际问题的解。
2.1.2群体具体的实际之中的问题的染色体的总数我们称之为群体,群体的具体的解就是实际之中的问题的解的集合。
2.1.3适应度在对于所有的染色体进行具体的编码之后,具体的一条染色体对应着一个实际的数值解,而每个实际的数值解对应着一个相对应的函数,这个函数就是适应度指标,也就是我们数学模型之中常说的目标函数。
2.1.4遗传操作说到遗传算法,不得不提的是遗传算法之中的遗传问题,具体进行遗传的时候有如下操作:1、选择:从上一次迭代过程之中的M个染色体,选择二个染色体作为双亲,按照一定的概率直接遗传到下一代。
2、交叉:从上一次迭代过程之中的M个染色体,选择二个染色体A、B作为双亲,用A、B作为双亲进行生物学之中的交叉操作,遗传到下一代。
3、变异从上一次迭代过程之中的M个染色体,选择一个染色体进行去某一个字符进行反转。
遗传算法简介与基本原理遗传算法是一种模拟自然进化过程的优化算法,它通过模拟生物进化中的遗传、交叉和变异等过程,来寻找问题的最优解。
遗传算法在解决复杂问题、优化搜索和机器学习等领域有广泛的应用。
一、遗传算法的基本原理遗传算法的基本原理是受到达尔文进化论的启发,模拟了自然界中的生物进化过程。
它通过对候选解进行编码、选择、交叉和变异等操作,逐代迭代,不断优化求解的问题。
1. 编码:遗传算法首先需要对问题的解进行编码,将问题的解表示为染色体或基因的形式。
染色体通常由二进制串组成,每个基因代表一个问题的解。
2. 选择:在每一代中,遗传算法通过选择操作,根据适应度函数的评估结果,选择一部分优秀的个体作为父代,用于产生下一代的个体。
选择操作通常使用轮盘赌算法或竞争选择算法。
3. 交叉:在选择操作之后,遗传算法通过交叉操作,将父代个体的染色体进行交叉配对,产生新的个体。
交叉操作可以通过单点交叉、多点交叉或均匀交叉等方式实现。
4. 变异:为了增加算法的多样性和搜索空间,遗传算法引入了变异操作。
变异操作通过对个体的染色体进行随机的变换,以引入新的解,并防止算法陷入局部最优解。
5. 评估:在每一代中,遗传算法需要根据问题的特定要求,对每个个体的适应度进行评估。
适应度函数用于度量个体的优劣程度,通常越优秀的个体具有越高的适应度。
6. 迭代:通过不断地进行选择、交叉、变异和评估等操作,遗传算法逐代迭代,直到满足停止条件或达到最大迭代次数。
最终,遗传算法将输出找到的最优解或近似最优解。
二、遗传算法的应用遗传算法在许多领域都有广泛的应用,尤其是在复杂问题求解和优化搜索方面。
1. 组合优化问题:遗传算法可以用于求解组合优化问题,如旅行商问题、背包问题等。
通过编码问题的解和适应度函数的设计,遗传算法可以在大规模的搜索空间中找到最优解或近似最优解。
2. 机器学习:遗传算法可以用于机器学习中的特征选择、参数优化和模型优化等问题。
通过对候选解的编码和适应度函数的设计,遗传算法可以帮助机器学习算法找到更好的模型和参数组合。
电力系统中基于遗传算法的优化研究电力系统是国家经济发展的重要支柱之一,在电力系统的运行中,随着能量的转化,电力的质量和效率都成为了技术发展中需要优化的方面,因此,在电力系统中运用数学算法进行优化的研究得到了广泛的关注。
遗传算法是其中的一种重要算法,被广泛应用于电力系统中的优化问题,本文将重点阐述电力系统中基于遗传算法的优化研究。
1. 遗传算法简介遗传算法是模拟生物进化过程的一种计算方法,其基本模型由基因、染色体、适应度函数三部分组成。
基因是代码片段,编码了个体某一特定性状的信息。
染色体就是基因的集合,它代表了个体的一个完整的基因组,该染色体的变化是在演化过程中发生的。
适应度函数是用来评价个体之间优劣程度的函数,即在演化过程中,它的值能够反映个体对问题的适应性。
遗传算法通过复制、交叉、变异和选择这四个基本遗传操作,在各个群体中产出新的个体,使得良好的个体逐渐趋于优化。
2. 电力系统的研究优化问题电力系统中的优化问题是一个多目标的问题,与电力运行的安全性、经济性、环境保护等方面有关。
电力系统的问题主要包括发电机组的优化调度、电力质量的优化和电力的节约等方面。
2.1 发电机组的优化调度电力系统中的发电机组是整个系统的核心,其调度优化能否合理,直接影响到电力系统的质量和效率。
在发电机组的调度中,可以利用遗传算法来进行优化调度。
通过适当的传递优良特性的基因,使新的个体逐步趋于优良,不断优化,求得最优解。
2.2 电力质量的优化电力质量问题在电力系统内已经成为一个关键问题。
电力质量的优化主要是指在电力三相不平衡、电压闪变、频率跳变、电力谐波、电磁干扰等方面对电力质量进行有效的控制。
在优化过程中,可以利用遗传算法对问题进行分析和解决。
2.3 电力的节约在电力系统中,节约电力成为了一个重要课题。
通过遗传算法对于能源中节能的部分进行充分的探讨,能更好的研究和利用电力系统的优化问题。
3. 遗传算法在电力系统中的应用目前,在电力系统领域中,遗传算法已经被广泛应用,下面将分别介绍其在发电机组的优化调度、电力质量的优化和电力节约等方面的应用。
第1章遗传算法简介遗传算法(Genetic Algorithm)起始于20世纪60年代,主要由美国Michigan大学的John Holland与其同事和学生研究形成了一个较完整的理论和方法。
从1985年在美国卡耐基梅隆大学召开的第5届目标遗传算法会议(Intertional Conference on Genetic Algorithms:ICGA’85)到1997年5月IEEE的Transaction on Evolutionary Computation创刊,遗传算法作为具有系统优化、适应和学习的高性能计算和建模方法的研究逐渐成熟。
1.1遗传算法的产生与发展(略)1.2遗传算法概要1.2.1生物进化理论和遗传算法的知识遗传:变异:亲代和子代之间,子代和子代的不同个体之间总有些差异,这种现象称为变异,变异是随即发生的,变异的选择和积累是生命多样性的根源生存斗争和适者生存:下面给出生物学的几个基本概念知识,这对于理解遗传算法很重要。
染色体:是生物细胞中含有的一种微小的丝状化合物,是遗传物质的主要载体,由多个遗传因子—基因组成。
遗传因子(gene):DNA长链结构中占有一定位置的基本遗传单位,也称基因。
生物的基因根据物种的不同而多少不一。
个体(individual):指染色体带有特征的实体种群(population):染色体带有特征的个体的集合进化(evolution);生物在其延续生命的过程中,逐渐适应其生存环境使得其品质不断得到改良,这种生命现象称为进化。
生物的进化是以种群的形式进行的。
适应度(fitness):度量某个物种对于生存环境的适应程度选择(selection):指以一定的概率从种群中选择若干个体的操作复制(reproduction)交叉(crossorer)变异(musation):复制时很小的概率产生的某些复制差错编码(coding):DNA中遗传信息在一个长链上按一定的模式排列,也即进行了遗传编码。