Temati碳陶瓷温度计Carbon ceramic
- 格式:pdf
- 大小:174.43 KB
- 文档页数:4
e- 1 -Easy-to-use, intuitive operationAll instrument controls may be performed from the front panel. The heat source is positioned away from the panel. This design helps to protect the operator.The main functions on the CTC series are designed with one-key-one-function logic. This means that there are no sub-menus or diffi cult to remember multiple keystrokes neces-sary to access primary functions.The easy-to-read, backlit display features dedicated icons, which help in identifying instrument conditions and oper-ational steps.CTC-140 heating/cooling blockThe model CTC-140 features Peltier elements. In 1834, JeanPeltier, a French physicist found that an ’’opposite thermo-couple effect’’ could be observed when an electric currentwas connected to a thermocouple. Heat would be absorbedat one of the junctions and discharged at the otherjunction. This effect is called the ’’PELTIER EFFECT’’.The practical Peltier element (electronic heating pump) con-sists of many elements of semiconductor material that is con-nected electrically in series and thermally in parallel. Thesethermoelectric elements and their electrical interconnectionsare mounted between two ceramic plates. The plates serveto mechanically hold the overall structure together and toelectrically insulate the individual elements from one another.employ the MVI, thus avoiding such stability problems. TheMVI circuitry continuously monitors the supply voltage andensures a constant energy fl ow to the heating elements.The CTC-140 A does not require the MVI circuitry becausethe Peltier elements are energized with a stabilized DC vol-tage.Set temperatureThe ’’Up’’ and ’’Down’’ arrow keys allow the user to set theexact temperature desired with a resolution of 0.1°C or °F.Instrument setupsThe CTC series stores the complete instrument setup, inclu-ding: engineering units, stability criteria, resolution, displaycontrast, slope (ramp) rate, auto step settings, and maximumtemperature.Re-calibration/adjustmentsThe CTC series has a very easy and straightforward proce-dure for re-calibration/adjustment. There is no need for ascrewdriver or PC software. The only thing you need is areliable reference thermometer.Place the probe in the calibrator and follow the instructionson the display. Third-party labs and calibration facilities willbe able to perform this function if a certifi cate from an inde-pendent source is necessary. Of course, AMETEK can pro-vide you with a traceable calibration certifi cate from our labswhen you require a higher level of confi dence.Fast heating and coolingThe CTC-320 A and the CTC-650 A contain an innovativeheating block profi le. This design heats up in the CTC-320 Ato maximum temperature in just 4 minutes and the CTC-650A in only 10 minutes. The fast performance of the heatingblock is due to the special profi le that minimizes mass andyet, still accepts an insertion tube with a 1-inch outer dia-meter. This design is a balanced compromise between tem-perature stability / homogeneity and rapid heating / cooling.Deep immersion depthThe model CTC-320 B and CTC-650 B models offer a deeperimmersion depth of 200 mm (7.9 in.). If you have liquid-fi lledsensors or other sensors that require a deeper immersiondepth, look for the B versions. While the units do not heat andcool as quickly as their shorter counterparts, they offer thecapability to accommodate longer sensors.MVI - Improved temperature stabilityMVI stands for ’’Mains power Variance Immunity’’.Unstable mains power supplies are a major contributor toon-site calibration inaccuracies. Traditional temperature cali-brators often become unstable in production environmentswhere large electrical motors, heating elements, and otherdevices are periodically cycled on and off. The cycling ofsupply power can cause the temperature regulator to performinconsistently leading to both inaccurate readings and un-stable temperatures.The CTC series calibrators CTC-320 A/B and CTC-650 A/B- 2 -an RS-232 serial interface and the AMECAL-TEMPERATURE software. This WINDOWS ®-based software allows the user to customize his or her calibration routines. The software is easy-to-use so you do not have to be a programmer to con figure your own calibration procedures.Stability indicatorThe bold checkmark (√) on the display indicates that the calibrator has reached the desired set temperature and is stable. The operator may change the stability criteria and establish a greater sense of security in the calibration results. A convenient countdown timer is activated fi ve minutes before the unit reaches stability.Automatic switch testOperators can save a lot of time using the automatic ther-moswitch test function to fi nd values for the ’’Open ’’ and ’’Close ’’ temperatures. Additionally, this feature displays the hysteresis (deadband) between the two points. The feature ensures a very high repeatability when testing thermo-switches. Simply press the »SWITCH TEST « key to activate the function.Auto steppingThis feature saves manpower. The operator may stay inthe control room, or another remote location, monitoring the output from the sensor-under-test while the CTC series cali-brator is placed in the process and automatically changes the temperature using a programmed step value and rate. Up to 9 different temperature steps may be programmed, including the hold time for each step.This feature is also ideal for burning-in new sensors prior to installation; this minimizes initial drift and allows for initialtesting. It is also useful for testing temperature data loggers.The software features prompts, menus, and help functions that guide you through the con fi guration process.The AMECAL-TEMPERATURE software supports automatic calibration for all JOFRA dry-block calibrators equipped with an RS-232 serial data interface including the JOFRA DTI-1000 digital thermometer. For semi-automatic cali-brations, the software also supports liquid baths, ice points, or other dry-block heating and cooling sources. Using the software ’s ’’SCENARIO ’’ function allows for combining instru-ments in virtually any con fi guration.The calibration data collected may be stored on a PC for laterrecall or analysis.Maximum temperatureFrom the setup menu, the user can select the maximum temperature limit for the calibrator. This function prevents damage to the sensor-under-test caused by the application of excessive temperatures. The feature also aids in reducing drift resulting from extended periods of exposures to high temperatures. This feature can be locked with an accesscode.- 3 -AMECAL-TEMPERATURE softwareListed are the minimum hardware requirements needed for running the AMECAL-TEMPERA TURE calibration software.• INTEL TM 486 processor(PENTIUM TM 200 MHz recommended)• 16 MB RAM (32 MB recommended)• 40 MB free disk space on hard disk prior to installation • Standard VGA (640 x 480, 16 colors) compatible screen (800 x 600, 256 colors recommended)• CD-ROM drive for installation of the program • 1 or 2 free RS-232 serial ports, depending on con fi gurationMains speci fi cationsVoltage CTC-140/320/650......115V(90-127) 230V(180-254)Voltage CTC-650 B...............115V(100-127) 230V(200-254)Frequency ..............................................................45 - 65 Hz Power consumption (max.) CTC-140 A.......................150 VA Power consumption (max.) CTC-320 A.....................1150 VA Power consumption (max.) CTC-320 B......................600 VA Power consumption (max.) CTC-650 A/B.................1150 VA Temperature rangeCTC-140 AMaximum..........................................................140°C (284°F)*********************°C (32°F)...........-30°C (-22°F)**********************°C (73°F)...............-17°C (1°F)**********************°C (104°F)...........-2°C (28°F)CTC-320 A/B..............................50 to 320°C (122 to 608°F)CTC-650 A/B .............................50 to 650°C (122 to 1202°F)Resolution (user-selectable)Selectable ........................................................1° or 0.1°C/°F StabilityCTC-140 A.................................................+0.05°C (+0.09°F)CTC-320 A/B................................................+0.1°C (+0.18°F)CTC-650 A/B ...............................................+0.1°C (+0.18°F)Measured after the stability indicator has been on for 10 minutes. Measuring time is 30 minutes.Time to stability (approximate)All models .............................................................10 minutes AccuracyCTC-140 A.....................................................+0.5°C (+0.9°F)CTC-320 A/B.................................................+0.5°C (+0.9°F)CTC-650 A/B ...............................................+0.9°C (+1.62°F)Speci fi cation when using the internal reference. (Load 4 mm OD reference probe in the center of the insert).Immersion depthCTC-140 A (insulation included).................. 115 mm (4.5 in.)CTC-320 A/ CTC-650 B................................110 mm (4.3 in.)CTC-320 B/ CTC-650 B................................190 mm (7.5 in.)Heating timeCTC-140-17 to 23°C (1 to 73°F).............................................4 minutes 23 to 140°C (73 to 284°F).......................................9 minutes CTC-320 A50 to 320°C (122 to 608°F).....................................4 minutes CTC-650 A50 to 650°C (122 to 1202°F).................................10 minutes CTC-320 B50 to 320°C (122 to 608°F)...................................20 minutes CTC-650 B50 to 650°C (122 to 1202°F).................................37 minutesCooling timeCTC-140 A100 to 0°C (212 to 32°F).......................................10 minutes 0 to -15°C (32 to 5°F)............................................16 minutes 140 to 100°C (284 to 212°F)...................................2 minutes CTC-320 A320 to 100°C (608 to 212°F).................................16 minutes CTC-650 A650 to 100°C (1202 to 212°F)................................28 minutes CTC-320 B320 to 100°C (608 to 212°F).................................22 minutes CTC-650 B650 to 100°C (1202 to 212°F)................................62 minutes Switch input (dry contact)Test voltage ...............................................Maximum 5 VDC Test current ................................................Maximum 2.5 mA - 4 -Instrument dimensionsCTC-140 A, CTC-320 A, CTC-650 AL x W x H:..............241 x 139 x 325 mm (9.5 x 5.5 x 12.8 in.)CTC-320 B, CTC-650 BL x W x H:..............241 x 139 x 408 mm (9.5 x 5.5 x 16.1 in.)Instrument weightCTC-140 A..........................................................6.5 kg (14 lb)CTC-320 A............................................................5 kg (11 lb)CTC-650 A.........................................................6.4 kg (14 lb)CTC-320 B.........................................................6.7 kg (15 lb)CTC-650 B.......................................................10.4 kg (23 lb)Insert dimensionsCTC-140 ADiameter x length...........19 mm (0.75 in.) x 100 mm ( 3.9 in.)CTC-320 A, CTC-650 ADiameter x length.................26 mm (1 in.) x 120 mm (4.7 in.)CTC-320 B, CTC-650 BDiameter x length.................26 mm (1 in.) x 200 mm (7.9 in.)Weight of non-drilled insert (approximate)CTC-140 A.........................................................73 g (2.6 oz)CTC-320 A......................................................164 g (5.8 oz)CTC-650 A.....................................................506 g (17.8 oz)CTC-320 B......................................................277 g (9.8 oz)CTC-650 B.....................................................858 g (30.3 oz)Shipping (+ std. accessories + carrying case)Weight: CTC-140 A .......................................12.9 kg (28.4 lb)Weight: CTC-320 A.......................................12.2 kg (26.8 lb)Weight: CTC-650 A..........................................13.6 kg (30 lb)Weight: CTC-320 B.......................................13.9 kg (30.6 lb)Weight: CTC-650 B.......................................17.6 kg (38.7 lb)Size: LxWxH...........507 x 232 x 415 mm (20 x 9.1 x 16.3 in.)Shipping (+ std. accessories but no carrying case)Weight: CTC-140 A .........................................9.9 kg (21.8 lb)Weight: CTC-320 A.........................................9.2 kg (20.2 lb)Weight: CTC-650 A.......................................10.6 kg (23.3 lb)Size: (A) LxWxH...410 x 250 x 370 mm (16.1 x 9.8 x 14.6 in.)Weight: CTC-320 B..........................................10.9 kg (24 lb)Weight: CTC-650 B.......................................14.6 kg (32.1 lb)Size: (B) LxWxH..480 x 235 x 440 mm (18.9 x 9.3 x 17.3 in.)Shipping (carrying case only)Weight: ..............................................................5.0 kg (11 lb)Size: LxWxH...........507 x 232 x 415 mm (20 x 9.1 x 16.3 in.)MiscellaneousOptional: Serial data interface ...........RS-232C (9-pin Male)Operating temperature.......................0 to 40°C (32 to 104°F)Storage temperature........................-20 to 50o C (-4 to 122o F)Humidity ............................................................0 to 90% RH Protection class ..............................................................IP-10CE Conformity..............................EN61326-1 : 1997/A1:1998EN61010-1 : 1993/A2:1995Automatic switch testFinds switching temp. .......................Open, close, hysteresis Slope rate, programmable ............................0.1 to 9.9 °C/°F Auto steppingProgrammable....................................................Up to 9 steps Dwell time on each step..................................Programmable Enhanced stabilityUnstable mains protection.................................MVI Circuitry Stability indication............................................Yes, in display Multi-information displayStability indicator..........................................Clear checkmark Countdown timer before stable...............................5 minutes Temperature.........................SET and READ simultaneously Alphanumeric messages...................................................Yes Calibration status icons.....................................................Yes Training mode (heating/cooling block disabled)Simulation of all functions.................................................Yes Simulating heating and cooling........Approx. 100° per minute Service facilitiesAdjustment of the unit from the keypad............................Yes Self explaining guide in display.........................................Yes Other information..............................Displays serial number,software revision level, and last calibration date Setup facilitiesStability criteria..............Extra time before ’’stable indication ’’is shownDisplay resolution..............................................0.1° or 1°C/°F Temperature units...................................................°C and °F Slope rate....................................................0.1 to 9.9°/minute Maximum temperature.......................Any value within range- 5 -Carrying caseThe optional protective carrying case ensures safe transportation and storage of the instrument and all associated equip-ment.Heat shieldAn external heat shield is available and may be placed on top of the cali-brator to reduce the hot air stream around the sensor-under-test. This is especially important for testing thermo-couples having head-mounted transmitters with cold-junction com-pensation.Standard delivery CTC-140/320/650• CTC dry-block calibrator (user speci fi ed)• Mains power cable (user speci fi ed)• Traceable certi fi cate - temperature performance • Insert (user speci fi ed)• 3 pcs. insulation plugs for:6, 10, 13 mm (1/4, 3/8, 1/2 in.) sensors (CTC-140 only)• Tool for insertion tubes• User ’s manual (multi-language)• Reference manual (English)• T est cables (1 x red, 1 x black)• Optional RS-232 cable• Optional calibration software, AMECAL-TEMPERA TUREInsulation tube and plates Improve your calibration uncertainty by insulating the sensor-under-test.Minimize the heat dissi-pation from the top of the block and through the sensor-under-test. This insulation is important for all dry-block calibrators without the dual-zoneheating block.Part no. Description 123198 CTC series, reference manual123199 CTC series, user manual 123408 Carrying case for version A123409 Carrying case for version B122832 Cleaning brush, 4 mm (3/Pkg) 60F174 Cleaning brush, 6 mm (3/Pkg) 122822 Cleaning brush, 8 mm (3/Pkg) 60F135 Mains cable, 115V , USA, Type B 60F139 Mains cable, 220V , Australia, Type F60F138 Mains cable, 220V , Italy, Type E 60F137 Mains cable, 220V , South Africa, Type D 60F141 Mains cable, 230V , Denmark, Type G60F140 Mains cable, 230V , Europe, Type A 60F143 Mains cable, 230V , Israel, Type I 60F142 Mains cable, 230V , Switzerland, Type H60F136 Mains cable, 240V , UK, Type C 105366 RS-232 cable 104203 Test cable set 104216 Heat shield 60F170 Tool for insertion tube123469 Insulation plug (CTC-140 A only) 3 pcs.for 6 mm (1/4 in.), 10 mm (3/8 in.), 13 mm (1/2 in.) 65-F100 Insulation tube 100 mm (4 in.) 105173 10 insulation plates105813AmeCal-Temperature, PC calibration software- 6 --140 A 320 A 650 A 320 B 650 B Probe diameter part no. part no. part no. part no. part no.3 mm 123428 123436 123444 N/A N/A4 mm 60F 451 100177 100196 60F 359 60F 4235 mm 123429 123437 123445 123452 1234606 mm 60F 453 100179 100198 60F 361 60F 4257 mm 123430 123438 122516 123453 123461 8 mm 105185 100182 100201 105190 105195 9 mm 105186 100183 100202 105191 105196 10 mm 105187 100185 105188 105192 105197 11 mm 123431 100188 100204 105193 105198 12 mm 123432 100186 100206 105194 105199 13 mm 123433 60F 339 105189 123454 12346214 mm N/A 100190 100208 123455 123463 15 mm N/A 100191 100209 123456 123464 16 mm N/A 123439 123446 123457 123465 18 mm N/A 123440 122517 123458 123466 20 mm N/A 123441 122518 123459 123467 Multi-hole type 1123479 123475 123476 N/A N/AInserts - predrilled - metric*Note: CTC-140 only: All multi-hole inserts are delivered with a matching insulation plug.140 A 320 A 650 A 320 B 650 B Probe diameterpart no. part no. part no. part no. part no.1/8 in. 60F 450 100176 100195 60F 358 60F 422 3/16 in. 60F 452 100178 100197 60F 360 60F 424 1/4 in. 60F 454 100180 100199 60F 362 60F 426 5/16 in. 60F 456 100181 100200 60F 364 60F 4283/8 in. 60F 458 100184 100203 60F 366 60F 430 7/16 in. 60F 460 100187 100205 60F 368 60F 432 1/2 in. 60F 462 100189 100207 60F 370 60F 434 9/16 in. 60F 464 60F 344 60F 408 60F 372 60F 436 5/8 in. 60F 466 100192 100210 60F 374 60F 438 11/16 in. N/A 60F 348 60F 412 60F 376 60F 4403/4 in. N/A 100193 100211 60F 378 60F 44213/16 in. N/A 60F 352 60F 416 105184 60F 4447/8 in. N/A 60F 354 60F 418 60F 377 60F 446 Multi-hole type 2 123480 123477 123478 N/A N/A Inserts - predrilled - imperial (inch)*Note: CTC-140 only: All multi-hole inserts are delivered with a matching insulation plug.General inserts descriptionInserts for CTC-140 A and CTC-320 A/B are made of alumi-num. Inserts for CTC-650 A/B are made of brass.All speci fi cations about hole sizes are referring to the outer diameter of the sensor-under-test.The correct clearance size is applied in all predrilled inserts Special drilled inserts on request.- 7 -140 A 320 A 650 A 320 B 650 B Inserts part no. part no. part no. part no. part no.5-pack, undrilled insertion tubes 60F448 10017510019460F35660F420Inserts - undrilledUndrilled inserts (CTC-140 A)Multi-hole type 2(CTC-140 A)1/8 in Multi-hole type 2(CTC-320 A/650 A)Multi-hole type 1(CTC-140 A)Multi-hole type 1(CTC-320 A/650 A)Undrilled inserts (CTC-320 A/B)(CTC-650 A/B)AMETEK is a leading global manufacturer of electrical and electromechanical products for niche markets. Listed on the New Y ork Stock Exchange (AME) since 1930, AMETEK ’s annual sales are approaching $1billion. Operations are in North America, Europe and Asia, with about one third of sales to markets outside the United States.ISO 9001ManufacturerModel CTC series dry-block temperature calibratorsOrder number Description Base model number - 1st thru 7th charactersCTC140A CTC-140, -17 to 140°C (-1 to 284°F)CTC320A CTC-320 A, 50 to 320°C (122 to 608°F)CTC650A CTC-650 A, 50 to 650°C (122 to 1202°F)CTC320B CTC-320 B, 50 to 320°C (122 to 608°F). Deep immersion depth CTC650B CTC-650 B, 50 to 650°C (122 to 1202°F). Deep immersion depth Power supply - 8th thru 10th characters 115 115VAC, 50/60Hz 230 230VAC, 50 Hz Mains power cable type - 11th characters A EUROPEAN, 230V , B USA/CANADA, 115V C UK, 240V D SOUTH AFRICA, 220V E IT AL Y, 220V F AUSTRALIA, 240V G DENMARK, 230V H SWITZERLAND, 220V I ISRAEL, 230V Insert type and size - 12th thru 14th characters 003 Metric, pre-drilled, 3 mm 004 Metric, pre-drilled, 4 mm 005 Metric, pre-drilled, 5 mm 006 Metric, pre-drilled, 6 mm 007 Metric, pre-drilled, 7 mm 008 Metric, pre-drilled, 8 mm 009 Metric, pre-drilled, 9 mm 010 Metric, pre-drilled, 10 mm 011 Metric, pre-drilled, 11 mm 012 Metric, pre-drilled, 12 mm 013 Metric, pre-drilled, 13 mm 014 Metric, pre-drilled, 14 mm (Not available for CTC-140) 015 Metric, pre-drilled, 15 mm (Not available for CTC-140) 016 Metric, pre-drilled, 16 mm (Not available for CTC-140) 018 Metric, pre-drilled, 18 mm (Not available for CTC-140) 020 Metric, pre-drilled, 20 mm (Not available for CTC-140) 125 Inch, pre-drilled, 1/8 in. 187 Inch, pre-drilled, 3/16 in. 250 Inch, pre-drilled, 1/4 in. 312 Inch, pre-drilled, 5/16 in. 375 Inch, pre-drilled, 3/8 in. 437 Inch, pre-drilled, 7/16 in. 500 Inch, pre-drilled, 1/2 in. 562 Inch, pre-drilled, 9/16 in. 625 Inch, pre-drilled, 5/8 in. 688 Inch, pre-drilled, 11/16 in. (Not available for CTC-140) 750 Inch, pre-drilled, 3/4 in. (Not available for CTC-140) 813 Inch, pre-drilled, 13/16 in. (Not available for CTC-140) 875 Inch, pre-drilled, 7/8 in. (Not available for CTC-140) M01 Multi-hole insert type 1 (Not available for B models) M02 Multi-hole insert type 2 (Not available for B models) Options - 15th thru 18th characters B RS-232 interface and AMECAL-TEMPERATURE PC-software C Carrying case F T raceable certi fi cate (standard for Europe, Asia, Australia and Africa) G NIST traceable certi fi cate (standard for Western Hemisphere) H Accredited certi fi cate X Placeholder character for unused option CTC650A 230 A M01 CFXX Sample order number (all 18 characters)JOFRA CTC-650 A series dry-block, 230VAC power with European power cord and insert: Pre-drilled multi-hole type 1 (1 x 3mm, 1 x 4mm., 1 x 5mm, 1 x 6mm, 1 x 9mm) including carrying case and traceable certi fi cate.AMETEK Test & Calibration Instruments。
Infrared thermometer KIRA Y 300 is a thermometer used to diagnose, inspect and check any temperature. Thanks to its elaborated optical system with a dual laser sighting, it allows easy and accurate measurements of little distant targets. The KIRA Y 300 instrument has an internal memory which can save up to 100 measurements. Compatible with thermocouple K probe.Make sure that the target is larger than the size of the laser sighting.DIST ANCE FROM THE TARGETKIRAY 300Infrared thermometerDistance Diameter127025403810mm 25.450.876.2mmD:S=50:150.8 mm to 2540 mmYES NOSupplied with thermocouple KprobeTECHNICAL FEA TURES●Instrument features●Thermocouple K probe features*Accuracy for an ambient temperature from 23 to 25°C (with a relative humidity lower than 80% RH)Spectral response 8 -14 µmOptical D.S : 50:1 (50.8 mm at 2540 mm) Response time 150 msTemperature range From -50 to +1850 °CAccuracy*From -50 to +20 °C : ±3 °CFrom +20 to +500 °C : ±1% ±1 °C From +500 to +1000 °C : ±1.5%From +1000 to +1850 °C : ±2%Infrared repeatability From -50 to +20 °C : ±1.5 °CFrom +20 to +1000 °C : ±0.5% or ±0.5 °C From +1000 to +1850 °C : ±1%Display resolution 0.1 C °EmissivityAdjustable from 0.10 to 1.00 (pre-set at 0.95)Over range indication Display indication : « ---- »Dual laser sighting Wavelength : from 630 nm to 670 nm Output < 1mW, Class 2 (II))Positive or negative temperature indication Automatic (no indication for a positive temperature)(-) sign for a negative temperature Display3 lines,4 digits with backlighted display LCD Auto-extinction Automatic after 7 seconds of inactivity High/low alarm Flashing signal on display and beep signal with adjustable thresholds Power supply Alkaline 9 V batteryAutonomy95 h (inactive laser and backlight)15 h (active laser and backlight)Use temperature From 0 to +10 °C for a short period From 11 to +50 °C for a long period Storage temperature From -10 °C to +60 °CRelative humidity From 10% to 90%RH in operating mode and >80%RH in storage Dimensions 200 x 140 x 50 mm Weight320 g (included battery)Memory100 temperature valuesTemperature range From -40 to +400 °C Display range From -50 to +1370 °C Resolution0.1 °CAccuracy ±1.5% of reading ±3 °C Cable length1 mBacklight, laserand recording buttonKIRA Y 300 INSTRUMENT DESCRIPTIONKIRA Y 300 INSTRUMENT BUTTONSLaser sighting output LCDbacklighted display Up button Mode buttonDown button Laser sighting outputIR sensor (infrared)Probe input Trigger (ENT)Battery compartment1 - Up button. It allows to increment emissivity and high and low alarm thresholds and to go to the following recorded value. It also allows to navigate between MAX, MIN, AVG and LOG.2 – Backlight/laser button. It allows to activate or to deactivate laser backlight of the screen.You can also saved a value.3 - Mode button. It allows to navigate through the modes (MAX and MIN values, DIF and AVG,emissivity, high and low alarms, unit of measurement).4 - Down button. It allows to decrement emissivity and high and low alarm thresholds and to go to the following recorded value. It also allows to navigate between MAX, MIN, AVG and LOG.1234MODESet emissivity (EMS)with up and down buttons.ε=OFFActivate or deactivate lock ofmeasurement with up or down buttons.MODEActivate or deactivate high alarm.MODEOFF35°CSet high alarm with up and down buttons.MODEOFF15°CMODEActivate or deactivate low alarm.Set low alarm with up and down buttons.MODE = mode button ENT = trigger●H●HL●L●MODEMODENavigate with up and down buttons between the different values.MAX/MIN/DIF/AVG/LOG ENT MODESet technical unit with up and down buttons15°CMODES FLOW CHARTMODE MAX/MIN/DIF /A VG/LOG FLOW CHARTMAX MODE ouou Display max value MINouAVG Display the average calculated onone measurement.ouDIFDisplay the difference between the MAX and MIN temperatures.ou LOG Display recorded temperatures and save a temperature with SETbutton.Display min valueENTButton to access to batteryOPERA TING MODE- Push on the ENT trigger to turn on the instrument. The backlighted screen, indicating temperature and laser, turn on.- Keep ENT pressed. Put the laser sighting at the middle of the area you want to measure.- Release ENT.- Read the displayed temperature. (Display stays activated during 7 seconds after the last manipulation).- HOLD appears at the top left of the screen ; measurement stays displayed.- Press UP or DOWN button to change technical unit.- High alarm : when KIRA Y300 instrument is turned on, press MODE until H flashes at the top of the screen to the right. Press UP or DOWN button to activate or deactivate the alarm, then press MODE to adjust the alarm threshold. Increment threshold with UP button and decrement threshold with DOWN button.To return on measurement, press ENT ;press MODE to switch to next mode.- Low alarm : when KIRA Y300 instrument is turned on, press MODE until L flashes at the top of the screen to the right. Press UP or DOWN button to activate or deactivate the alarm, then press MODE to adjust the alarm threshold. Increment threshold with UP button and decrement threshold with DOWN button.To return on measurement, press ENT ;press MODE to switch to next mode.Mode buttonIt allows to set measurement type : emissivity, lock, high alarm, low alarm, record values, etc ... by pressing as many times on this button.- EMS : when KIRA Y300 instrument is turned on, press MODE until ε=flashes. Set emissivity pressing UP button to increment it or down button to decrement it. Emissivity is pre-set on 0.95.To return on measurement, press ENT ;press MODE to switch to next mode.- Lock : when KIRA Y300 instrument is turned on, press MODE until the lock at the top of the screen flashes and OFF displays. Press UP or DOWN button to put the lock ONPress MODE to switch to the next mode, or press once ENT : the KIRA Y300 instrument takes continuous measurement. To cancel the lock, press once ENT.ENTMODE1 - Unit of measurement (°C / °F)2 - Low battery indicator3 - LOG value (recorded value), EMS (emissivity) andTK (K thermocouple probe)4 - LOG, EMS, TK indicator5 - Temperature value6 - MAX and AVG (average) indicator7 - Current measurement indicator8 - HOLD (fixed measurement) indicator9 - MAX, MIN, AVG, DIF value10 - Laser operation indicator11 - Continuous measurement indicator12 - High alarm indicator13 - Low alarm indicator14 - MIN and DIF (difference between MIN and MAX values) indicator DISPLA YCOMMAND BUTTONSTrigger- Turning on the instrument.- ENT pressed : activation of the laser sighting and of the temperature measurement.While maintaining ENT key, it is possible to change the value of the emissivity by pressing UP or DOWN.Still maintaining ENT key, it is possible to visualize the MAX, MIN, DIF, AVG values by pressing the MODE button.- ENT released : Display is on HOLD (fixed HOLD), and gives the last measurement. The screen stays on 7 seconds. If no buttons are activated and if continuous measurement is inactive, the instrument turns off after 7 seconds.- °C / °F : when KIRA Y300 instrument is turned on, press MODE until technical unit flashes at the right of the displayed value. Press UP or DOWN button to change unit : °C or °F degree.To return on measurement, press ENT ;press MODE to switch to next mode.During a measurement, the emissivity value isautomatically displayed at the bottom left of the screen.But if the thermocouple K probe is connected, themeasured value by the probe will be displayed at thebottom left of the screen.LOG : while a measurement (ENT pressed or lock activated), pressMODE until LOG appears at the bottom of the screen to the left.At the top of the screen, a number between 1 and 100 is also shown ;it is the LOG location. If nothing has been recorded 4 dashed line«----» appears while the temperature corresponding to the numberappears if a temperature has been recorded.To save a temperature, you have to be on LOG mode, then choose anempty location (---- visible) and press laser/backlight button duringmeasurement or the measurement is fixed (HOLD).From this mode, you can also clear all the recorded temperatures :press and hold the trigger and press DOWN button at the same timeuntil reach zero recording, then press laser/backlight button whilekeep ENT pressed. A beep is emitted and LOG location willautomatically change to “1”, signifying that all data locations havebeen cleared.To avoid any inconvenience:• Do not aim directly or indirectly (reflection on reflective surfaces) the laser in the eyes.• Change the batteries when the indicator blinks.• Do not use the thermometer around explosive gas, vapor or dust • Do not leave the device with the lock on (lock at the top right of the screen) because in this configuration, the instrument does not turn off automatically.To prevent damage on your instrument or equipment please carefully respect these conditions :EN 61326-1 : 2013 and EN 61326-2 : 2013This device meets with following standards' requirements.● Transport case ●User manual● Thermocouple K probe ●TripodInfrared thermometers can measure the surface temperature of an object. Its optic lens catches the energy emitted and reflected by the object. This energy is collectedand focused onto a detector. This information is displayed as temperature. The laser pointer is only used to aim at the target.N T a n g - K I R A Y 300 – 29/10/18 - R C S (24) P ér i g u e u x 349 282095 N o n -c o n t r a c t u a l d o c u m e n t - W e r e s e r v e t h e r i g h t t o m o d i f y t h e c h a r a c t e r i s ti c s o f o u r p r o d u c t s w i t h o u t p r i o r n o t i c e .CE CERTIFICA TIONTo install or change the 9V battery, open the part near the trigger and put it in the battery compartment..ACCESSORIESLaser sightingInfrared sensorEmitted energy by the object in the form of radiationEMISSIVITYEmissivity is a term used to describe the energy-emitting characteristics of materials.Most (90% of typical applications) organic materials and painted or oxidized surfaces have an emissivity of 0.95 (pre-set in the unit). Inaccurate readings will result from measuring shiny or polished metal surfaces. To compensate; cover the surface to be measured with masking tape or flat black paint. Allow time for the tape to reach the same temperature as the material underneath it. Measure the temperature of the tape or painted surface.See table below for values of emissivity of specific materials : IMPORT ANT INFORMA TIONFor correct measurements :• Do not take any measurement on metal or shiny or reflective surfaces.• Do not measure through transparent surfaces such as glass, for example.• Water vapor, dust, smoke, etc ... may prevent correctmeasurements because they obstruct the optical of the instrument.• Make sure that the target is larger than the size of the aiming point of laser.nonA pro tég er d es ch am p s électriq u es et m ag n étiq u es et d e l'électricité statiq u e To protect from electric and magnetic fields of static electricityProtect from thermalshockMAINTENANCEInfrared thermometer, how does it work?Once returned, required waste collection will be assured in the respect of the environment in accordance to 2002/96/CE guidelines relating to WEEE.Aluminium 0.30Asbestos 0.95Asphalt 0.95Basalt 0.70Brass 0.50Brick 0.90Carbon 0.85Ceramic 0.95Concrete 0.95Copper 0.95Dirt0.94Frozen food 0.90Hot food 0.93Glass 0.85Water 0.93Fresh foodstuffs between 0 and 5 °C0.90Ice 0.98Iron 0.70Lead 0.50Limestone 0.98Oil 0.94Paint 0.93Paper 0.95Plastic 0.95Rubber 0.95Sand 0.90Skin0.98Snow 0.90Steel 0.80Textile 0.94Wood 0.94。
Drucktransducer mit kapazitivem, keramischen DrucksensorAnwendungsgebietDrucktransducer für den Einsatz zur Druckmessung von flüssigen und gasförmigen Medien.Ihre VorteileTrockener kapazitiver Keramiksensor mit hochreiner Al 2O 3 Keramik •hohe Überlastfestigkeit •sehr gute Langzeitstabilität •hohe Korrosionsbeständigkeit•digitaler/analoger Signalausgang (SPI, UART, U)•kleine Baugröße•Messbereiche von 0 … 100 mbar (0 … 1,5 psi) bis 0 … 100 bar (0 … 1 500 psi)•optionaler Temperaturausgang, Schaltausgang •Sondermessbereiche auf AnfrageProducts Solutions ServicesTechnische Information Ceracore UTC30ProzessdruckmessungTI01296O/00/DE/01.1871393817Ceracore UTC302Endress+HauserInhaltsverzeichnisHinweise zum Dokument (3)Dokumentfunktion ............................3Verwendete Symbole ...........................3Begriffe und Abkürzungen .......................4Turn down Berechnung .........................5Arbeitsweise und Systemaufbau (6)Messprinzip .................................6CARMEN .. (6)Eingang ..................................7Gemessene Prozessgröße ........................7Messbereich (7)Ausgang (8)Ausgangssignal ..............................8Signalbereich und Ausfallsignal des Spannungsausgan-ges .......................................8Verhalten im Fehlerfall .........................8Totzeit, Zeitkonstante ..........................9Dynamisches Verhalten .........................9Dämpfung ..................................9Einschaltzeit ................................10Anwärmzeit .. (10)Energieversorgung (11)Versorgungsspannung .........................11Stromaufnahme .............................11Anschluss des Sensors . (11)Leistungsmerkmale (13)Referenzbedingungen .........................13Referenz-Genauigkeit ..........................13Langzeitstabilität . (13)Montage (13)Einfluss der Einbaulage ........................13Umgebung (14)Umgebungstemperaturbereich ....................14Lagerungstemperaturbereich .....................14Schutzart ..................................14Klimaklasse ................................14Elektromagnetische Verträglichkeit (EMV)...........14Überspannungsschutz .........................14Schwingungsfestigkeit .........................14Prozess (15)Prozesstemperaturbereich .......................15Prozesstemperaturbereich, Dichtungen ..............15Druckangaben (15)Konstruktiver Aufbau (16)Gerätehöhe ................................16Gehäuse ..................................17Prozessanschlüsse . (17)Werkstoffe (19)Zertifikate und Zulassungen (20)RoHS .....................................20Druckgeräterichtlinie 2014/68/EU (DGRL)...........20Externe Normen und Richtlinien ..................20Kalibration; Einheit ...........................21Dienstleistung ..............................21Werkszeugnisse (auf Anfrage)....................21Bestellinformationen .......................22Zubehör .................................22Ergänzende Dokumentation ..................23Kontaktadressen ..........................23Ceracore UTC30Endress+Hauser 3Hinweise zum DokumentDokumentfunktionDas Dokument liefert alle technischen Daten zum Gerät und gibt einen Überblick über die bestellba-ren Geräteausführungen und Zubehör.Verwendete SymboleWarnhinweissymboleSymbole für InformationstypenSymbole in GrafikenCeracore UTC304Endress+HauserCeracore UTC30Endress+Hauser 5Turn down BerechnungURL = URVLRV LRL A0036653Ceracore UTC306Endress+HauserArbeitsweise und SystemaufbauMessprinzipKernstück des UTC30 bildet das kapazitive keramische Sensorelement. Das Basismaterial Al 2O 3 ist eine gegen viele aggressive Gase und Flüssigkeiten hochbeständige Keramik. Zwei zylindrische Kera-mikteile (Prozessmembran und Grundkörper) werden mechanisch hochfest und hermetisch dicht miteinander verbunden. Bei Absolutdrucksensoren bleibt das im Herstellprozess erzeugte Vakuum von 3,0 x 10-6 mbar zwischen Prozessmembran und Grundkörper dauerhaft bestehen. Das ermög-licht Druckmessungen bezogen auf das Vakuum. Bei Relativdrucksensoren wird die Rückseite der Prozessmembran belüftet, d.h. dieser Sensor misst den Überdruck relativ zum Atmosphärendruck.Das Sensorelement stellt elektrisch einen Plattenkondensator dar, dessen Kapazitätsänderung das Maß für die Druckänderung ist. Das kapazitive Messverfahren erfüllt höchste Anforderungen an Auflösung und Reproduzierbarkeit. Zusammen mit dem hysteresefreien Verhalten des Materials Al 2O 3 bildet es die Basis für die sehr guten technischen Daten des Drucktransducers. Zusätzlich ist das Sensorelement eine trockene Messzelle, d.h. es gibt keine Trennmembran oder Ölfüllung, welche die Messung beeinflussen könnte. Ein weiterer entscheidender Vorteil des kapazitiven keramischen Sensors ist seine hohe Überlastfestigkeit. Nach der Wegnahme der Überlast kehrt die Prozessmemb-ran ohne Schaden und ohne Hysterese in die Ausgangslage zurück.A Relativdruck-ZelleB Absolutdruck-Zelle 1Cr-Elektrode 2Cp-Elektrode 3Lotring4Gegenelektrode 5Grundkörper 6Prozessmembran p atm AtmosphärendruckCARMENDer ASIC CARMEN wird in Sensoranwendungen genutzt um physikalische Größen (z.B. Druck) durch externe kapazitive oder resistive Sensoren in industrieller Umgebung zu messen.Jeder Sensortyp hat seine individuellen Eigenschaften. Diese physikalischen Eigenschaften müssen durch CARMEN individuell kompensiert werden. CARMEN führt dabei folgende Aufgaben aus:•Messung des externen Sensors (Kapazitätsdifferenz, Spannungsdifferenz, Temperatur)•Kompensation von Sensoroffsets •Anpassung der Verstärkung•Linearisierung der Sensorcharakteristik •Kompensation von Temperatureffekten•Ausgabe der korrigierten und kompensierten Messwerte •zusätzliche Funktionen (Dämpfung, Filterung, etc.)Erläuterungen zur Funktionalität und Kommunikation sind in den S&C CARMEN Manuals aufge-führt → 23Ceracore UTC30Endress+Hauser 7EingangGemessene Prozessgröße•Relativdruck oder Absolutdruck •Temperatur Messbereich1)höher auf Anfrage 2)auf AnfrageCeracore UTC308Endress+HauserAusgang1)Auf AnfrageSignalbereich und Ausfallsig-nal des Spannungsausganges1Kalibrierter Messbereich 2Erweiterter MessbereichDer Signalbereich sowie das Ausfallsignal ist an NAMUR NE 43 angelehnt. Das Ausfallsignal ist kon-figurierbar.Verhalten im Fehlerfallsiehe S&C CARMEN ManualCeracore UTC30Totzeit, Zeitkonstante Darstellung der Totzeit und der Zeitkonstante:1% des MesswertesDynamisches Verhalten 1)Die maximal einstellbare Messrate zur Messwertaufnahme beträgt 1,25 ms, allerdings ist die maximale Geschwindigkeit des Digitalausgangs auf2,5 ms begrenzt.Dämpfung Kundenspezifisch einstellbar: 0...40 sEndress+Hauser9Ceracore UTC3010Endress+HauserEinschaltzeitDie Einschaltzeit ist die verstrichene Zeit vom Einschalten der Versorgungsspannung bis zur Bereit-stellung des ersten Digitalwertes bzw. initialem Analogwert.1)Die maximal einstellbare Geschwindigkeit zur Messwertaufnahme beträgt 1,25 ms, allerdings ist die maxi-male Geschwindigkeit des Digitalausgangs auf 2,5 ms begrenzt.AnwärmzeitDie Anwärmzeit ist die verstrichene Zeit vom Einschalten der Versorgungsspannung bis zum ersten digitalen Messwert bzw. Analogwert innerhalb der spezifizierten Referenzgenauigkeit (z.B. 0,1 %Spanne).1)Die maximal einstellbare Geschwindigkeit zur Messwertaufnahme beträgt 1,25 ms, allerdings ist die maxi-male Geschwindigkeit des Digitalausgangs auf 2,5 ms begrenzt.Energieversorgung1)andere Werte auf AnfrageStromaufnahme‣Auf korrekte Polung achten.HINWEISFalscher analoger Messwert durch Leitungsbruch von GND!‣Leitungsbruch von GND verhindern.Buchsenleiste 2x5 Pins (1,27 mm (0,05 in) Raster)Stiftleiste 2x5 Pins (2,54 mm (0,1 in) Raster)LeistungsmerkmaleReferenzbedingungen•nach IEC 60770•Umgebungstemperatur T U = konstant, im Bereich: +23 … +27 °C (+73 … +81 °F)•Relative Feuchte j = konstant, im Bereich: 5 ... 80 % r.F.•Umgebungsdruck p U = konstant, im Bereich: 860 … 1060 mbar (12,47 … 15,37 psi)•Lage der Messzelle = konstant, im Bereich: Prozessmembrane zeigt nach unten (siehe auch Kapitel"Einfluss der Einbaulage" → 13)•Messspanne URL - LRL•Werkstoff der Prozessmembran: Al2O3 (Aluminium-Oxid-Keramik FDA, hochrein 99,9 %)•Versorgungsspannung Analogausgang: 4,9...5,1 V DC•Versorgungsspannung Digitalausgang: 2,9 ... 5,5 V DCReferenz-Genauigkeit Die Referenzgenauigkeit enthält die Nicht-Linearität [DIN EN 61298-2 3.11] inklusive der Druck-hysterese [DIN EN 61298-23.13] und der Nicht-Wiederholbarkeit [DIN EN 61298-2 3.11] gemäßder Grenzpunktmethode nach [DIN EN 60770].LangzeitstabilitätMontageEinfluss der Einbaulage Die Einbaulage ist beliebig, kann aber eine Nullpunktverschiebung verursachen.A BCA0035988UmgebungUmgebungstemperaturbe-reich –20 … +80 °C (–4 … 176 °F)Erweiterter Temperaturbereich –40 … +125 °C (–40 … +257 °F) (auf Anfrage)Lagerungstemperaturbereich–20 … +80 °C (–4 … 176 °F)Erweiterter Temperaturbereich –40 … +125 °C (–40 … +257 °F) (auf Anfrage)Elektromagnetische Verträg-lichkeit (EMV)Keine Spezifikation (offenes System)Überspannungsschutz 6 V DC (maximale Spannung für CARMEN ASIC)ProzessProzesstemperaturbereich–20 … +80 °C (–4 … 176 °F)Erweiterter Temperaturbereich –40 … +125 °C (–40 … +257 °F) (auf Anfrage) Prozesstemperaturbereich,DichtungenDruckangaben L WARNUNGDer maximale Druck für das Messgerät ist abhängig vom druckschwächsten Glied.‣Für Druckangaben siehe Abschnitt "Messbereich" → 7 und Abschnitt "Konstruktiver Aufbau"→ 16.‣Messgerät nur innerhalb der vorgeschriebenen Grenzen betreiben!‣Der Prüfdruck entspricht der Überlastgrenze der einzelnen Sensoren (Over pressure limit OPL =1,5 x MWP) und darf nur zeitlich begrenzt anliegen, damit kein bleibender Schaden entsteht.‣Die Druckgeräterichtlinie (2014/68/EU) verwendet die Abkürzung "PS". Die Abkürzung "PS" ent-spricht dem MWP (Maximum working pressure/max. Betriebsdruck) des Messgerätes.‣Dampfschläge sind zu vermeiden! Dampfschläge können Nullpunktdrifts verursachen. Empfeh-lung: Nach der CIP-Reinigung können Restmengen (Wassertropfen bzw. Kondensat) auf der Pro-zessmembran verbleiben und bei erneuter Dampfreinigung zu lokalen Dampfschlägen führen.Die Trocknung der Prozessmembran (z.B. durch Abblasen) hat sich in der Praxis zur Vermeidungvon Dampfschlägen bewährt.Konstruktiver AufbauGerätehöhe Die Gesamthöhe ergibt sich aus•der Höhe des Gehäuses und•der Höhe des jeweiligen Prozessanschlusses.In den folgenden Kapiteln sind die Einzelhöhen der Komponenten aufgeführt. Sie können dieGesamthöhe einfach ermitteln, indem Sie die Einzelhöhen zusammenaddieren. Sie können hierzufolgende Tabelle verwenden:1)Bei Wahl der Stiftleiste 2x5 Pins ist das Elektronikgehäuse montiert.1)Die Kapsel "AB" wird verwendet, wenn einer der Prozessanschlüsse der folgenden Seite ausgewählt wird.Werkstoffe Prozessberührende Werkstoffe1)Die US Food & Drug Adminsitration (FDA) sieht keine Einwände, Keramiken aus Aluminiumoxid als Ober-flächenmaterial in Kontakt mit Lebensmitteln einzusetzen. Diese Erklärung beruht auf den FDA- Nachwei-sen unserer Keramiklieferanten.TSE-Freiheit (Transmissible Spongiform Encephalopathy)Für alle prozessberührenden Gerätekomponenten gilt:•Sie enthalten keine Materialien tierischen Ursprungs.•Bei der Produktion und Verarbeitung werden keine Hilfs- und Betriebsstoffe tierischen Ursprungsverwendet.ProzessanschlüsseEndress+Hauser liefert Einschraubgewinde in Edelstahl entsprechend AISI 316L (DIN/ EN Werk-stoffnummer 1.4404 oder 1.4435) aus. Die Werkstoffe 1.4404 und 1.4435 sind in ihrer Festigkeit-Temperatur-Eigenschaft in der EN 1092-1: 2001 Tab. 18 unter 13E0 eingruppiert. Die chemischeZusammensetzung der beiden Werkstoffe kann identisch sein.Nicht-prozessberührende WerkstoffeZertifikate und ZulassungenRoHS Das Messsystem entspricht den Stoffbeschränkungen der Richtlinie zur Beschränkung der Verwen-dung bestimmter gefährlicher Stoffe 2011/65/EU (RoHS 2).Druckgeräterichtlinie 2014/68/EU (DGRL)Druckgeräte mit zulässigem Druck ≤ 200 bar (2900 psi)Druckgeräte (maximal zulässiger Druck PS ≤ 200 bar (2900 psi)) können nach der Druckgerätericht-linie 2014/68/EU als druckhaltende Ausrüstungsteile eingestuft werden. Wenn der maximal zuläs-sige Druck ≤ 200 bar (2900 psi) und das druckhaltende Volumen des Druckgerätes ≤ 0,1 l betragen, so unterliegt das Druckgerät der Druckgeräterichtlinie (siehe Druckgeräterichtlinie 2014/68/EU, Art.4, Absatz 3). Die Druckgeräterichtlinie beschreibt lediglich, dass das Druckgerät entsprechend der "guten Ingenieurspraxis in einem der Mitgliedsländer" entworfen und gefertigt werden muss.Begründung:•Druckgeräterichtlinie DGRL (PED) 2014/68/EU, Artikel 4, Absatz 3•Pressure equipment directive 2014/68/EU, Commission´s Working Group "Pressure", GuidelineA-05 + A-06Anmerkung:Für Druckgeräte, die Teil einer Sicherheitseinrichtung zum Schutz einer Rohrleitung oder einesBehälters gegen Überschreitung der zulässigen Grenzen sind (Ausrüstungsteil mit Sicherheitsfunk-tion entsprechend Druckgeräterichtlinie 2014/68/EU Art. 2, Abs. 4), ist eine gesonderte Betrach-tung vorzunehmen.Externe Normen und Richtli-nien Die angewandten Europäischen Normen und Richtlinien können den zugehörigen EG-Konformität-serklärungen entnommen werden. Es wurden außerdem angewandt:DIN EN 60770 (IEC 60770):Messumformer zum Steuern und Regeln in Systemen der industriellen Prozesstechnik Teil 1: Metho-den für Bewertung des BetriebsverhaltensMethoden zur Bewertung des Betriebsverhaltens von Messumformern zum Steuern und Regeln in Systemen der industriellen Prozesstechnik.DIN 16086:Elektrische Druckmessgeräte, Druckaufnehmer, Druckmessumformer, Druckmessgeräte Begriffe, Angaben in DatenblätternVorgehensweise zur Angaben in Datenblättern von elektrischen Druckmessgeräten, Druckaufneh-mern, Druckmessumformern.EN 61010-1 (IEC 61010-1):Sicherheitsbestimmungen für elektrische Mess-, Steuer-, Regel- und LaborgeräteEN 60529:Schutzarten durch Gehäuse (IP-Code)Ceracore UTC30Endress+Hauser 21Dienstleistung Werkszeugnisse (auf Anfrage) 3.1 Materialnachweis, mediumberührte metallische Teile, EN10204-3.1 AbnahmeprüfzeugnisCeracore UTC3022Endress+HauserBestellinformationenAusführliche Bestellinformationen sind verfügbar:Im Produktkonfigurator auf der Endress+Hauser Internetseite:Produktkonfigurator - das Tool für individuelle Produktkonfiguration •Produktspezifische Konfigurationsdaten •Je nach Gerät: Direkte Eingabe von messstellenspezifischen Angaben wie z.B. Messbereich •Automatische Überprüfung von AusschlusskriterienZubehörCeracore UTC30Ergänzende DokumentationS&C CARMEN Manual - General InformationS&C CARMEN Manual - Digital OperationS&C CARMEN Manual - Analog OperationS&C CARMEN Manual - ParametersKontaktadressenInternet: Email: ******************************.comEndress+Hauser23*71393817*71393817。
本体 说明书(含EMC技术信息、保修卡) 合格证 试用电池(AAA 碱性电池(LR03) × 2)说明书含保修卡家庭用TANITA 非接触式红外体温计本仪器测量从物体表面辐射的红外线量,将其转换为温度,并以数字方式显示(温度测量模式)。
它还测量从人的额头表面发出的红外辐射量,并将其转换为舌下温度并以数字方式显示(体温测量模式)。
舌下温度通常高于腋窝温度。
本文文件说明了以下几点,以防止对用户和他人造成伤害以及财产损失。
请仔细阅读本文并正确使用本机。
此设备仅用于额头测量。
不要用它来测量其他区域的体温,可能导致无法准确测量。
自我诊断或自行解读测量结果可能会导致疾病恶化,请遵循医生指导。
请勿使用它来测量人体以外的体温,可能导致无法准确测量。
如果处理不当,电池可能会爆炸,导致受伤。
请勿充电,拆卸或着火。
放在儿童接触不到的地方。
另外,请不要让儿童单独使用它。
将电池放在儿童接触不到的地方。
有误食的危险。
如果吞下了电池,请立即就医。
用正确的 更换电池。
否则可能会导致液体泄漏,发热,破裂等,从而导致人身伤害或财产损失。
仅使用指定的电池(AAA 碱性电池)。
否则可能会导致液体泄漏,发热,破裂等,从而导致人身伤害或财产损失。
如果电池液进入您的眼睛,请立即用大量清水冲洗。
可能导致失明。
请务必立即就医。
如果电池液沾到皮肤或衣服上,请立即用大量清水清洗。
有受伤的危险。
请勿拆卸,修理或改装,可能导致无法准确测量。
请勿强行弯曲,掉落或使其受到强烈撞击。
有击穿的危险。
请勿在会产生静电或电磁波的地方(IH 电磁炉,微波炉,通讯设备等附近)使用。
存在故障或故障的风险。
请依出货说明书的储存环境温度及湿度保存本机,请勿将本机置于温度/湿度过高或阳光直接曝晒之环境下。
本产品建议每两年校正一次准确度。
请避免遮挡从被测目标发出的红外线,导致影响测量结果。
如果额头的状况与正常状况不同,则可能无法将其准确地转换为舌下温度。
·请勿用头发,汗水或化妆品遮盖额头表面。
Benchtop & coMpact test chaMBersMicroclimate chambers simulate a full range of temperature and/or humidity conditions. these chambers are designed to provide users with a compact chamber for testing small components and products for a variety of industries. Whether you need to perform temperature cycling tests or expose your product to steady state temperature environments, these chambers will maintain precise and accurate temperature/humidity control throughout your test. choose from benchtop and reach in models to fit your laboratory testing needs.MicroClimate Benchtop Temperature Chamber shown in the stacked pact Size Saves SpaceT emperature and Humidity testing combined with a small footprint make the MicroClimate the number one choice for testing small components and products. Customers also save valuable floor space in their test laboratory. Quality & ReliabilityThe MicroClimate is designed with quality in mind. Each unit is carefully constructed with fully welded seams and ports to prolong chamber life. Each chamber is inspected at each point of the production process and fully tested prior to leaving our facility.Easy InstallationBenchtop and 115V upright models offer easy installation at any location. Stackable Design Offers FlexibilityBenchtop models may be stacked saving floor space and allowing for manual thermal shock testing.Performance to Fit Your ApplicationSelect from your choice of 115V or 230V models for faster heating & cooling performance. The NEW MC-3-1-1-HAC rapid cycling model now has cooling transition rates of 5ºC/min.**Based on 85°C to -40°C800.989.7373 | 513.772.8810 | 3optional equipment is economically priced to enhance performance and customize your chamber to meet your needs. a complete selection of optional accessories are available .optional accessoriesMC-3 shown with optional *Ultimate low for MC(H)-3-.33-.33-HAC models is -65°Cstandard FeaturesShelf Supports2” Access Port with Plug (MCB-1.2) 3” Access Port with Plug (MC-3) Leveling Legs (MC-3)Humidity Demineralizer Filter* EZT-430i T ouch Screen Controller Ethernet Control and Monitoring RS-232 Computer Interface Refrigeration Service T apsRefrigeration High T emperature Protection4eZt-430i t ouchscreen controllerAlarm notification system sends email and/or text phone messages in Enhanced FunctionalitySelectable power failure/recovery options. Fully configurable alarm settings.Full system security allows up to 30 different users with four different levels of security .YoU choose!Choose from drop-down menu navigation or icon-based navigation like smartphone/tablet technologyWindows - Based NavigationIcon - Based Navigation4Add approximately 6” (15cm) to exterior width for humidity units. Addition of certain options may increase dimensions.¹ MC(H) -3-.33.33-H/AC model rated to -65°CPerformance is based on 60 Hz. operation and a 24°C ambient. Certain options may affect performance. For 50 Hz operation, stated performance and air flow will be less. Specifications are subject to change.¹ Models available in 230V/50Hz. Contact factory for 230V/60Hz requirements.² Models available in 230V/50/60Hztesting servicesCSZ Testing Services is an A2LA Accredited Test Laboratory utilizing the latest test technology. We are your one stop source for all of your environmental simulation testing needs. Our testing laboratory is here to help with your product qualification testing, overflow testing and /or third party product validation. Testing capabilities include Temperature, Humidity, and/or Vibration, Thermal Shock, Burn-in, Radiator Testing, Altitude, Vibration, HALT/HASS, Shock, Salt Spray, and Cyclic Corrosion test. Serving you from two locations in cincinnati, oh and sterling heights, Mi .For More inForMation p lease call CSZ Testing headquarters at513-793-7774 or visit .CSZ has two manufacturing facilities in Cincinnati, OH with world-wide sales and service.© Cincinnati Sub-Zero Products, LLC95007 10/16Cincinnati Sub-Zero12011 Mosteller Road Cincinnati, OH 45241(p) 513-772-8810 (f) 513-772-9119503.1 & 503.2。
温度计单词单词:thermometer1. 定义与释义1.1词性:名词1.2释义:测量温度的仪器。
1.3英文解释:An instrument for measuring temperature.1.4相关词汇:thermograph(温度记录器,为派生词)、thermometric(测温的,为派生词)、temperature gauge(同义词)---2. 起源与背景2.1词源:“thermometer”源于希腊语。
“thermo -”表示热,来自希腊语“thermos”,“ - met er”表示测量的仪器,源于希腊语“metron”。
2.2趣闻:最早的温度计是由意大利科学家伽利略在1593年发明的。
不过他的温度计比较简陋,是根据空气受热膨胀的原理制成的。
---3. 常用搭配与短语3.1短语:(1) clinical thermometer:体温计例句:The nurse took my temperature with a clinical thermometer.翻译:护士用体温计给我量了体温。
(2) mercury thermometer:水银温度计例句:Mercury thermometers are being phased out in some places because mercury is toxic.翻译:由于水银有毒,有些地方正在逐步淘汰水银温度计。
(3) digital thermometer:数字温度计例句:A digital thermometer is more convenient to read than an old - fashioned one.翻译:数字温度计比老式温度计读数更方便。
---4. 实用片段(1) "I'm not feeling well. Can you pass me the thermometer? I think I have a fever." said Tom. His wife quickly found the thermometer and handed it to him.翻译:“我感觉不舒服。
TEMEX■M easuring range:• Quartz sensor -20 to +70 °C• Semiconductor -20 to +150 °C■M easuring uncertainty:• Quartz sensor ±0.2 K• S emiconductor ±1.8 % of endvalue■P rocess connectionG ½■P rotection (according to EN 60529):IP65■ Power supply:8.5 to 13.5 V DC■C urrent consumption:• TEMEX-E* 30 mA• TEMEX-N* 10 mA■S ignal outputs:• T EMEX-E* maximum twofrequency outputs 5 - 15 Hz or limit• T EMEX-N* one frequency output5 - 15 Hz■ Electrical connection:• Terminals and cable gland• Fixed cable connection• C onnector (optional):- PROMOS BN 4160- Machaczek ME2A10- Souriau series 845 size 2- Hydrostar SKK24- Becker module with terminals■ Material:S tainless steel■W eight:Approx. 2 kg (standard type)■A pproval:ATEX, MAThe TEMEX temperature meter is a robust and safe device for general miningapplications.The various versions of the device are used to measure temperatures in liquidand gaseous media.The mounting position is arbitrary and with its compact dimensions thetemperature meter can be mounted and put into operation even in difficultinstallation locations.The device is completely encapsulated except for the electrical connectioncompartment and is therefore maintenance-free.Versions available:• T EMEX-E*G*Evaluation unit and transducer combined in a single housing, with digital localdisplay and parameterizable temperature measuring range• T EMEX-E*A*Evaluation unit with remote transducer TMU, with digital local display andparameterizable temperature measuring range• T EMEX-N*Without evaluation unit and digital local display, with fixed temperaturemeasuring range according to type codeEasy on-site operation and parameterization (TEMEX-E*)A complete description of all device features can be found in thecorresponding operating manual ba027000a1.TEMEX*1 Only TEMEX-E**2 Standard cable length 5 m, other lengths on request*3 With straight or angled couplings available!*4T he connection cable (max. 30 m) and the connectors of the remote version are not part of the delivery and have to be ordered separately.*5T he following standard connection lengths are available:Part no. UM2 (2 m), part no. UM5 (5 m), part no. UM10 (10 m) and part no. UM20 (20 m)*6 Only necessary if ordering a TEMEX-N**7 Only necessary with deviations from order code pos. 10 to 70!Note on approval!The device variant TEMEX-NFGSQ0+50L100 [SA4.1] is certified according to MA (GB3836-2010 Q/FM-WAT01-2017), it also has a China Compulsory Certificate (CCC) for easy export to China.Note on the temperature measuring range!Within the following maximum temperature measuring ranges, these can be parameterized for the TEMEX-E* or must be specified for the TEMEX-N* when ordering:• Quartz sensor: -20 to +70 °C• Semiconductor sensor: -20 to +150 °CFor a TEMEX-N* with quartz sensor and a required measuring range of 0 to +60 °C, this is selected as follows:TEMEX-N*G*Q0+60*TEMEXOperation and parameterizationThe TEMEX-E* is operated and parameterized via three keys and a rotary coding switch.With the rotary coding switch one of the following functions can be selected:1. Measured value (standard)2. P arameterization:• Assignment of signal outputs: 5 - 15 Hz or limit value• Output function when limit value is exceeded (signal output limit value): normally closed contact or normally open contact• Switching point limit value• Hysteresis limit value• Temperature measuring range (lower and upper limit)Furthermore, a frequency signal (selectable 5 Hz, 10 Hz or 15 Hz) can be simulated at the signal outputs (e.g. for the control of the downstream plant).Display elementsThe two LEDs flash in time with the frequency output (5 - 15 Hz) or light up when the set limit value is exceeded.The following outputs can be read via the LC display:• Measured value (standard)• Parameterization values• Error messagesThe following errors can be displayed:• Overrange or underrange of the measured value• Missing remote transducer TMU• Internal hardware error。
Cernox TM温度传感器
碳陶瓷温度传感器具有高灵敏度、稳定性好、遵循单一电阻与温度曲线,磁场性能优良和耐辐射等特性。
适用于低温系统中1.5-375K范围内的测量。
传感器在及其严格的质量控制下制造,并在强磁场、中子伽马辐射、热循环和机械耐久条件下证明长期稳定性。
与其他可用的低温温度传感器相比,碳陶瓷低温温度计具有优越的机械和热环境性能,被广泛应用于整个工业研究领域。
特征
※20年来,每年测量的长期稳定性漂移小于1mK
※灵敏度400-1600Ω/K
※响应时间小于1毫秒
※磁场小于6T,误差可忽略不计
※机械稳定性和操纵特性
※适用于1.5-375K的宽温度范围
※可用在强磁场、中子-γ辐射条件下
※具有良好的稳定性、热循环和机械耐久性。
碳陶瓷基体结构
※玻璃涂层,密封,2mmx8mmx1mm深
※可用于气体、真空、液体和固体
※选定的传感器经过3个月50次热循环的热处理
※提供多项式拟合的多点校准传感器
※非氧化合金引线可弯曲,并能经受正常焊接
※2线标准配置,3线和4线可选
BC封装温度计外形图片
使用范围。
热释电陶瓷陶瓷温计摘要:各种新型功能陶瓷现在已经大规模应用于医药卫生方面,但仍有部分领域未能有陶瓷材料的设计。
代替水银体温计的电子体温计也是近几年才在我国发展的新型体温计,在此前提下,现构想利用现在成熟的热释电陶瓷技术设计新型电子体温计,旨在发展便携式环保耐用体温测量器具。
关键字:热释电效应;压电效应;热释电陶瓷;体温计引言:对于现在广泛使用的电子体温计来说,其感应装置不能耐久,使用的电源多为纽扣电池,使用寿命短,对环境污染较大,若将感应器和能源用热释电陶瓷(如锆钛酸铅陶瓷)代替,利用其热释电性和压电性,可有效提高电子体温计的使用期限,并且减少对环境的污染。
1 材料性能概述1.1压电效应某些材料在机械应力作用下,引起内部正负电荷中心相对位移而发生极化,导致材料两端表面出现符号相反的束缚电荷的现象,称为压电效应。
具有这种性能的陶瓷称为压电陶瓷,它的表面电荷的密度与所受的机械应力成正比。
反之,当这类材料在外电场作用下,其内部正负电荷中心移位,又可导致材料发生机械变形,形变的大小与电场强度成正比。
1.2热释电效应热释电晶体和压电陶瓷等会出现结构上的电荷中心相对位移,使它们的自发极化强度发生变化,从而在它们的两端产生异号的束缚电荷,这种现象称为热释电效应。
具有这种性质的材料称为热释电体。
压电陶瓷属于热释电体。
2模型设计2.1设计图2.2模型阐述体温计模型的核心为温度感应器与能源。
模型利用热释电陶瓷的热释电性制作成温度感应器,利用热释电陶瓷的热释电性和压电性充当能源。
实际使用时温度感应器(热释电陶瓷)感受到体温(温度)在晶体上产生电荷(输出电信号),再将电流信号转换成能够被内部集成的电路识别的数字信号,然后通过显示器(如液晶、数码管、LED矩阵等)显示以数字形式的温度,记录、读取被测温度的最高值;由手指捏拿时对热释电陶瓷进行的挤压与体表温度在其表面产生的电荷通过内部电路对显示器进行能源供给,使显示设备正常运行。
陶瓷ptc热敏电阻## Ceramic PTC Thermistors.PTC thermistors, or positive temperature coefficient thermistors, are a type of thermistor that exhibits a positive resistance-temperature relationship. This means that as the temperature of the PTC thermistor increases, its resistance also increases. This is in contrast to NTC thermistors, or negative temperature coefficient thermistors, which exhibit a negative resistance-temperature relationship.PTC thermistors are made from a variety of materials, including ceramics, polymers, and metals. Ceramic PTC thermistors are the most common type of PTC thermistor and are made from a mixture of barium titanate and other ceramic materials. PTC thermistors are typically used in applications where it is necessary to limit the flow of current, such as in overcurrent protection circuits and self-regulating heating elements.### Construction of Ceramic PTC Thermistors.Ceramic PTC thermistors are constructed from a mixtureof barium titanate and other ceramic materials. The barium titanate is a ferroelectric material, which means that it has a spontaneous polarization. When the temperature of the barium titanate is increased, the spontaneous polarization decreases. This decrease in spontaneous polarization causes the resistance of the PTC thermistor to increase.The other ceramic materials in the PTC thermistor are used to modify the electrical properties of the PTC thermistor. For example, the addition of strontium titanate can increase the Curie temperature of the PTC thermistor. The Curie temperature is the temperature at which the spontaneous polarization of the PTC thermistor becomes zero.### Electrical Characteristics of Ceramic PTC Thermistors.The electrical characteristics of ceramic PTCthermistors are determined by the materials used in their construction. The resistance of a PTC thermistor is typically in the range of 1 ohm to 1 megohm. The Curie temperature of a PTC thermistor is typically in the range of 100°C to 200°C.The resistance-temperature relationship of a PTC thermistor is nonlinear. The resistance of a PTC thermistor increases rapidly as the temperature of the PTC thermistor increases. This increase in resistance is due to the decrease in spontaneous polarization of the barium titanate in the PTC thermistor.### Applications of Ceramic PTC Thermistors.Ceramic PTC thermistors are used in a wide variety of applications, including:Overcurrent protection circuits.Self-regulating heating elements.Temperature sensors.Thermal switches.Resettable fuses.PTC thermistors are ideal for use in overcurrent protection circuits because they can limit the flow of current without the need for a separate fuse. PTCthermistors are also used in self-regulating heating elements because they can provide a constant temperature without the need for a thermostat.PTC thermistors are also used in a variety of other applications, such as temperature sensors, thermal switches, and resettable fuses. PTC thermistors are a versatile component that can be used in a wide variety of applications.## 陶瓷 PTC 热敏电阻。
TA InstrumentsTAM AIRNew Castle, DE USA Lindon, UT USA Elstree, United Kingdom Shanghai, China Beijing, China Taipei, Taiwan Tokyo, Japan Seoul, Korea Bangalore, India Paris, France Eschborn, Germany Brussels, Belgium Etten-Leur, Netherlands Sollentuna, Sweden Milano, Italy Barcelona, Spain Melbourne, Australia Mexico City, MexicoTAM AIRTechnical Specifications 7 TAM Technology 8 TAM Ampoules 10 Applications 12TAM AIR Isothermal mIcrocalorImetryThe ideal tool for large scale calorimetric experiments, capable of measuring 8 samples simultaneouslyTAM AIRSPECIFICATIONS 6Thermostat SpecificationsCalorimeter PositionsOperating Temperature RangeThermostat TypeThermostat StabilityCalorimeter SpecificationsLimit of DetectionShort Term NoisePrecisionBaseline over 24 hoursDriftDeviation Error <High Performance Temperature Control and StabilityThe TAM Air is an air-based thermostat, utilizing a heat sink to conduct the heat away from the sample and effectively minimize outside temperature disturbances.The calorimeter channels are held together in a single removable block. This block is contained in a thermostat that uses circulating air and an advanced temperature regulating system to keep the temperature very stable within ±0.02 K. The high accuracy and stability of the thermostat makes the calorimeter well-suited for heat flow measurements over extended periods of time, e.g. weeks. The baseline drift is less than 40 µw/24 hours with very low short-term noise. TAM Air Assistant™,a powerful, flexible and easy-to-use software package, is used for instrument control,experimental setup, data analysis and reporting of results.TAM AIR Technology8Isothermal MicrocalorimetryWhen heat is produced in a sample, isothermal microcalorimetry measures the heat flow. The sample is placed in an ampoule that is in contact with a heat flow sensor that is also in contact with a heat sink. When heat is produced or consumed by any process, a temperature gradient across the sensor is developed. This will generate a voltage, which is measured. The voltage is proportional to the heat flow across the sensor and to the rate of the process taking place in the sample ampoule. This signal is recorded continuously and in real time.For each sample there is a reference that is on a parallel heat flow sensor. During the time that the heat flow is monitored, any temperature fluctuations entering the instrument will influence both the sample and the reference sensors equally. This architecture allows a very accurate determination of heat that is produced or consumed by the sample alone while other non-sample heat disturbances are efficiently factored out.Monitoring the thermal activity or heat flow of chemical, physical and biological processes provides information which cannot be generated with other techniques. Isothermal microcalorimetry is a powerful technique for studying heat production or consumption and is non-destructive and non-invasive to the sample. The TAM Air offers unmatched sensitivity and long-term temperature stability with flexible sample requirements.When using microcalorimetry there is little or no sample pretreatment required; solids, liquids and gases can all be analyzed. Unlike other techniques that may only give time interval snapshots of data, microcalorimetry presents continuous real-time data that reflects the process or processes taking place in the sample.AMPOULESAPPLICATIONSCement Paste Setting TimeThe synergy of citric acid (CA) and calcium nitrate (CN) isclearly seen from the rate of hydration heat. CA is essentially asetting retarder relative to the reference, although the heat ofhydration is slightly reduced and CN is clearly a setting accelerator.Together they behave as a hardening retarder lowering the rate ofhydration heat and distributing it over a longer time.The rate of hydration heat for the same mixtures at 40 °C showsthat the function as hardening retarder is reduced at highertemperature. This data along with the cumulative heat data indicate thatthe admixture combination may not function in the practical semi-adiabatic case of massive concrete.1Hydration of Calcium Sulfate HemihydrateIdentical samples of 2g of Calcium Sulfate Hemihydrate powder were mixed with a hydrating agent at a liquid to solid ratio of 0.50 using an admix ampoule in the TAM Air. The blue curve shows a sample hydrated with deionized water. The red curve is a sample hydrated with a 5% Sodium Chloride solution. It is demonstrated that sodium chloride accelerates the calcium sulfate hydration reaction.ApplicAtionsCement Sulfate DepletionThis figure shows how Lerch’s criteria - sulfate depletionpeak to occur after the main silicate peak – can be usedfor a rapid indication of the optimum sulfate content of alaboratory ground clinker. The results of the laboratoryscreening shown indicates that 2.5% added SO3 might besufficient to bring the resulting Portland cement to optimumSO3 level. Several factors may cause cement manufacturedin the field to perform different as compared to the laboratoryground cement.Calorimetry serves as an excellent indication as to theapproximate values to aim for to avoid setting time andadmixture incompatibility issues. Furthermore, calorimetrycan be used to assess the efficiency of any changes madeto the cement production, such as changes in gypsum typeor changes in raw material or fuel that may influence thereactivity of the aluminate phase and thereby the demandfor soluble SO3. 2Cement Thermal Profiles with Contaminants C ement setting thermal profiles can be influenced bycontaminants. The graph shows the steady decrease in thermal power as the contamination of the cement mortar by a mixture of soil and sawdust increases (0; 0.9; 2.5 and 5.9% of w/c=0.6 cement mortar).Setting Time of CementThe TAM Air calorimeter has been shown to be excellent for diagnosis of problems related to setting time and premature stiffening of cement. The blue curve in the figure to the right represents an industrial cement produced with too little soluble calcium sulfate. This cement suffers from early stiffening because of the aluminate reactions at 1–1.5 h hydration. It also suffers from low early strength, because the aluminate hydrates formed retard the strength-giving silicate hydration indicated by the unusually small silicate peak at 5-10 h. When 0.5% (purple curve) and 1.0% (red curve) of calcium sulfate hemi-hydrate was added to the cement the undesired early peak disappeared, and the strength-giving silicate peak regained its normal shape. The results indicate that premature stiffening is caused by a lack of soluble calcium sulfate.ApplicAtionsCement BlendingThis figure provides plots of the heat release rate (heat flow) for the first 24 h of hydration for six cement pastes examined by Isothermal calorimetry (3 pure and 3 blends). In general, results for the two replicate specimens for each cement paste fall directly on top of one another. For the three initial cements, the heat release during the first 24 h increases with increasing cement fineness, as would be expected due to the increased (in contact with water) surface area. Interestingly, for these six cements based on a single clinker, the peak in heat release rate always occurs at about 6 h, while by 24 h, the heat release rate has diminished to a value close to 0.001 W/g cement.The heat flows measured during the first 24 h for the three blended cements are predicted quite well by applying the simple law of mixtures. The results imply that for the w/c = 0.4 cement pastes examined in this study, the particles are likely hydrating independently of one another during the first 24 h, such that the degree of hydration of blends of the fine and coarse cements can be quite accurately computed simply as a weighted average of their (measured) individual hydration rates. 4ApplicAtionsFood TestingThis figure shows the Thermal treatment of carrot juice resulting inincreased shelf life only at the highest treatment temperature.The measured thermal power is the heat from the micro-biological activity in the sample. It is seen that the lower treatmenttemperatures gave only slightly lower thermal powers, but that the70 °C treatment gave a substantially delayed signal. At 20 °Cthe shelf life was thus increased by more than 50% by the 70 °Ctreatment. 5Epoxy CuringHere we see the heat production and the heat production rate as afunction of time. It can be seen that the spread of results is low and thatafter an initial reaction period of five hours the heat production ratedecrease is similar to an exponential decay. After 45 h the thermalpower is approx. 0.06 mW/g, i.e. 600 μW for a l0g sample.As the detection limit for TAM Air is better than 3 μW it would stillbe possible to follow the reaction for an even longer time than wasdone here.6Fungal GrowthAt each temperature multiple inoculated specimens were measured. This figure shows the results at the five temperatures. It is seen that the results for each temperature agrees rather well with each other. Calorimetric measurements can be a valuable addition to the measurement techniques for predictive microbiology.7TAM Air Battery TestingThe properties of batteries during discharge with three differ-ent resistance loads are shown. Single channels in TAM Air were charged with 1.5 V alkaline batteries, size AAA. Three resistors of different values were placed in an adjacent channel for connection to the batteries. The solid line represents the useful energy in the battery which is the heat production measured in the resistor, while the dotted line is the heat production from the battery itself, i.e. the internal losses.The batteries were fully discharged during the course of the evaluation in the TAM Air. The lowest resistances cause a rapid drain of the battery (e.g. as in a flashlight) whereas the highest resistances cause a very low rate of discharge (e.g. as in an alarm clock).8NOTES1 Justness, H., Wuyts, F. and D. Van Gemert. Hardening Retarders for Massive Concrete. Thesis. Catholic University of Leuven. 20072 Paul Sandberg, Grace Construction Products, W. R. Grace & Co. 2004.3 Dr. L. Wadsö, University of Lund, Sweden 20024 Bentz, D.P. Blending Different Fineness Cements to Engineer the Properties of Cement-Based Materials. Mag. Concrete Res.5 F. Gomez and L. Wadsö. Isothermal Calorimetry for Biological Applications in Food Science and Technology. 2000.6 Wadsö, L. Curing of Epoxy Adhesive Studied by TAM Air. TA Instruments Application Note 20077 Lars Wadsö and Yujing Li. A test of models for fungal growth based on metabolic heat rate measurements. 20008 Lars Wadsö. Investigations into Dry Cell Battery Discharge Rates using TAM Air. 2000. TA Instruments, AN 314-03.© 2011 TA Instruments. All rights reserved.L20037.001。
PTC 热敏陶瓷1 定义及分类热敏陶瓷定义(heat sensitive ceramics):电阻率明显随温度变化的一类功能陶瓷。
热敏陶瓷按阻温特性分为:正温度系数(positive temperature cofficient,简称PTC)热敏陶瓷;2 PTC发展历程1950年荷兰PHLIPS公司的海曼等人,在BaTiO3材料中掺入稀土元素做半导化实验时,发现这种半导体材料的电阻率具有很高的正温度系数,存在很强的PTC效应,探索这种现象的机理很快成为引人瞩目的研究课题。
几十年来,在世界众多科学工作者的努力下,在许多方面取得了重大突破不仅理论日臻成熟,其应用范围也在不断扩大。
随着研发和设计工程师对PTC热敏电阻的了解越来越深刻,许多新用途不断被开发出来,目前已渗透到日常生活、工业技术、军事科学、通讯、宇航等各个领域。
在我国,从60年代开始PTC热敏电阻的科研工作并逐步发展到生产,1982年,"仪表材料学会"从敏感元件角度组织第一次PTC讨论会;1990年,<家电科技>杂志在广州组织家电轻工系统PTC讨论会,迄今已举行过八次;1990年,国家科委组织科研院所及厂家对PTC 热敏电阻及应用器件进行攻关,使PTC热敏电阻进入快速发展时期,到目前已形成多个年产5000万只的骨干大厂分布于山东、广东、浙江、四川、湖北、江苏等地。
3 PTC效应原理在低于Tc的温区,为铁电相,存在自发极化,晶界区的电荷势垒被自发极化的电荷分量部分抵消,从而形成低阻通道,使得低温区的电阻较低。
在Tc以上的温度范围内,铁电相转变成为顺电相,当两个晶轴取向不同的晶粒接触后,在晶界区有空间电荷,形成势垒,即对电子电导构成电阻。
介电常数 急剧下降,则势垒急剧增高,使电阻激增,形成PTC效应。
PTC效应在晶界区形成,由三种现象汇合而成:可形成半导性;有铁电相;能形成界面受主态。
显然,任何(包括组成和制造工艺)影响上述三个因素中的任何一个,并均会影响PTC性能,这使得PTC陶瓷制备工艺比其他介质瓷组成工艺敏感性更高。
碳电阻温度计〔carbonresistancethermometer〕14年物理
知识百科
当今社会是一个高速开展的信息社会。
生活在信息社会,就要不断地接触或获取信息。
如何获取信息呢?阅读便是其中一个重要的途径。
据有人不完全统计,当今社会需要的各种信息约有80%以上直接或间接地来自于图书文献。
这就说明阅读在当今社会的重要性。
还在等什么,快来看看这篇碳电阻温度计(carbonresistancethermometer)14年物理知识百科吧~
碳电阻温度计〔carbonresistancethermometer〕
碳电阻温度计(carbonresistancethermometer)
碳电阻是由微小的石墨颗粒聚合而成。
碳电阻的电阻值具有负的电阻温度系数,温度越低,电阻值越高,适用于液氦温区的测温。
它灵敏度高、尺寸小,对环境参数(磁场、辐照、压力等)不敏感,它的电阻温度关系曲线光滑,可用较简单的公式来分度,一般可用
`frac{1}{T}=sum_jA_j(logR)^j`
的表达式。
碳电阻在测温时,应尽可能不超过90K ,否那么会影响复现性,需要重新校准,即在一个温度点上重新测定,然后调整其R-T关系式中的一个常数即成。
碳电阻的热导较差,测温时要防止工作电流引起的自热效应,测量电流应尽可能的小,一般不超过100A ,在改变温度后要有几秒钟的等待时间。
这篇碳电阻温度计(carbonresistancethermometer)14年物理知识百科,你推荐给朋友了么?
1 / 1。