第五章滚动轴承的状态监测和故障诊断
- 格式:ppt
- 大小:670.50 KB
- 文档页数:43
滚动轴承的状态监测与故障判断滚动轴承是工业领域中常见的机械部件之一,主要用于支撑和转动机械设备。
在使用过程中,滚动轴承可能会出现一些故障,如轴承损耗、磨损等问题。
针对这些故障,及时进行状态监测和故障判断是非常必要的。
本文将从滚动轴承的状态监测和故障诊断两个方面进行介绍。
指标监测:通过监测关键指标,如轴承的温度、位置振动、噪声等,可以获得轴承的运行状态。
其中,温度的监测是比较常见的方法,通常使用温度计和红外线测温技术进行监测。
对于高速轴承还可以使用锅炉测温计进行实时监测。
位置振动监测是指通过振动传感器或加速度计获取轴承的振动数据,根据振动数据来分析轴承的状态。
如果轴承的振动频率很高,则说明可能存在故障。
油润滑监测:为了确保轴承的正常运行,需要进行油润滑监测。
在油润滑监测过程中需要测量油温、油压、粘度等指标,同时还需要检查油的浑浊度和金属微粒的含量。
这些指标可以帮助判断油润滑的状态是否正常。
损耗诊断:损耗是指轴承零件表面材料的脱落、烧焦、磨损等现象。
通过损耗诊断可以确定损耗的原因,如材料强度、润滑状况等。
损耗诊断可以使用金相分析和扫描电子显微镜等技术。
磨损诊断:磨损是指轴承零件表面材料被磨损或腐蚀的现象。
磨损可能是由于轴承内部的某些因素引起的,例如材质、润滑状况、工作载荷等。
可以使用虚拟仪器技术、金属磨损颗粒分析等方法对轴承的磨损程度进行诊断。
结论通过对滚动轴承的状态监测和故障诊断,可以提高轴承的可靠性和安全性,延长轴承的使用寿命,减少维修和更换的次数和成本。
因此,对滚动轴承进行状态监测和故障诊断是非常重要的。
滚动轴承的状态监测与故障判断滚动轴承在机械设备中起着重要的作用,一旦发生故障,可能会导致设备停机,对生产造成不良影响。
滚动轴承的状态监测与故障判断对于设备的正常运转至关重要。
本文将从滚动轴承的状态监测方法以及故障判断技术两方面进行介绍。
滚动轴承的状态监测可以采用多种方法。
一般来说,常见的方法有振动信号监测、温度监测以及润滑油分析等。
振动信号监测是一种较为常用的滚动轴承状态监测方法。
通过在轴承上设置振动传感器,可以实时采集轴承振动信号,并对其进行分析。
正常情况下,滚动轴承的振动信号应该是稳定的,频率也应该在一定的范围内。
如果发现振动信号出现异常,频率突然增大或者波形发生变化,可能意味着轴承存在故障。
温度监测也是一种常用的滚动轴承状态监测方法。
通过在轴承上设置温度传感器,可以实时监测轴承的温度。
当轴承发生故障时,由于摩擦产生的热量会导致轴承温度升高。
通过监测轴承的温度变化,可以判断轴承是否存在故障。
润滑油分析也是一种常用的滚动轴承状态监测方法。
通过定期检测润滑油中的金属颗粒、污染物和酸值等指标,可以判断轴承的磨损程度和润滑状况。
如果发现润滑油中出现大量的金属颗粒或者酸值超过正常范围,可能意味着轴承存在故障。
除了状态监测,滚动轴承的故障判断也需要采用相应的技术。
常用的故障判断技术主要包括故障模式诊断和故障特征提取。
故障模式诊断是通过分析轴承故障的特征模式,判断故障的类型和程度。
常见的故障模式有疲劳断裂、卡死、胶合、磨损等。
通过对轴承进行振动分析、声学分析和红外热像等技术的应用,可以诊断出轴承的故障模式。
故障特征提取是通过分析轴承振动信号或者其他相关信号的频谱、波形和包络等特征,提取与轴承故障相关的特征参数。
通过对这些特征参数的分析和比较,可以判断轴承的故障类型和程度。
常见的特征参数有峭度、峰值因子、波形因子等。
滚动轴承的状态监测和故障判断对于设备的正常运转至关重要。
通过采用合适的监测方法和故障判断技术,可以及时发现轴承故障,并采取相应的维修措施,保证设备的正常运行。
滚动轴承的状态监测与故障判断
滚动轴承是一种常见的机械设备,用于支撑旋转轴的运动。
由于长时间工作和外界环
境的影响,滚动轴承容易出现故障,对设备运行造成不良影响。
对滚动轴承的状态进行监
测和故障判断非常重要。
滚动轴承的状态监测主要包括振动、温度和声音三个方面。
振动监测是滚动轴承状态监测中最常用的方法之一。
通过对滚动轴承的振动信号进行
采集和分析,可以判断滚动轴承是否存在异常。
通常采用加速度传感器安装在滚动轴承上,通过测量振动信号的振幅、频率和相位等参数,可以判断轴承是否存在轴向、径向和角向
振动异常。
温度监测也是滚动轴承状态监测中的重要方法。
由于滚动轴承在工作过程中会产生摩
擦和热量,因此温度的升高可能是滚动轴承存在问题的信号。
通过在滚动轴承上安装温度
传感器,可及时监测轴承温度的变化,当温度超过设定的阈值时,即可判断轴承存在异常
情况。
对于滚动轴承的故障判断,可以通过上述状态监测方法得到的数据进行分析和对比。
当滚动轴承的振动频率突然增大、温度异常升高、噪音变得异常大时,很有可能是滚动轴
承出现了故障。
还可以制定一套滚动轴承健康状态和故障特征的模型,通过监测数据和模
型进行对比分析,准确判断滚动轴承是否存在故障。
滚动轴承的状态监测和故障判断是保证设备安全运行和提高设备可靠性的重要手段。
通过振动、温度和声音监测等方法,可以实时监测滚动轴承的状态,并根据监测结果进行
故障判断和预测,为设备的维护提供科学依据。
滚动轴承是旋转机械的重要组成部分,同时也是旋转机械中最容易出现故障的部件之一。
它具有造价较低、润滑冷却方便、运行灵敏、使用效率较高、维修便捷等优点,在机械行业应用广泛。
据有关统计显示,在旋转机械故障率中有近30%的故障是由于滚动轴承发生故障而引起的,所以,对滚动轴承的状态监测和故障诊断进行研究势在必行。
监测与诊断的目的和意义滚动轴承正常运行与否,对于整机的可靠性、精度以及寿命等性能有很大的影响。
据有关统计显示,在旋转机械故障率中有近30%的故障是由于滚动轴承发生故障而引起的,在将故障诊断技术运用到生产中以后,事故率降低近70%,同时降低的维修费用也有近40%。
利用轴承状态监测技术可以了解轴承的使用性能,并对可能发生的故障进行早期检测,分析和预测可能发生的故障,进一步提高设备的管理水平和维修效率,经济效益十分显著。
轴承故障诊断的发展历程轴承故障诊断刚开始主要是依靠人工听觉来诊断,再有就是利用探听棒,这种方法在许多企业中目前仍在使用,不过一些工具已经被改进到电子听诊器等。
例如,当使用电子听诊器检测轴承故障时,具有经验丰富的人员可以凭经验诊断轴承疲劳剥落,有时还可以诊断出损伤发生的位置,但由于其它的外部原因,这种方法的可靠性有时会无法得到保证。
随着科技的发展,越来越多的振动仪器被运用到滚动轴承的状态监测工作中。
这些仪器利用振动位移、速度和加速度的均方根值(RMS)或峰值来判断轴承是否有故障。
这些仪器减少了我们对经验的依赖,使得监测和诊断的准确性有了很大的提高,但是在故障发生的初始阶段仍然很难及时做出准确的诊断。
瑞典公司在多年研究轴承故障机理的基础上,于1966年发明了脉冲计检测轴承损伤的方法,很大程度上提高了滚动轴承故障诊断工作的准确性和及时性。
此后,许多公司都安装了大量的振动监测传感器来监测轴承的长期运行,再有就是航天领域也采用了这样的监测仪器。
1976-1983年,公司研制了NB系列轴承监测仪,利用轴承振动信号的1~15kHz范围,测量了轴承故障的均方根和峰值。
滚动轴承的状态监测与故障判断摘要:滚动轴承作为旋转机械设备的关键部件,同时也是旋转机械最易损坏的零件之一,其产生失效的初始阶段,由于失效程度较为轻微,往往不易被发现,只有当失效发展到明显过热、强烈振动或滚动噪声足够大时才会被发现。
往往由于发现不及时引起设备停机或设备损坏,造成生产上不应有的损失。
利用监测系统对滚动轴承实施在线监测,可以精确诊断轴承故障,便于制定维护、维修管理方案。
关键词:滚动轴承;状态监测;故障判断前言轴承是影响机械设备的关键,对机组轴承的状态检测、故障诊断与维护势在必行。
随着现代信息技术的进一步发展,信息技术已经被广泛应用在故障诊断中,并成为保证机组轴承运行能力的关键。
1滚动轴承的主要失效形式在轴承的正常运行条件下,振动型号的频谱范围窄,此时所能够产生的振幅小,噪音也很小,此时微小的振动可能是轴承本身所存在的小缺陷所引起的。
在轴承稳定运行期间,振动波形是有规律的,并且振幅也在控制在一定水平下。
而随着运行时间增加,轴承逐渐达到运行寿命,失效现象开始出现,而此时的轴承会因各种失效原因而出现加剧振动问题,此时的轴承出现故障,文章将其分为以下四个时段:(1)滚动轴承故障的初始阶段。
此阶段是故障出现的萌芽阶段,轴承的各项指标都正常,只有在尖峰能量上可以发现少许的变化,同时频谱建设结果也能发现一些异常,机组整体运行相对平稳。
(2)滚动轴承的轻微故障阶段。
此阶段轴承运行期间的噪音逐渐增加,但是统计结果发现轴承的各项运行指标相对正常,而尖峰能力已经发现明显的突变,谱宽明显增大,机组运行失稳现象开始出现。
(3)滚动轴承的宏观故障阶段。
在这个阶段,已经认为听到噪音,监测系统发现轴承的工作温度异常变化,平铺图上能够发现谱宽增加,出现明显的混乱;尖峰能量持续增加,一般在此阶段就是更换轴承的最佳时机。
(4)滚动轴承故障的最后阶段。
该阶段是轴承运行的临界点,随时有可能引发灾难性后果,应该注意避免轴承在此阶段运行。